Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet
Abstract
1. Introduction
2. Geological Setting
2.1. Ore Geology
2.2. Typical Drill Hole Logging
2.3. Paragenesis of Ore and Alteration Minerals
2.4. Fluid Inclusion Petrography
3. Methods and Data Sources
4. Thermodynamic Modeling of Fluid–Rock Interactions at Pulang
4.1. Effects of S and Cl Volatiles on Metal Solubility and Metal Ratios
4.2. Reconstructing the Physical and Chemical Conditions of the Initial Fluid
4.3. One-Dimensional Reactive Transport Simulations
- Each rock unit contains 100 g of Rock 1, but rock units 11 to 15 consist of 100 g of Rock 2. The initial ore-bearing fluid initiates interactions from unit 1 and reacts sequentially with subsequent rock units, simulating the mixing process between magmatic–hydrothermal fluids and meteoric water that has acquired reduced components (e.g., from wall rock interactions).
- The initial ore-bearing fluid is set to 1000 g, which is in equilibrium with mineral assemblages representing the potassic alteration stage, as shown in Section 4.2.
- The simulation temperature decreases stepwise by 10 °C per unit as the fluid reaches equilibrium with each rock unit, ranging from 450 °C to 200 °C. This temperature range effectively covers the temperature range of the alteration and mineralization stages.
- Since pressure variations have a minimal impact on metal solubility in porphyry ore-forming systems, this study’s simulation does not incorporate pressure changes. The simulation pressure is based on the results from magmatic biotite and fluid inclusion analysis and is set to a constant value of 1000 bar.
4.4. pH-logƒO2 Phase Diagram
5. Discussion
5.1. Causes of Hydrothermal Alteration Overprinting
5.2. Comparison of Simulated Metal Solubilities and Metal Concentrations in Fluid Inclusion
5.3. Mechanisms of Metal Precipitation
6. Conclusions
- (1)
- The initial fluid associated with potassic alteration exhibits a nearly neutral pH (5.0–7.0) and a high redox potential (ΔFMQ = +3.54 to +3.26). In contrast, fluids linked to propylitic alteration show a decrease in both pH (4.8~6.1) and redox potential (ΔFMQ = +1). Fluids related to phyllic alteration stabilize at a slightly higher pH (5.8~6.0) and redox potential (ΔFMQ = +2).
- (2)
- The precipitation of Mo, Cu, and Au is temperature-dependent. Mo primarily precipitates between 450 °C and 370 °C, while Cu solubility decreases from 794.12 ppm to ~1 ppm within this range. Although Au solubility also decreases, it does so to a lesser extent, leading to notable Au precipitation at lower temperatures.
- (3)
- The reduced characteristics of the Pulang deposit, including pyrrhotite and CH4-bearing fluid inclusions, are primarily a result of the mixing of magmatic–hydrothermal fluids with reduced meteoric water. Fluid–rock interactions further modify the fluid’s properties.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, J.P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Seedorff, E.; Dilles, J.; Proffett, J.; Einaudi, M.; Zurcher, L.; Stavast, W.; Johnson, D.; Barton, M. Porphyry deposits: Characteristics and origin of hypogene features. In 100th Anniversary Volume of Society of Economic Geologists; GeoScienceWorld: McLean, VA, USA, 2005; pp. 251–298. [Google Scholar]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Geological Criteria for Porphyry Copper Exploration. Acta Geol. Sin. (Engl. Ed.) 2014, 88, 1–21. [Google Scholar] [CrossRef]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Wilkinson, J.J.; Chang, Z.S.; Cooke, D.R.; Baker, M.J.; Wilkinson, C.C.; Inglis, S.; Gemmell, J.B. The chlorite proximitor: A new tool for detecting porphyry ore deposits. J. Geochem. Explor. 2015, 152, 10–26. [Google Scholar] [CrossRef]
- Chi, G.X.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common problems and pitfalls in fluid inclusion study: A review and discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Su, L.; Xiao, B.; Wang, Y. Experimental study of high to intermediate temperature alteration in porphyry copper systems and geological implications. Sci. Sin. Terrae 2019, 62, 550–570. [Google Scholar] [CrossRef]
