Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (946)

Search Parameters:
Keywords = rock alteration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 30259 KiB  
Article
Controlling Effects of Complex Fault Systems on the Oil and Gas System of Buried Hills: A Case Study of Beibuwan Basin, China
by Anran Li, Fanghao Xu, Guosheng Xu, Caiwei Fan, Ming Li, Fan Jiang, Xiaojun Xiong, Xichun Zhang and Bing Xie
J. Mar. Sci. Eng. 2025, 13(8), 1472; https://doi.org/10.3390/jmse13081472 - 31 Jul 2025
Viewed by 176
Abstract
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors [...] Read more.
Traps are central to petroleum exploration, where hydrocarbons accumulate during migration. Reservoirs are likewise an essential petroleum system element and serve as the primary medium for hydrocarbon storage. The buried hill is a geological formation highly favorable for reservoir development. However, the factors influencing hydrocarbon accumulation in buried hill reservoirs are highly diverse, especially in areas with complex, active fault systems. Fault systems play a dual role, both in the formation of reservoirs and in the migration of hydrocarbons. Therefore, understanding the impact of complex fault systems helps enhance the exploration success rate of buried hill traps and guide drilling deployment. In the Beibuwan Basin in the South China Sea, buried hill traps are key targets for deep-buried hydrocarbon exploration in this faulted basin. The low level of exploration and research in buried hills globally limits the understanding of hydrocarbon accumulation conditions, thereby hindering large-scale hydrocarbon exploration. By using drilling data, logging data, and seismic data, stress fields and tectonic faults were restored. There are two types of buried hills developed in the Beibuwan Basin, which were formed during the Late Ordovician-Silurian period and Permian-Triassic period, respectively. The tectonic genesis of the Late Ordovician-Silurian period buried hills belongs to magma diapirism activity, while the tectonic genesis of the Permian-Triassic period buried hills belongs to reverse thrust activity. The fault systems formed by two periods of tectonic activity were respectively altered into basement buried hills and limestone buried hills. The negative structural inversion controls the distribution and interior stratigraphic framework of the deformed Carboniferous strata in the limestone buried hill. The faults and derived fractures of the Late Ordovician-Silurian period and Permian-Triassic period promoted the diagenesis and erosion of these buried hills. The faults formed after the Permian-Triassic period are not conducive to calcite cementation, thus facilitating the preservation of the reservoir space formed earlier. The control of hydrocarbon accumulation by the fault system is reflected in two aspects: on the one hand, the early to mid-Eocene extensional faulting activity directly controlled the depositional process of lacustrine source rocks; on the other hand, the Late Eocene-Oligocene, which is closest to the hydrocarbon expulsion period, is the most effective fault activity period for connecting Eocene source rocks and buried hill reservoirs. This study contributes to understanding of the role of complex fault activity in the formation of buried hill traps within hydrocarbon-bearing basins. Full article
Show Figures

