Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Calculations of WTR and GRT
- WTR < 1: Recharge-controlled systems where the water table is deep and climate inputs dominate;
- WTR > 1: Topography-controlled systems with shallow water tables enabling bidirectional land-atmosphere exchanges.
2.3. Geographical Convergent Cross Mapping (GCCM)
2.4. Generalized Additive Model (GAM)
3. Results
3.1. Spatial Variation
3.2. Effects of Landcovers
3.3. Causations Between GRT, WTR Type and Various Influencing Factors
3.4. Contributions of Influencing Factors
4. Discussion
4.1. Limitations
4.2. Implications of Complex Aquifer Behaviors in Climate-Groundwater Interactions
4.3. Future Groundwater Conservation Proposal
5. Conclusions
- (1)
- GRT distribution exhibits extreme temporal heterogeneity, with only 7.36% of the basin responding within 100 years while 85.23% exceeds 1000 years—including 71.91% > 10,000 years, confirming dominance of groundwater systems;
- (2)
- Water table types bifurcate along clear hydrogeological boundaries: recharge control predominates in shrublands/wetlands/croplands (WTR < 1), while topographic control prevails in forests/barelands (WTR > 1);
- (3)
- Climatic, topographic, geologic, and vegetative factors collectively explain 86.7% of GRT variance and 75.9% of WTR variability, with hydraulic conductivity (K), vadose zone thickness (VZT), and precipitation (P) identified as dominant GRT controls;
- (4)
- Spatial analysis reveals critical conservation gaps: merely 6.72% of vulnerable aquifers (GRT < 100 years) currently fall within protected areas;
- (5)
- The GRT-WTR synergy provides process-based interpretability—GRT contextualizes aquifer climate vulnerability while WTR identifies groundwater-mediated land-atmosphere coupling zones.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanguy, M.; Chevuturi, A.; Marchant, B.P.; Mackay, J.D.; Parry, S.; Hannaford, J. How will climate change affect the spatial coherence of streamflow and groundwater droughts in Great Britain? Environ. Res. Lett. 2023, 18, 064048. [Google Scholar] [CrossRef]
- Jaramillo, F.; Aminjafari, S.; Castellazzi, P.; Fleischmann, A.; Fluet Chouinard, E.; Hashemi, H.; Hubinger, C.; Martens, H.R.; Papa, F.; Schöne, T.; et al. The Potential of Hydrogeodesy to Address Water-Related and Sustainability Challenges. Water Resour. Res. 2024, 60, e2023WR037020. [Google Scholar] [CrossRef]
- Mays, L.W. Groundwater Resources Sustainability: Past, Present, and Future. Water Resour. Manag. 2013, 27, 4409–4424. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Huang, B.; Zipper, S.; Peng, S.; Qiu, J. Groundwater effects on net primary productivity and soil organic carbon: A global analysis. Environ. Res. Lett. 2023, 18, 084024. [Google Scholar] [CrossRef]
- Link, A.; El-Hokayem, L.; Usman, M.; Conrad, C.; Reinecke, R.; Berger, M.; Wada, Y.; Coroama, V.; Finkbeiner, M. Groundwater-dependent ecosystems at risk—global hotspot analysis and implications. Environ. Res. Lett. 2023, 18, 094026. [Google Scholar] [CrossRef]
- Pandey, S.; Mohapatra, G.; Arora, R. Groundwater quality, human health risks and major driving factors in arid and semi-arid regions of Rajasthan, India. J. Clean. Prod. 2023, 427, 139149. [Google Scholar] [CrossRef]
- Afkhami, S.; Massah Bavani, A.R.; Gohari, A.; Naderi, M.M.; Saadi, T. Sustainability analysis of single vs. multiple adaptation strategies in tackling the adverse impacts of climate change on groundwater resources using water-food-energy nexus approach. J. Clean. Prod. 2024, 459, 142532. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; Marinelli, B.; Liu, S. Global analysis of groundwater pumping from increased river capture. Environ. Res. Lett. 2024, 19, 044064. [Google Scholar] [CrossRef]