- Duan, G.; Ram, R.; Xing, Y.; Etschmann, B.; Brugger, J. Kinetically driven successive sodic and potassic alteration of feldspar. Nat. Commun. 2021, 12, 4435. [Google Scholar] [CrossRef] [PubMed]
- Miron, G.D.; Leal, A.M.; Yapparova, A. Thermodynamic Properties of Aqueous Species Calculated Using the HKF Model: How Do Different Thermodynamic and Electrostatic Models for Solvent Water Affect Calculated Aqueous Properties? Geofluids 2019, 2019, 5750390. [Google Scholar] [CrossRef]
- Leal, A.M.M.; Blunt, M.J.; LaForce, T.C. Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochim. Cosmochim. Acta 2014, 131, 301–322. [Google Scholar] [CrossRef]
- Smith, W.R.; Missen, R.W. Chemical Reaction Equilibrium Analysis: Theory and Algorithms; Wiley Interscience: New York, NY, USA, 1982. [Google Scholar]
- Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef]
- Gruen, G.; Weis, P.; Driesner, T.; de Ronde, C.E.; Heinrich, C.A. Fluid-flow patterns at Brothers volcano, southern Kermadec arc: Insights from geologically constrained numerical simulations. Econ. Geol. 2012, 107, 1595–1611. [Google Scholar] [CrossRef]
- Afanasyev, A.; Blundy, J.; Melnik, O.; Sparks, S. Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes. Earth Planet. Sci. Lett. 2018, 486, 119–128. [Google Scholar] [CrossRef]
- Hurtig, N.C.; Williams-Jones, A.E. Porphyry-epithermal Au-Ag-Mo ore formation by vapor-like fluids: New insights from geochemical modelling. Geology 2015, 43, 587–590. [Google Scholar] [CrossRef]
- Hurtig, N.C.; Migdisov, A.A.; Williams-Jones, A.E. Are Vapor-Like Fluids Viable Ore Fluids for Cu-Au-Mo Porphyry Ore Formation? Econ. Geol. 2021, 116, 1277–1302. [Google Scholar] [CrossRef]
- Weis, P. The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems. Geofluids 2015, 15, 350–371. [Google Scholar] [CrossRef]
- Lian, C.Y.; Zhang, G.; Yuan, C.H. Application of SWIR reflectance spectroscopy to Pulang porphyry copper ore district, Yunnan Province. Miner. Depos. 2005, 24, 621–637. [Google Scholar]
- Hu, Q.H.; Zhang, S.Q.; Yin, J.; Huang, D.Z.; Wu, J.J.; Meng, Q.; Yang, L.M.; Luo, G.M. A study of wall-rock alteration in the Zhongdian Pulang porphyry copper deposit. Bull. Mineral. Petrol. Geochem. 2010, 29, 192–201. [Google Scholar]
- Cao, K.; Li, W.-K.; Yang, Z.-M.; Mavrogenes, J.; White, N.C.; Xu, J.-F.; Li, Y. Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, Southwest China. Econ. Geol. 2019, 114, 275–301. [Google Scholar] [CrossRef]
- Yang, Z.M.; Cooke, D.R. Porphyry Cu Deposits in China. Soc. Econ. Geol. Spec. Publ. 2019, 22, 133–187. [Google Scholar]
- Liu, J.T.; Yang, L.Q.; Lv, L. Pulang reduced porphyry copper deposit in the Zhongdian area, Southwest China: Constrains by the mineral assemblages and the ore-forming fluid compositions. Acta Petrol. Sin. 2013, 29, 3914–3924. [Google Scholar]
- Li, W.K.; Yang, Z.M.; Cao, K.; Lu, Y.; Sun, M. Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contrib. Mineral. Petrol. 2019, 174, 12. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Yuan, Y.; Zhang, Q.; Wang, L. Hydrothermal evolution and mineralization of the Pulang porphyry Cu-Au deposit in the Sanjiang Tethys, Southwest China: Constraints from fluid inclusions and D-O-S isotopes. Ore Geol. Rev. 2021, 135, 104430. [Google Scholar] [CrossRef]
- Leng, C.B.; Wang, D.Z.; Yu, H.J.; Tian, F.; Zhang, X.C. Mapping hydrothermal alteration zones with short wavelength infrared (SWIR) spectra and magnetic susceptibility at the Pulang porphyry Cu-Au deposit, Yunnan, SW China. Miner. Depos. 2023, 58, 73. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.; Li, C.; Wang, C. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Li, W.C.; Zeng, P.S.; Hou, Z.Q.; White, N.C. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, Southwest China. Econ. Geol. 2011, 106, 79–92. [Google Scholar] [CrossRef]
- Reid, A.J.; Wilson, C.J.; Phillips, D.; Liu, S. Mesozoic cooling across the Yidun Arc, central-eastern Tibetan Plateau: A reconnaissance 40Ar/39Ar study. Tectonophysics 2005, 398, 45–66. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zaw, K.; Pan, G.; Mo, X.; Xu, Q.; Hu, Y.; Li, X. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geol. Rev. 2007, 31, 48–87. [Google Scholar] [CrossRef]