Figure 1

41 pages, 7932 KiB  
Article
Element Mobility in a Metasomatic System with IOCG Mineralization Metamorphosed at Granulite Facies: The Bondy Gneiss Complex, Grenville Province, Canada
by Olivier Blein and Louise Corriveau
Minerals 2025, 15(8), 803; https://doi.org/10.3390/min15080803 - 30 Jul 2025
Viewed by 155
Abstract
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the [...] Read more.
In the absence of appropriate tools and a knowledge base for exploring high-grade metamorphic terrains, felsic gneiss complexes at granulite facies have long been considered barren and have remained undermapped and understudied. This was the case of the Bondy gneiss complex in the southwestern Grenville Province of Canada which consists of 1.39–1.35 Ga volcanic and plutonic rocks metamorphosed under granulite facies conditions at 1.19 Ga. Iron oxide–apatite and Cu-Ag-Au mineral occurrences occur among gneisses rich in biotite, cordierite, garnet, K-feldspar, orthopyroxene and/or sillimanite-rich gneisses, plagioclase-cordierite-orthopyroxene white gneisses, magnetite-garnet-rich gneisses, garnetites, hyperaluminous sillimanite-pyrite-quartz gneisses, phlogopite-sillimanite gneisses, and tourmalinites. Petrological and geochemical studies indicate that the precursors of these gneisses are altered volcanic and volcaniclastic rocks with attributes of pre-metamorphic Na, Ca-Fe, K-Fe, K, chloritic, argillic, phyllic, advanced argillic and skarn alteration. The nature of these hydrothermal rocks and the ore deposit model that best represents them are further investigated herein through lithogeochemistry. The lithofacies mineralized in Cu (±Au, Ag, Zn) are distinguished by the presence of garnet, magnetite and zircon, and exhibit pronounced enrichment in Fe, Mg, HREE and Zr relative to the least-altered rocks. In discrimination diagrams, the metamorphosed mineral system is demonstrated to exhibit the diagnostic attributes of, and is interpreted as, a metasomatic iron and alkali-calcic (MIAC) mineral system with iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) mineralization that evolves toward an epithermal cap. This contribution demonstrates that alteration facies diagnostic of MIAC systems and their IOCG and IOA mineralization remain diagnostic even after high-grade metamorphism. Exploration strategies can thus use the lithogeochemical footprint and the distribution and types of alteration facies observed as pathfinders for the facies-specific deposit types of MIAC systems. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

24 pages, 3349 KiB  
Article
Effect of Damping Plate Parameters on Liquid Sloshing in Cylindrical Tanks of Offshore Launch Platforms
by Yuxin Pan, Yuanyuan Wang, Fengyuan Liu and Gang Xu
J. Mar. Sci. Eng. 2025, 13(8), 1448; https://doi.org/10.3390/jmse13081448 - 29 Jul 2025
Viewed by 131
Abstract
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine [...] Read more.
To meet the growing demand for space launches and overcome the limitations of land-based launches, the scientific research community is committed to developing safer and more flexible offshore rocket launch technologies. Their core carriers—marine platforms—are directly exposed to the dynamic and variable marine environment. The complex coupling effects of wind, waves, and currents impose severe challenges upon these platforms, causing complex phenomena such as severe rocking. These phenomena pose severe threats to and significantly interfere with the stability and normal execution of offshore rocket launch operations. This study employs CFD simulation software to analyze liquid sloshing within a cylindrical tank, both with and without baffles. Following validation of the natural frequency, the analysis focuses on the suppression effect of different baffle positions and configurations on tank sloshing. The numerical simulation results indicate the following: Incorporating baffles alters the natural frequency of liquid sloshing within the tank and effectively suppresses the free surface motion. The suppression of the wave surface motion improves as the baffle is positioned closer to the free surface and as the number of perforations in the baffle increases. However, when the number of perforations exceeds a certain threshold, further increasing it yields negligible improvement in the suppression of the sloshing wave surface motion. Full article
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 204
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

22 pages, 5507 KiB  
Article
Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion
by Kang Peng, Tao Wu, Kun Luo, Song Luo, Jiaqi Zhou and Yuanmin Wang
Materials 2025, 18(15), 3500; https://doi.org/10.3390/ma18153500 - 25 Jul 2025
Viewed by 271
Abstract
The mechanical properties of sandstone, a common building material, are influenced by a variety of factors. In the coastal areas of China, groundwater has gradually become salinized into brine, which inevitably alters the original microstructure of rocks and affects the stability of underground [...] Read more.
The mechanical properties of sandstone, a common building material, are influenced by a variety of factors. In the coastal areas of China, groundwater has gradually become salinized into brine, which inevitably alters the original microstructure of rocks and affects the stability of underground structures. To clarify the evolution of the rock microstructure under brine erosion, this study used NMR technology to investigate the pore evolution characteristics of red sandstone under brine erosion. The experimental results show that the water absorption capacity of sandstone is influenced by the solution environment, with the lowest absorption rate occurring in regard to brine. The pores in red sandstone undergo significant changes after brine erosion. Factors such as the composition of the brine and soaking time affect sandstone porosity, with transformations of mini-pores and meso-pores leading to changes in porosity. In addition, XRD tests were carried out on the soaked red sandstone samples to analyze the changes in the main mineral components of the sandstone after brine erosion. Full article
Show Figures

