Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia
Abstract
1. Introduction
2. Regional-Scale Geologic, Tectonic, and Metallogenic Settings
3. Sidi Aissa Pb-Zn-(Ag) District
4. Materials and Methods
4.1. Fieldwork
4.2. Materials and Methods
5. Results
5.1. Deposit Characteristics
5.1.1. Sidi Aissa-Chakaria Ore Zone
5.1.2. Cheneg Roha-Lahmari Prospect Zone
6. Discussion
6.1. Tectonomagmatic Setting
6.2. Mineralization Characteristics
6.3. Hydrothermal Alteration
6.4. Deposit Classification
6.5. Mineralization Stages
6.6. Implications for Exploration
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hedenquist, J.W.; Arribas, A., Jr.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Soc. Econ. Geol. Spec. Publ. 2003, 10, 315–343. [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Exploration of Porphyry Copper Lithocaps; Australasian Institute of Mining and Metallurgy Publication: Carlton South, VIC, Australia, 1995; Series No. 9. [Google Scholar]
- Sillitoel, R.H.; Bonhaml, H.F., Jr. Volcanic landforms and ore deposits. Econ. Geol. 1984, 79, 1286–1298. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Supergene oxidation of epithermal gold-silver mineralization in the Deseado massif, Patagonia, Argentina: Response to subduction of the Chile Ridge. Miner. Depos. 2019, 54, 381–394. [Google Scholar] [CrossRef]
- Arribas, A., Jr.; Cunningham, C.G.; Rytuba, J.J.; Rye, R.O.; Kelly, W.C.; Podwysocki, M.H.; McKee, E.H.; Tosdal, R.M. Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold-alunite deposit, Spain. Econ. Geol. 1995, 90, 795–822. [Google Scholar] [CrossRef]
- De Graeve, B. Etude Géologique et Minière 1/5000 Sidi Aissa Strafftafa; Office National des Mines: Tunis Cedex, Tunisia, 1964; Internal Report; RI 32. [Google Scholar]
- Vifian, A. Mine de Sidi Aissa: Chantier Chakaria-Rapport Final de Sondages; Office National des Mines: Tunis Cedex, Tunisia, 1966; Internal Report; RI 236. [Google Scholar]
- Novel, J. Mine Sidi Aissa: Rapport de Fermeture Octobre 1967; Office National des Mines: Tunis Cedex, Tunisia, 1967; Internal Report; RI 328. [Google Scholar]
- Talbi, F.; Slim-Shimi, N.; Tlig, S.; Zargouni, F. Nature, origine et evolution des fluids dans le district minier de la caldeira d’Oued Belif (Nefza, Tunisie septentrionale). Comptes Rendus Acad. Sci. Paris 1999, 328, 153–160. [Google Scholar]
- Ben Aissa, W.; Véronique, G.; Ben Aissa, R.; Ben Haj Amara, A.; Tlig, S.; Ben Aissa, L. Geochemistry and P-T Conditions of Hydrothermal Fluids Associated with Porphyry, Metasomatic and Epithermal Ore Deposits at Oued Belif-Ain El Araar Magmatic Structure (North-African Alpine Orogeny, Tunisia). Geol. Ore Depos. 2023, 65, 625–643. [Google Scholar] [CrossRef]
- Decrée, S.; Marignac, C.; De Putter, T.; Deloule, E.; Li’egeois, J.P.; Demaiffe, D. Pb–Zn mineralization in a Miocene regional extensional context: The case of the Sidi Driss and the Douahria ore deposits (Nefza mining district, northern Tunisia). Ore Geol. Rev. 2008, 34, 285–303. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Agnan, A.; Sellami, A.; Braham, B.; Dhaha, F.; Charef, A. Trace element contamination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment. Environ. Geochem. Health 2021, 43, 4027–4042. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Barhoumi, A.; Belkhiria, W.; Braham, B.; Dhaha, F.; Charef, A. A regional-scale geochemical survey of stream sediment samples in Nappe zone, northern Tunisia: Implications for mineral exploration. J. Geochem. Explor. 2022, 235, 106956. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Boschetti, T.; Barhoumi, A.; Sellami, A.; Braham, A.; Manai, F.; Dhaha, F.; Charef, A. Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment. Environments 2023, 10, 151. [Google Scholar] [CrossRef]