- Leng, C.B.; Huang, Q.Y.; Zhang, X.C.; Wang, S.X.; Zhong, H.; Hu, R.Z.; Bi, X.W.; Zhu, J.J.; Wang, X.-S. Petrogenesis of the Late Triassic volcanic rocks in the Southern Yidun arc, SW China: Constraints from the geochronology, geochemistry, and Sr–Nd–Pb–Hf isotopes. Lithos 2014, 190, 363–382. [Google Scholar] [CrossRef]
- Cao, K.; Xu, J.F.; Chen, J.L.; Huang, X.X.; Ren, J.B.; Zhao, X.D.; Liu, Z.-X. Double-layer structure of the crust beneath the Zhongdian arc, SW China: U–Pb geochronology and Hf isotope evidence. J. Asian Earth Sci. 2016, 115, 455–467. [Google Scholar] [CrossRef]
- Wang, B.Q.; Zhou, M.F.; Li, J.W.; Yan, D.P. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization. Lithos 2011, 127, 24–38. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Mo, X.X.; Tan, J.; Hu, S.; Luo, Z. The eruption sequences of basalts in the Yidun island arc, Sanjiang region and evolution of rift to island arc. Bull. Chin. Acad. Geol. Sci. 1993, 26, 49–67. [Google Scholar]
- Leng, C.B.; Gao, J.F.; Chen, W.T.; Zhang, X.C.; Tian, Z.D.; Guo, J.H. Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China. Gondwana Res. 2018, 60, 140–158. [Google Scholar] [CrossRef]
- Wang, D.Z.; Hu, R.; Hollings, P.; Bi, X.-W.; Zhong, H.; Pan, L.C.; Leng, C.B.; Huang, M.-L.; Zhu, J.-J. Remelting of a Neoproterozoic arc root: The origin of the Pulang and Songnuo porphyry Cu deposits, Southwest China. Miner. Depos. 2021, 56, 77. [Google Scholar] [CrossRef]
- Pan, L.C.; Hu, R.Z.; Bi, X.W.; Li, C.; Wang, X.S.; Zhu, J.J. Titanite major and trace element compositions as petrogenetic and metallogenic indicators of Mo ore deposits: Examples from four granite plutons in the southern Yidun arc, SW China. Am. Miner. 2018, 103, 1417–1434. [Google Scholar] [CrossRef]
- Leng, C.B.; Zhang, X.C.; Hu, R.Z.; Wang, S.X.; Zhong, H.; Wang, W.Q.; Bi, X.W. Zircon U–Pb and molybdenite Re–Os geochronology and Sr–Nd–Pb–Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China. J. Asian Earth Sci. 2012, 60, 31–48. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Y.Q.; Wang, H.P.; Qu, X.M.; Lü, Q.T.; Huang, D.H.; Wu, X.Z.; Yu, J.J.; Tang, S.H.; Zhao, J.H. The collisional orogeny and mineralization systems of the Yidun Terraneorogen in Sanjiang region, China. Acta Geol. Sin. 2004, 78, 109–120. [Google Scholar]
- Yang, L.Q.; Deng, J.; Dilek, Y.; Meng, J.Y.; Gao, X.; Santosh, M.; Wang, D.; Yan, H. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics. Lithos 2016, 245, 258–273. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Yang, L.Q.; He, W.Y.; Gao, X.; Liu, X.D. Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions: A case study at Pulang porphyry Cu-Au deposit, China. Ore Geol. Rev. 2021, 139, 104509. [Google Scholar] [CrossRef]
- Einaudi, M.T. Mapping Altered and Mineralized Rocks. An Introduction to the “Anaconda Method”; Short-Course Notes; Stanford University Department of Geological Environmental Sciences: Stanford, CA, USA, 1997; Unpublished work. [Google Scholar]
- Karpov, I.K.; Chudnenko, K.V.; Kulik, D.A.; Avchenko, O.V.; Bychinskii, V.A. Minimization of Gibbs free energy in geochemical systems by convex programming. Syst. Aqueous Electrolyte Solut. 2001, 3, 9. [Google Scholar]
- Kulik, D.A.; Wagner, T.; Dmytrieva, S.V.; Kosakowski, G.; Hingerl, F.F.; Chudnenko, K.V.; Berner, U.R. GEM-Selektor geochemical modelling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput. Geosci. 2013, 55, 36–54. [Google Scholar]
- Leal, A.M.; Blunt, M.J.; LaForce, T.C. A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO2–brine–rock systems at high temperatures, pressures and salinities. Adv. Water Resour. 2013, 62, 409–430. [Google Scholar] [CrossRef]
- Leal, A.M.; Kyas, S.; Kulik, D.A.; Saar, M.O. Accelerating Reactive Transport Modelling: On-Demand Machine Learning Algorithm for Chemical Equilibrium Calculations. Transp. Porous Media 2020, 133, 161–204. [Google Scholar] [CrossRef]
- Gysi, A.; Hurtig, N.C.; Pan, R.; Miron, G.D.; Kulik, D.A. MINES Thermodynamic Database, version 23; New Mexico Bureau of Geology and Mineral Resources: Socorro, NM, USA, 2023; Available online: https://geoinfo.nmt.edu/mines-tdb (accessed on 23 July 2025).