- Diodato, N.; Seim, A.; Ljungqvist, F.C.; Bellocchi, G. A millennium-long perspective on recent groundwater changes in the Iberian Peninsula. Commun. Earth Environ. 2024, 5, 257. [Google Scholar] [CrossRef]
- Xie, J.; Liu, X.; Jasechko, S.; Berghuijs, W.R.; Wang, K.; Liu, C.; Reichstein, M.; Jung, M.; Koirala, S. Majority of global river flow sustained by groundwater. Nat. Geosci. 2024, 17, 770–777. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater system and climate change: Present status and future considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Tripathi, M.; Yadav, P.K.; Chahar, B.R.; Dietrich, P. A review on groundwater–surface water interaction highlighting the significance of streambed and aquifer properties on the exchanging flux. Environ. Earth Sci. 2021, 80, 604. [Google Scholar] [CrossRef]
- Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale—A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef]
- Lu, Z.; Peng, S.; Wu, T.; Lei, J.; Wei, J.; Yang, X. Effects of irrigation and canal networks on groundwater–land surface interactions in the middle Heihe River Basin, China. J. Hydrol. Reg. Stud. 2025, 60, 102532. [Google Scholar] [CrossRef]
- Houspanossian, J.; Gimenez, R.; Whitworth-Hulse, J.I.; Nosetto, M.D.; Tych, W.; Atkinson, P.M.; Rufino, M.C.; Jobbagy, E.G. Agricultural expansion raises groundwater and increases flooding in the South American plains. Science 2023, 380, 1344–1348. [Google Scholar] [CrossRef]
- Rohde, M.M.; Albano, C.M.; Huggins, X.; Klausmeyer, K.R.; Morton, C.; Sharman, A.; Zaveri, E.; Saito, L.; Freed, Z.; Howard, J.K.; et al. Groundwater-dependent ecosystem map exposes global dryland protection needs. Nature 2024, 632, 101–107. [Google Scholar] [CrossRef]
- Rohde, M.M.; Stella, J.C.; Singer, M.B.; Roberts, D.A.; Caylor, K.K.; Albano, C.M. Establishing ecological thresholds and targets for groundwater management. Nat. Water 2024, 2, 312–323. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Villholth, K.G.; Rocha, J.C.; Famiglietti, J.S. Groundwaterscapes: A Global Classification and Mapping of Groundwater’s Large-Scale Socioeconomic, Ecological, and Earth System Functions. Water Resour. Res. 2024, 60, e2023WR036287. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Serrano, D.; Zipper, S.; Jehn, F.; Rohde, M.M.; Abell, R.; Vigerstol, K.; Hartmann, A. Overlooked risks and opportunities in groundwatersheds of the world’s protected areas. Nat. Sustain. 2023, 6, 855–864. [Google Scholar] [CrossRef]
- Pocco, V.; Mendoza, A.; Chucuya, S.; Franco-León, P.; Huayna, G.; Ingol-Blanco, E.; Pino-Vargas, E. Assessment of Potential Aquifer Recharge Zones in the Locumba Basin, Arid Region of the Atacama Desert Using Integration of Two MCDM Methods: Fuzzy AHP and TOPSIS. Water 2024, 16, 2643. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Mora, A.; Chucuya, S.; Pino-Vargas, E.; Torres-Martínez, J.A.; Dueñas-Moreno, J.; Ramos-Fernández, L.; Kumar, M.; Mahlknecht, J. Hydraulic recharge and element dynamics during salinization in an overexploited coastal aquifer of the world’s driest zone: Atacama Desert. Sci. Total Environ. 2024, 954, 176204. [Google Scholar] [CrossRef] [PubMed]
- Pino-Vargas, E.; Espinoza-Molina, J.; Chávarri-Velarde, E.; Quille-Mamani, J.; Ingol-Blanco, E. Impacts of Groundwater Management Policies in the Caplina Aquifer, Atacama Desert. Water 2023, 15, 2610. [Google Scholar] [CrossRef]
- Yang, C.; Condon, L.E.; Maxwell, R.M. Unravelling groundwater–stream connections over the continental United States. Nat. Water 2025, 3, 70–79. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef]