- Drahota, P.; Filippi, M. Secondary arsenic minerals in the environment: A review. Environ. Int. 2009, 35, 1243–1255. [Google Scholar] [CrossRef]
- Jemmali, N.; Souissi, F.; Carranza, E.J.M.; Vennemann, T.W.; Bogdanov, K. Geochemical constraints on the genesis of the Pb–Zn deposit of Jalta (northern Tunisia): Implications for timing of mineralization, sources of metals and relationship to the Neogene volcanism. Chem. Erde Geochem. 2014, 74, 601–613. [Google Scholar] [CrossRef]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Dong, G.; Morrison, G.; Jaireth, S. Quartz textures in epithermal veins, Queensland; classification, origin and implication. Econ. Geol. 1995, 90, 1841–1856. [Google Scholar] [CrossRef]
- Camprubí, A.; Albinson, T. Epithermal deposits in Mexico-update of current knowledge, and an empirical reclassification. Geol. Soc. Am. Spec. Pap. 2007, 422, 377–415. [Google Scholar]
- White, N.C.; Hedenquist, J.W. Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. J. Geochem. Explor. 1990, 36, 445–474. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Epithermal paleosurfaces. Miner. Depos. 2015, 50, 767–793. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A. Exploration Implications of Multiple Formation Environments of Advanced Argillic Minerals. Econ. Geol. 2022, 117, 609–643. [Google Scholar] [CrossRef]
- Bouaziz, S.; Barrier, E.; Soussi, M.; Turki, M.; Zouari, H. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 2002, 357, 227–253. [Google Scholar] [CrossRef]
- Bracène, R.; Frizon de Lamotte, D. The origin of intraplate deformation in the Atlas system of western and central Algeria: From Jurassic rifting to Cenozoic Quaternary inversion. Tectonophysics 2002, 357, 207–226. [Google Scholar] [CrossRef]
- Frizon de Lamotte, D.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Rouvier, H.; Perthuisot, V.; Mansouri, A. Pb–Zn deposits and salt-bearing diapirs in Southern Europe and North Africa. Econ. Geol. 1985, 80, 666–687. [Google Scholar] [CrossRef]
- Essid, E.; Kadri, A.; Inoubli, M.H.; Zargouni, F. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data. Tectonophysics 2016, 682, 249–263. [Google Scholar] [CrossRef]
- Booth-Rea, G.; Gaidi, S.; Melki, F.; Marzougui, W.; Azañón, J.M.; Zargouni, F.; Galvé, J.P.; Pérez-Peña, J.V. Late Miocene extensional collapse of northern Tunisia. Tectonics 2018, 37, 1626–1647. [Google Scholar] [CrossRef]
- Marzougui, W.; Melki, F.; Arfaoui, M.; Houla, Y.; Zargouni, F. Major faults, salt structures and paleo-ridge at tectonic nodes in northern Tunisia: Contribution of tectonics and gravity analysis. Arab. J. Geosci. 2015, 8, 7601–7617. [Google Scholar] [CrossRef]
- Cohen, C.; Schamel, S.; Boyd-Kaygi, P. Neogene deformation in northern Tunisia: Origin of the eastern Atlas by microplate–continental margin collision. Geol. Soc. Am. Bull. 1980, 91, 227–237. [Google Scholar] [CrossRef]
- Caine, J.S.; Evans, J.P.; Forster, C.B. Fault zone architecture and permeability structure. Geology 1996, 24, 1025–1028. [Google Scholar] [CrossRef]
- Marchesini, B.; Tavani, S.; Mercuri, M.; Mondillo, N.; Pizzati, M.; Balsamo, F.; Aldega, L.; Carminati, E. Structural control on the alteration and fluid flow in the lithocap of the Allumiere-Tolfa epithermal system. J. Struct. Geol. 2024, 179, 105035. [Google Scholar] [CrossRef]
- Ben Haj Ali, M.; Jedoui, Y.; Dali, T.; Ben Salem, H.; Memmi, L. Carte Géologique de la Tunisie au 1/500.000; Office National des Mines, Service Géologique: Tunis, Tunisia, 1985. [Google Scholar]
- Bouhlel, S.; Leach, D.L.; Johnson, C.A.; Marsh, E.; Salmi-Laouar, S.; Banks, D.A. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study. Miner. Depos. 2016, 51, 749–780. [Google Scholar] [CrossRef]
- Touhami, A. Campagne de Sondages Juin-Décembre Sidi Aissa; Office National des Mines: Tunis Cedex, Tunisia, 1971; Internal Report, RI 329. [Google Scholar]