Figure 1

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 142
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 7393 KiB  
Article
Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
by Shaoying Zhang, Wenyan He, Huaqing Wang and Yiwu Xiao
Minerals 2025, 15(8), 780; https://doi.org/10.3390/min15080780 - 25 Jul 2025
Viewed by 323
Abstract
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration [...] Read more.
Thermodynamic simulations of fluid–rock interactions provide valuable insights into mineral deposit formation mechanisms. This study investigates the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys Orogen, employing both Gibbs energy minimization (GEM) and the Law of mass action (LMA) method to understand alteration overprinting and metal precipitation. The modeling results suggest that the ore-forming fluid related to potassic alteration was initially oxidized (ΔFMQ = +3.54~+3.26) with a near-neutral pH (pH = 5.0~7.0). Continued fluid–rock interactions, combined with the input of reduced groundwater, resulted in a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ~+1), leading to the precipitation of propylitic alteration minerals and pyrrhotite. As temperature further decreased, fluids associated with phyllic alteration showed a slight increase in pH (5.8~6.0) and redox potential (ΔFMQ = +2). The intense superposition of propylitic and phyllic alteration on the potassic alteration zone is attributed to the rapid temperature decline in the magmatic–hydrothermal system, triggering fluid collapse and reflux. Mo, mainly transported as HMoO4 and MoO4−2, precipitated in the high-temperature range; Cu, carried primarily by CuCl complexes (CuCl4−3, CuCl2, CuCl), precipitated over intermediate to high temperatures; and Au, transported as Au-S complexes (Au(HS)2, AuHS), precipitated from intermediate to low temperatures. This study demonstrates that fluid–rock interactions alone can account for the observed sequence of alteration and mineralization in porphyry systems. Full article
Show Figures

Figure 1

17 pages, 7086 KiB  
Article
Study on Evolution of Stress Field and Fracture Propagation Laws for Re-Fracturing of Volcanic Rock
by Honglei Liu, Jiangling Hong, Wei Shu, Xiaolei Wang, Xinfang Ma, Haoqi Li and Yipeng Wang
Processes 2025, 13(8), 2346; https://doi.org/10.3390/pr13082346 - 23 Jul 2025
Viewed by 315
Abstract
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the [...] Read more.
In the Kelameili volcanic gas reservoir, primary hydraulic fracturing treatments in some wells take place on a limited scale, resulting in a rapid decline in production post stimulation and necessitating re-fracturing operations. However, prolonged production has led to a significant evolution in the in situ stress field, which complicates the design of re-fracturing parameters. To address this, this study adopts an integrated geology–engineering approach to develop a formation-specific geomechanical model, using rock mechanical test results and well-log inversion to reconstruct the reservoir’s initial stress field. The dynamic stress field simulations and re-fracturing parameter optimization were performed for Block Dixi-14. The results show that stress superposition effects induced by multiple fracturing stages and injection–production cycles have significantly altered the current in situ stress distribution. For Well K6, the optimized re-fracturing parameters comprised a pump rate of 12 m3/min, total fluid volume of 1200 m3, prepad fluid ratio of 50–60%, and proppant volume of 75 m3, and the daily gas production increased by 56% correspondingly, demonstrating the effectiveness of the optimized re-fracturing design. This study not only provides a more realistic simulation framework for fracturing volcanic rock gas reservoirs but also offers a scientific basis for fracture design optimization and enhanced gas recovery. The geology–engineering integrated methodology enables the accurate prediction and assessment of dynamic stress field evolution during fracturing, thereby guiding field operations. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