- Reinecke, R.; Gnann, S.; Stein, L.; Bierkens, M.; de Graaf, I.; Gleeson, T.; Essink, G.O.; Sutanudjaja, E.H.; Ruz Vargas, C.; Verkaik, J.; et al. Uncertainty in model estimates of global groundwater depth. Environ. Res. Lett. 2024, 19, 114066. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Sci. Total Environ. 2022, 846, 157355. [Google Scholar] [CrossRef]
- Moyers, K.; Sabie, R.; Waring, E.; Preciado, J.; Naughton, C.C.; Harmon, T.; Safeeq, M.; Torres-Rua, A.; Fernald, A.; Viers, J.H. A Decade of Data-Driven Water Budgets: Synthesis and Bibliometric Review. Water Resour. Res. 2023, 59, e2022WR034310. [Google Scholar] [CrossRef]
- Cai, P.; Li, R.; Guo, J.; Xiao, Z.; Fu, H.; Guo, T.; Wang, T.; Zhang, X.; Song, X. Spatiotemporal dynamics of groundwater in Henan Province, Central China and their driving factors. Ecol. Indic. 2024, 166, 112372. [Google Scholar] [CrossRef]
- Irvine, D.J.; Singha, K.; Kurylyk, B.L.; Briggs, M.A.; Sebastian, Y.; Tait, D.R.; Helton, A.M. Groundwater-Surface water interactions research: Past trends and future directions. J. Hydrol. 2024, 644, 132061. [Google Scholar] [CrossRef]
- Masciopinto, C.; Vurro, M.; Palmisano, V.N.; Liso, I.S. A Suitable Tool for Sustainable Groundwater Management. Water Resour. Manag. 2017, 31, 4133–4147. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, T.; Lei, J.; Yang, X. Assessing a high-resolution integrated hydrologic model (ParFlow-CLM-HRB) in an endorheic basin of China. J. Hydrol. 2025, 661, 133579. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Lin, H.; Cai, X.; Fang, M.; Ge, Y.; Hu, X.; Chen, M.; Li, W. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale. J. Geophys. Res. Atmos. 2018, 123, 3019–3034. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Ge, Y.; Li, H.; Han, F.; Hu, X.; Tian, W.; Tian, Y.; Pan, X.; Nian, Y.; et al. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Endorheic Basins. J. Geophys. Res. Atmos. 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Ge, Y.; Li, X.; Cheng, G.; Fu, B.; Liu, J.; Gao, L.; Zhong, F.; Zhang, L.; Wang, S. What dominates sustainability in endorheic regions? Sci. Bull. 2022, 67, 1636–1640. [Google Scholar] [CrossRef]
- Yao, Y.; Tian, Y.; Andrews, C.; Li, X.; Zheng, Y.; Zheng, C. Role of Groundwater in the Dryland Ecohydrological System: A Case Study of the Heihe River Basin. J. Geophys. Res. Atmos. 2018, 123, 6760–6776. [Google Scholar] [CrossRef]
- Yang, D.; Gao, B.; Jiao, Y.; Lei, H.; Zhang, Y.; Yang, H.; Cong, Z. A distributed scheme developed for eco-hydrological modeling in the upper Heihe River. Sci. China Earth Sci. 2015, 58, 36–45. [Google Scholar] [CrossRef]
- Li, J.; Mao, X.; Li, M. Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS. Agric. Water Manag. 2017, 179, 338–351. [Google Scholar] [CrossRef]
- Lu, Z.; Wu, D.; Meng, S.; Kou, X.; Jiao, L. Exploration of Spatiotemporal Covariation in Vegetation–Groundwater Relationships: A Case Study in an Endorheic Inland River Basin. Land 2025, 14, 715. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Fu, B.; Xia, J.; Zhang, L.; Yang, D.; Zheng, C.; Liu, S.; Li, X.; Song, C.; et al. Linking Critical Zone With Watershed Science: The Example of the Heihe River Basin. Earth’s Future 2022, 10, e2022EF002966. [Google Scholar] [CrossRef]
- Lu, Z.; He, Y.; Peng, S. Assessing Integrated Hydrologic Model: From Benchmarking to Case Study in a Typical Arid and Semi-Arid Basin. Land 2023, 12, 697. [Google Scholar] [CrossRef]
- Haitjema, H.M. On the residence time distribution in idealized groundwatersheds. J. Hydrol. 1995, 172, 127–146. [Google Scholar] [CrossRef]
- Townley, L.R. The response of aquifers to periodic forcing. Adv. Water Resour. 1995, 18, 125–146. [Google Scholar] [CrossRef]