- Touhami, A. Mine de Sidi Aissa: Campagne de de Tranchés (Juin-Octobre) Travaux Miniers (Septembre-Octobre); Office National des Mines: Tunis Cedex, Tunisia, 1971; Internal Report, RI, 330. [Google Scholar]
- Thorez, J. Phyllosilicates and Clay Minerals—A Laboratory Hand Book for Their X-Ray Diffraction Examination; Lelotte, G., Ed.; Dison: Liege, Belgium, 1975. [Google Scholar]
- Melki, F.; Zouaghi, T.; Harrab, S.; Sainz, A.C.; Bédir, M.; Zargouni, F. Structuring and evolution of Neogene transcurrent basins in the Tellian foreland domain, north-eastern Tunisia. J. Geodyn. 2011, 52, 57–69. [Google Scholar] [CrossRef]
- Gibson, H.L.; Morton, R.L.; Hudak, G. Submarine volcanic processes, deposits, and environments favorable for the location of volcanic-associated massive sulfide deposits. In Volcanic-Associated Massive Sulfide Deposits—Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hannington, M.D., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 1997; Volume 8, pp. 13–51. [Google Scholar] [CrossRef]
- Vikre, P.G. Ledge formation at the Sandstorm and Kendall gold mines, Goldfield, Nevada. Econ. Geol. 1989, 84, 2115–2138. [Google Scholar] [CrossRef]
- Rossetti, F.; Aldega, L.; Tecce, F.; Balsamo, F.; Billi, A.; Brilli, M. Fluid flow within the damage zone of the Boccheggiano extensional fault (Larderello–Travale geothermal field, central Italy): Structures, alteration and implications for hydrothermal mineralization in extensional settings. Geol. Mag. 2011, 148, 558–579. [Google Scholar] [CrossRef]
- Brogi, A.; Capezzuoli, E.; Buracchi, E.; Branca, M. Tectonic control on travertine and calcareous tufa deposition in a low-temperature geothermal system (Sarteano, Central Italy). J. Geol. Soc. 2012, 169, 461–476. [Google Scholar] [CrossRef]
- Guo, L.; Riding, R. Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 1998, 45, 163–180. [Google Scholar] [CrossRef]
- Chafetz, H.S.; Folk, R.L. Travertines: Depositional morphology and the bacterially constructed constituents. J. Sediment. Res. 1984, 54, 289–316. [Google Scholar]
- Pfaff, K.; Hildebrandt, L.H.; Leach, D.L.; Jacob, D.E.; Markl, G. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Miner. Depos. 2010, 45, 647–666. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Hedenquist, J.W.; Inan, E.E. Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments. In Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth; Simmons, S.F., Graham, I., Eds.; Society of Economic Geologists, Inc.: Littleton, CO, USA, 2003; Volume 10, pp. 285–313. [Google Scholar]
- Rddad, L.; Bouhlel, S. The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies. Ore Geol. Rev. 2016, 72, 1072–1087. [Google Scholar] [CrossRef]
- Fazli, N.; Ghaderi, M.; Tajeddin, H.A.; Movahednia, M. Genesis of the Hajibolagh-Zalibolagh Cu-(Ag) intermediate-sulfidation epithermal deposit, Urumieh-Dokhtar magmatic arc, Iran: Evidence from ore geology, fluid inclusions, and stable isotopes. Ore Geol. Rev. 2024, 169, 106086. [Google Scholar] [CrossRef]
- Drummond, S.E.; Ohmoto, H. Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol. 1985, 80, 126–147. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Gold-rich porphyry deposits: Descriptive and genetic models and their role in exploration and discovery. Rev. Econ. Geol. 2000, 13, 315–345. [Google Scholar]
- Moncada, D.; Mutchler, S.; Nieto, A.; Reynolds, T.J.; Rimstidt, J.D.; Bodnar, R.J. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. J. Geochem. Explor. 2012, 114, 20–35. [Google Scholar] [CrossRef]
- Kouhestani, H.; Mehrabi, B.; Baldwin, G.; Moritz, R. Hydrothermal alteration and sulfide mineralization in the Cheshmeh deposit, Iran: Implications for low sulfidation epithermal systems. Miner. Depos. 2019, 54, 25–44. [Google Scholar]