28 pages, 115558 KiB  
Article
A Knowledge-Based Strategy for Interpretation of SWIR Hyperspectral Images of Rocks
by Frank J. A. van Ruitenbeek, Wim H. Bakker, Harald M. A. van der Werff, Christoph A. Hecker, Kim A. A. Hein and Wijnand van Eijndthoven
Remote Sens. 2025, 17(15), 2555; https://doi.org/10.3390/rs17152555 - 23 Jul 2025
Viewed by 258
Abstract
Strategies to interpret short-wave infrared hyperspectral images of rocks involve the application of analysis and classification steps that guide the extraction of geological and mineralogical information with the aim of creating mineral maps. Pre-existing strategies often rely on the use of statistical measures [...] Read more.
Strategies to interpret short-wave infrared hyperspectral images of rocks involve the application of analysis and classification steps that guide the extraction of geological and mineralogical information with the aim of creating mineral maps. Pre-existing strategies often rely on the use of statistical measures between reference and image spectra that are scene dependent. Therefore, classification thresholds based on statistical measures to create mineral maps are also scene dependent. This is problematic because thresholds must be adjusted between images to produce mineral maps of the same accuracy. We developed an innovative, knowledge-based strategy to perform mineralogical analyses and create classifications that overcome this problem by using physics-based wavelength positions of absorption features that are invariant between scenes as the main sources of mineral information. The strategy to interpret short-wave infrared hyperspectral images of rocks is implemented using the open source Hyperspectral Python package (HypPy) and demonstrated on a series of hyperspectral images of hydrothermally altered rock samples. The results show how expert knowledge can be embedded into a standardized processing chain to develop reproducible mineral maps without relying on statistical matching criteria. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

33 pages, 167102 KiB  
Article
Influence of Mineralogical and Petrographic Properties on the Mechanical Behavior of Granitic and Mafic Rocks
by Muhammad Faisal Waqar, Songfeng Guo, Shengwen Qi, Malik Aoun Murtaza Karim, Khan Zada, Izhar Ahmed and Yanjun Shang
Minerals 2025, 15(7), 747; https://doi.org/10.3390/min15070747 - 17 Jul 2025
Viewed by 363
Abstract
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron [...] Read more.
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy (SEM-EDS) methods, with methodical geotechnical characterization to establish quantitative relationships between mineralogical composition and engineering properties. The petrographic studies revealed three lithologic groups: fine-to-medium-grained Shuangjiangkou granite (45%–60% feldspar, 27%–35% quartz, 10%–15% mica), plagioclase-rich anorthosite (more than 90% of plagioclase), and intermediate mangerite (40%–50% of plagioclase, 25%–35% of perthite). The uniaxial compressive strength tests showed great variations: granite (127.53 ± 15.07 MPa), anorthosite (167.81 ± 23.45 MPa), and mangerite (205.12 ± 23.87 MPa). Physical properties demonstrated inverse correlations between mechanical strength and both water absorption (granite: 0.25%–0.42%; anorthosite: 0.07%–0.44%; mangerite: 0.10%–0.25%) and apparent porosity (granite: 0.75%–0.92%; anorthosite: 0.20%–1.20%; mangerite: 0.29%–0.69%), with positive correlations to specific gravity (granite: 1.88–3.03; anorthosite: 2.67–2.90; mangerite: 2.43–2.99). Critical petrographic features controlling mechanical behavior include the following: (1) mica content in granite creating anisotropic properties, (2) extensive feldspar alteration through sericitization increasing microporosity and reducing intergranular cohesion, (3) plagioclase micro-fracturing and alteration to clinozoisite–sericite assemblages in anorthosite creating weakness networks, and (4) mangerite’s superior composition of >95% hard minerals with minimal sheet mineral content and limited alteration. Failure mode analysis indicated distinct patterns: granite experiencing shear-dominated failure (30–45° diagonal planes), anorthosite demonstrated tensile fracturing with vertical splitting, and mangerite showed catastrophic brittle failure with extensive fracture networks. These findings provide quantitative frameworks that relate petrographic features to engineering behavior, offering valuable insights for rock mass assessment and engineering design in similar crystalline rock terrains. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 769
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