- Erskine, A.D.; Papaioannou, A. The use of aquifer response rate in the assessment of groundwater resources. J. Hydrol. 1997, 202, 373–391. [Google Scholar] [CrossRef]
- Zijl, W. Scale aspects of groundwater flow and transport systems. Hydrogeol. J. 1999, 7, 139–150. [Google Scholar] [CrossRef]
- Haitjema, H.M.; Mitchell-Bruker, S. Are water tables a subdued replica of the topography? Groundwater 2005, 43, 781–786. [Google Scholar] [CrossRef]
- Currell, M.; Gleeson, T.; Dahlhaus, P. A New Assessment Framework for Transience in Hydrogeological Systems. Groundwater 2016, 54, 4–14. [Google Scholar] [CrossRef]
- Carr, E.J.; Simpson, M.J. Accurate and efficient calculation of response times for groundwater flow. J. Hydrol. 2018, 558, 470–481. [Google Scholar] [CrossRef]
- Gleeson, T.; Marklund, L.; Smith, L.; Manning, A.H. Classifying the water table at regional to continental scales. Geophys. Res. Lett. 2011, 38, L5401. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, S.; Zhangsong, A.; Han, Y.; Cao, R. Long-term evolution of groundwater hydrochemistry and its influencing factors based on self-organizing map (SOM). Ecol. Indic. 2023, 154, 110697. [Google Scholar] [CrossRef]
- Yang, R.; Mu, Z.; Gao, R.; Huang, M.; Zhao, S. Interactions between ecosystem services and their causal relationships with driving factors: A case study of the Tarim River Basin, China. Ecol. Indic. 2024, 169, 112810. [Google Scholar] [CrossRef]
- Ehtiat, M.; Jamshid Mousavi, S.; Srinivasan, R. Groundwater Modeling Under Variable Operating Conditions Using SWAT, MODFLOW and MT3DMS: A Catchment Scale Approach to Water Resources Management. Water Resour. Manag. 2018, 32, 1631–1649. [Google Scholar] [CrossRef]
- Lu, Z.; Chai, L.; Ye, Q.; Zhang, T. Reconstruction of Time-Series Soil Moisture from AMSR2 and SMOS Data by Using Recurrent Nonlinear Autoregressive Neural Networks. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium 2015 (IGARSS 2015), Milan, Italy, 26–31 July 2015. [Google Scholar]
- Lu, Z.; Wei, J.; Yang, X. Effects of hydraulic conductivity on simulating groundwater–land surface interactions over a typical endorheic river basin. J. Hydrol. 2024, 638, 131542. [Google Scholar] [CrossRef]
- Downing, R.A.; Oakes, D.B.; Wilkinson, W.B.; Wright, C.E. Regional development of groundwater resources in combination with surface water. J. Hydrol. 1974, 22, 155–177. [Google Scholar] [CrossRef]
- Lu, Z.; Yang, X. Effects of microtopography on patterns and dynamics of groundwater–surface water interactions. Adv. Water Resour. 2024, 188, 104704. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Luijendijk, E.; Moeck, C.; van der Velde, Y.; Allen, S.T. Global Recharge Data Set Indicates Strengthened Groundwater Connection to Surface Fluxes. Geophys. Res. Lett. 2022, 49, e2022GL099010. [Google Scholar] [CrossRef]
- Gleeson, T.; Moosdorf, N.; Hartmann, J.; van Beek, L.P.H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 2014, 41, 3891–3898. [Google Scholar] [CrossRef]
- Shangguan, W.; Hengl, T.; Mendes De Jesus, J.; Yuan, H.; Dai, Y. Mapping the global depth to bedrock for land surface modeling. J. Adv. Model. Earth Syst. 2017, 9, 65–88. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, W.; Xie, T.; Wu, X.; Xie, Y.; Feng, S.; Chen, F. Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951–2011. Theor. Appl. Climatol. 2019, 138, 491–507. [Google Scholar] [CrossRef]
- Zomer, R.J.; Xu, J.; Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 2022, 9, 409. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R.; Ye, H.; Hsieh, C.H.; Deyle, E.; Fogarty, M.; Munch, S. Detecting causality in complex ecosystems. Science 2012, 338, 496–500. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.; Wang, J. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef]
- Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Y.; et al. Uncertainty analysis of eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sens. Environ. 2021, 255, 112225. [Google Scholar] [CrossRef]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016, 111, 1548–1563. [Google Scholar] [CrossRef]
- Hu, Z.; Chai, L.; Crow, W.T.; Liu, S.; Zhu, Z.; Zhou, J.; Qu, Y.; Liu, J.; Yang, S.; Lu, Z. Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau. Remote Sens. 2022, 14, 3063. [Google Scholar] [CrossRef]
- Lu, Z.; He, Y.; Peng, S.; Yang, X. Comprehensive Evaluation of Multisource Soil Moisture Products in a Managed Agricultural Region: An Integrated Hydrologic Modeling Approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1–17. [Google Scholar] [CrossRef]
- Stavroglou, S.K.; Pantelous, A.A.; Stanley, H.E.; Zuev, K.M. Hidden interactions in financial markets. Proc. Natl. Acad. Sci. USA 2019, 116, 10646–10651. [Google Scholar] [CrossRef]
- Rousseau-Gueutin, P.; Love, A.J.; Vasseur, G.; Robinson, N.I.; Simmons, C.T.; de Marsily, G. Time to reach near-steady state in large aquifers. Water Resour. Res. 2013, 49, 6893–6908. [Google Scholar] [CrossRef]
- Walker, G.R.; Gilfedder, M.; Dawes, W.R.; Rassam, D.W. Predicting Aquifer Response Time for Application in Catchment Modeling. Groundwater 2015, 53, 475–484. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Acworth, R.I.; Andersen, M.S.; Larsen, J.R.; McCallum, A.M.; Rau, G.C.; Tellam, J.H. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations. Water Resour. Res. 2016, 52, 827–840. [Google Scholar] [CrossRef]
- Gleeson, T.; Manning, A.H. Regional groundwater flow in mountainous terrain: Three-dimensional simulations of topographic and hydrogeologic controls. Water Resour. Res. 2008, 44, W10403. [Google Scholar] [CrossRef]
- Condon, L.E.; Maxwell, R.M. Evaluating the relationship between topography and groundwater using outputs from a continental-scale integrated hydrology model. Water Resour. Res. 2015, 51, 6602–6621. [Google Scholar] [CrossRef]
- Huggins, X.; Gleeson, T.; Castilla Rho, J.; Holley, C.; Re, V.; Famiglietti, J.S. Groundwater Connections and Sustainability in Social-Ecological Systems. Groundwater 2023, 61, 463–478. [Google Scholar] [CrossRef]
- Luo, Q.; Li, S. Mapping human pressure in China and implications for biodiversity conservation. Ecol. Indic. 2024, 158, 111325. [Google Scholar] [CrossRef]
GRT Class | Grid Count 1 | Percentage |
---|---|---|
<100 years | 73,153 | 7.36% |
100–1000 years | 73,703 | 7.41% |
1000–10,000 years | 132,403 | 13.32% |
>10,000 years | 714,868 | 71.91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Shen, C.; Zhan, C.; Tang, H.; Luo, C.; Meng, S.; An, Y.; Wang, H.; Kou, X. Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data. Remote Sens. 2025, 17, 2472. https://doi.org/10.3390/rs17142472
Lu Z, Shen C, Zhan C, Tang H, Luo C, Meng S, An Y, Wang H, Kou X. Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data. Remote Sensing. 2025; 17(14):2472. https://doi.org/10.3390/rs17142472
Chicago/Turabian StyleLu, Zheng, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang, and Xiaokang Kou. 2025. "Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data" Remote Sensing 17, no. 14: 2472. https://doi.org/10.3390/rs17142472
APA StyleLu, Z., Shen, C., Zhan, C., Tang, H., Luo, C., Meng, S., An, Y., Wang, H., & Kou, X. (2025). Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data. Remote Sensing, 17(14), 2472. https://doi.org/10.3390/rs17142472