- De Ronde, C.E.J.; Blattner, P. Hydrothermal alteration, stable isotopes, and fluid inclusions of the Golden Crossepithermal gold deposit, Waihi, New Zealand. Econ. Geol. 1988, 83, 895–917. [Google Scholar] [CrossRef]
- Muntean, J.L.; Einaudi, M.T. Porphyry-epithermal transition: Maricunga belt, northern Chile. Econ. Geol. 2001, 96, 743–774. [Google Scholar] [CrossRef]
- Henley, R.W.; Hughes, G.O. Underground Fumaroles: “Excess Heat” Effects in Vein Formation. Econ. Geol. 2000, 95, 453–466. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Wu, N.; Guo, K.; Geng, W.; Cao, H. Polyphase hydrothermal sulfide mineralization in the minami–ensei hydrothermal field, middle okinawa trough: Implications from sulfide mineralogy and in situ geochemical composition of pyrite. Ore Geol. Rev. 2022, 149, 105055. [Google Scholar] [CrossRef]
- Reynolds, T.J.; Beane, R.E. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ. Geol. 1985, 80, 1328–1347. [Google Scholar] [CrossRef]
- Kamenov, G.; Macfarlane, A.W.; Riciputi, L. Sources of Lead in the San Cristobal, Pulacayo, and Potosí Mining Districts, Bolivia, and a Reevaluation of Regional Ore Lead Isotope Provinces. Econ. Geol. 2002, 97, 573–592. [Google Scholar] [CrossRef]
- Jones, B.; Peng, X. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China. Sediment. Geol 2016, 345, 103–125. [Google Scholar] [CrossRef]
- Faulkner, D.R.; Jackson, C.A.-L.; Lunn, R.J.; Schlische, R.W.; Shipton, Z.K.; Wibberley, C.A.J.; Withjack, M.O. A review of recent developments concerning the structure, mechanics, and fluid flow properties of fault zones. J. Struct. Geol. 2010, 32, 1557–1575. [Google Scholar] [CrossRef]
Sampling Point | Sample ID | Description | Mineralogical Composition | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | D | Q | Ch | Il | K | M | G | L | N | B | Ce | Mi | |||
A: Oxidized profile exposed in the main quarry at Sidi Aissa ore zone | 3833 | Uppermost zone of the profile | |||||||||||||
3834 | Upper zone of the profile | ||||||||||||||
3835 * | Intermediate zone of the profile | ||||||||||||||
3839 | Lower zone of the profile | ||||||||||||||
3837 | Black shale | ||||||||||||||
B: Trench in western Sidi Aissa ore zone | 3832 * | Silicified zone with sheeted textures | |||||||||||||
C: Intrabasins in southern Sidi Aissa ore zone | 3822 | Quartzites | |||||||||||||
3823 * | Conglomerates | ||||||||||||||
D: Trench in northwestern Sidi Aissa ore zone | 3827 | Quartzites | |||||||||||||
3828 * | Altered volcanic glass | ||||||||||||||
E: Alteration profile exposed in trench in northern Sidi Aissa ore zone | 3824 | Lower zone of the profile | |||||||||||||
3825 * | Upper zone of the profile | ||||||||||||||
3826 | Oxidized vein | ||||||||||||||
F: Gossan exposed in Lamari prospect zone | 3829 * | Gossanous crust |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayari, J.; Barbieri, M.; Boschetti, T.; Sellami, A.; Ballirano, P.; Charef, A. Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia. Geosciences 2025, 15, 269. https://doi.org/10.3390/geosciences15070269
Ayari J, Barbieri M, Boschetti T, Sellami A, Ballirano P, Charef A. Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia. Geosciences. 2025; 15(7):269. https://doi.org/10.3390/geosciences15070269
Chicago/Turabian StyleAyari, Jamel, Maurizio Barbieri, Tiziano Boschetti, Ahmed Sellami, Paolo Ballirano, and Abdelkarim Charef. 2025. "Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia" Geosciences 15, no. 7: 269. https://doi.org/10.3390/geosciences15070269
APA StyleAyari, J., Barbieri, M., Boschetti, T., Sellami, A., Ballirano, P., & Charef, A. (2025). Geological, Mineralogical, and Alteration Insights of the Intermediate-Sulfidation Epithermal Mineralization in the Sidi Aissa District, Northern Tunisia. Geosciences, 15(7), 269. https://doi.org/10.3390/geosciences15070269