19 pages, 2647 KiB  
Article
Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia
by Jamel Ayari, Maurizio Barbieri, Tiziano Boschetti, Ahmed Sellami, Paolo Ballirano and Abdelkarim Charef
Geosciences 2025, 15(7), 269; https://doi.org/10.3390/geosciences15070269 - 12 Jul 2025
Viewed by 472
Abstract
The Sidi Aissa Pb-Zn-(Ag) District, located within the Nappe Zone of northern Tunisia, has been reinterpreted as a typical intermediate-sulfidation (IS) epithermal mineralization system based on field observations and lithogeochemical analyses. Previously described as vein-style Pb-Zn deposits, the local geological framework is dominated [...] Read more.
The Sidi Aissa Pb-Zn-(Ag) District, located within the Nappe Zone of northern Tunisia, has been reinterpreted as a typical intermediate-sulfidation (IS) epithermal mineralization system based on field observations and lithogeochemical analyses. Previously described as vein-style Pb-Zn deposits, the local geological framework is dominated by extensional normal faults forming half-grabens. These faults facilitated the exhumation of deep Triassic autochthonous rocks and the extrusion of 8-Ma rhyodacites and Messinian basalts. These structures, functioning as pathways for magmatic-hydrothermal fluids, facilitated the upward migration of acidic fluids, which interacted with the surrounding wall rocks, forming a subsurface alteration zone. The mineralization, shaped by Miocene extensional tectonics and magmatic activity, occurred in three stages: early quartz-dominated veins, an intermediate barite-rich phase, and late-stage supergene oxidation. Hydrothermal alteration, characterized by silicification, argillic, and propylitic zones, is closely associated with the deposition of base metals (Pb, Zn) and silver. The mineral assemblage, including barite, galena, sphalerite, and quartz, reflects dynamic processes such as fluid boiling, mixing, and pressure changes. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

57 pages, 42873 KiB  
Article
The Mazenod–Sue–Dianne IOCG District of the Great Bear Magmatic Zone Northwest Territories, Canada
by A. Hamid Mumin and Mark Hamilton
Minerals 2025, 15(7), 726; https://doi.org/10.3390/min15070726 - 11 Jul 2025
Viewed by 192
Abstract
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, [...] Read more.
The Mazenod Lake region of the southern Great Bear Magmatic Zone (GBMZ) of the Northwest Territories, Canada, comprises the north-central portion of the Faber volcano-plutonic belt. Widespread and abundant surface exposure of several coalescing hydrothermal systems enables this paper to document, without ambiguity, the relationships between geology, structure, alteration, and mineralization in this well exposed iron-oxide–copper–gold (IOCG) mineral system. Mazenod geology comprises rhyodacite to basaltic-andesite ignimbrite sheets with interlayered volcaniclastic sedimentary rocks dominated by fine-grained laminated tuff sequences. Much of the intermediate to mafic nature of volcanic rocks is masked by low-intensity but pervasive metasomatism. The region is affected by a series of coalescing magmatic–hydrothermal systems that host the Sue–Dianne magnetite–hematite IOCG deposit and several related showings including magnetite, skarn, and iron oxide apatite (IOA) styles of alteration ± mineralization. The mid to upper levels of these systems are exposed at surface, with underlying batholith, pluton and stocks exposed along the periphery, as well as locally within volcanic rocks associated with more intense alteration and mineralization. Widespread alteration includes potassic and sodic metasomatism, and silicification with structurally controlled giant quartz complexes. Localized tourmaline, skarn, magnetite–actinolite, and iron-oxide alteration occur within structural breccias, and where most intense formed the Sue–Dianne Cu-Ag-Au diatreme-like breccia deposit. Magmatism, volcanism, hydrothermal alteration, and mineralization formed during a negative tectonic inversion within the Wopmay Orogen. This generated a series of oblique offset rifted basins with continental style arc magmatism and extensional structures unique to GBMZ rifting. All significant hydrothermal centers in the Mazenod region occur along and at the intersections of crustal faults either unique to or put under tension during the GBMZ inversion. Full article
Show Figures

Figure 1

18 pages, 5336 KiB  
Article
Comparative Flexural Response of Mineralized Massive Sulfides and Meta-Rhyolitic Rocks
by Haitham M. Ahmed and Essam B. Moustafa
Geosciences 2025, 15(7), 263; https://doi.org/10.3390/geosciences15070263 - 8 Jul 2025
Viewed by 241
Abstract
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties [...] Read more.
An experimental study was conducted to investigate the flexural mechanical properties of mineralized (massive sulfides) and non-mineralized (meta-rhyolitic tuff) rock samples using a three-point bending test. Mineralogical analysis was conducted on samples from both rock categories, followed by the determination of physical properties (P-wave velocity and density). In the massive sulfide zones, there are three distinctive zones of mineralization, each exhibiting varying degrees of pyritization: the intense pyritization zone (formerly Zone A) exhibited extensive pyrite replacement of sphalerite and chalcopyrite, the transitional zone (Zone B) displays intergrowths of pyrite and sphalerite, and the coarse sulfide zone (Zone C) features coarser, less altered sulfides—polyphase hydrothermal alteration, including sericitization, silicification, and amphibole veining. Mineralized rocks showed a 35.18% increase in density (3.65 ± 0.17 kg/m3 vs. 2.72 ± 0.014 kg/m3) attributed to dense sulfide content. The flexural strength more than doubled (99.02 ± 4.42 GPa vs. 43.17 ± 6.45 GPa), experiencing a 129% increase, due to homogeneous chalcopyrite distribution and fine-grained sulfide networks. Despite strength differences, deflection rates showed a non-significant 4% variation (0.373 ± 0.083 mm for mineralized vs. 0.389 ± 0.074 mm for metamorphic rocks), indicating comparable ductility. Full article
Show Figures

Figure 1

27 pages, 8430 KiB  
Article
Genetic Characterization of Natural Oil Seeps in the Carpathians and Their Relationship to the Tectonic Structure
by Wojciech Bieleń, Irena Matyasik, Marek Janiga and Agnieszka Wciślak-Oleszycka
Energies 2025, 18(13), 3575; https://doi.org/10.3390/en18133575 - 7 Jul 2025
Viewed by 259
Abstract
The paper presents the geochemical characteristics of 26 selected oil seeps, more than half of which are remnants of old oil wells. The samples were collected from three tectonic units: the Magura, Silesian, and Skole units in the Polish part of the Carpathians. [...] Read more.
The paper presents the geochemical characteristics of 26 selected oil seeps, more than half of which are remnants of old oil wells. The samples were collected from three tectonic units: the Magura, Silesian, and Skole units in the Polish part of the Carpathians. The analyzed seeps are mainly located on outcrops of Inoceramian beds within the Magura nappe, the Krosno Beds and Transition Beds in the Silesian nappe, as well as the Menilite Beds of the Skole unit. The study primarily focused on genetic characteristics, which were used to correlate the seeps with the oils from the deposits of these tectonic units and to assess the degree of secondary alterations. All hydrocarbon seeps were analyzed in terms of their location on surface cross-sections, and attempts were made to assign them features based on the classification proposed in 1952, which takes into account the tectonic characteristics of the regions where the seeps were identified. In the general genetic characterization, these seeps did not show significant differences, suggesting a similar source of supply as the crude oils. Among the analyzed seeps, three genetic groups were distinguished. For correlation purposes, information from published materials on crude oils and their genetic characteristics was used. Of the five classification types described in the literature, only two could be assigned to those occurring in the Carpathians. Considering the tectonic structure and the location of the seeps (based on surface cross-sections), it has been determined that most of the analyzed seeps are the result of migration along faults connecting source rocks or, less frequently, deformed deep accumulations with the surface. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

Back to TopTop