- Wagner, T.; Kulik, D.A.; Hingerl, F.F.; Dmytrieva, S.V. GEM-Selektor geochemical modelling package: TSolMod library and data interface for multicomponent phase models. Can. Miner. 2012, 50, 1173–1195. [Google Scholar] [CrossRef]
- Helgeson, H.C.; Kirkham, D.H.; Flowers, G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. Am. J. Sci. 1981, 281, 1249–1516. [Google Scholar] [CrossRef]
- Pokrovskii, V.A.; Helgeson, H.C. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures; the system Al2O3-H2O-NaCl. Am. J. Sci. 1995, 295, 1255–1342. [Google Scholar] [CrossRef]
- Oelkers, E.H.; Bénézeth, P.; Pokrovski, G.S. Thermodynamic databases for water-rock interaction. Rev. Mineral. Geochem. 2009, 70, 1–46. [Google Scholar] [CrossRef]
- Tanger, J.C.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 1988, 288, 19–98. [Google Scholar] [CrossRef]
- Shock, E.L.; Oelkers, E.H.; Johnson, J.W.; Sverjensky, D.A.; Helgeson, H.C. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants, and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. 1992, 88, 803–826. [Google Scholar] [CrossRef]
- Audétat, A. Source and evolution of molybdenum in the porphyry Mo (–Nb) deposit at Cave Peak, Texas. J. Pet. 2010, 51, 1739–1760. [Google Scholar] [CrossRef]
- Lerchbaumer, L.; Audétat, A. The metal content of silicate melts and aqueous fluids in subeconomically Mo mineralized granites: Implications for porphyry Mo genesis. Econ. Geol. 2013, 108, 987–1013. [Google Scholar] [CrossRef]
- Zhong, R.C.; Brugger, J.; Chen, Y.; Li, W. Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chem. Geol. 2015, 395, 154–164. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Klemm, L.M.; Heinrich, C.A. Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper–molybdenum deposit at Butte, MT. Chem. Geol. 2004, 210, 173–199. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wu, C. Metallogenesis and major challenges of porphyry copper systems above subduction zones. Sci. China Earth Sci. 2020, 63, 899–918. [Google Scholar] [CrossRef]
- Zhang, S.Y.; He, W.Y.; Gao, X.; Zhang, H.R.; Yuan, J.J. Ore-forming fluids evolution of the porphyry Cu deposits: Alteration mineralogy and thermodynamic modelling of the Pulang Cu deposit, Zhongdian district. Acta Petrol. Sin. 2020, 36, 1611–1626. [Google Scholar]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.; Zhan, M.; Ding, X.; Zhang, H.; Yang, X.; Li, Y.; Ireland, T.R.; Wei, Q. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Seo, J.H.; Guillong, M.; Heinrich, C.A. Separation of molybdenum and copper in porphyry deposits: The roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon. Econ. Geol. 2012, 107, 333–356. [Google Scholar] [CrossRef]
- Kokh, M.A.; Akinfiev, N.N.; Pokrovski, G.S.; Salvi, S.; Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 2017, 197, 433–466. [Google Scholar] [CrossRef]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Nagaseki, H.; Hayashi, K.I. Synthetic Fluid Inclusions in the Systems NaCl-H2O and NaCl-CO2-H2O: Dissolution Temperatures of Halite. Resour. Geol. 2006, 56, 133–140. [Google Scholar] [CrossRef]
- Frost, B.R.; Lindsley, D.H. Oxide minerals: Petrologic and magnetic significance. In Reviews in Mineralogy; Mineralogical Society of America: Washington, DC, USA, 1991; Volume 25, pp. 437–509. [Google Scholar]
- Zhao, J.; Brugger, J.; Ngothai, Y.; Pring, A. The replacement of chalcopyrite by bornite under hydrothermal conditions. Am. Miner. 2014, 99, 2389–2397. [Google Scholar] [CrossRef]
- Richards, J.P. A Shake-Up in the Porphyry World? Econ. Geol. 2018, 113, 1225–1233. [Google Scholar] [CrossRef]
- Du, L.J.; Li, B.; Huang, Z.L.; Zhou, J.X.; Zou, G.F.; Yan, Z.F. Carbon-oxygen isotopic geochemistry of the Yangla Cu skarn deposit, SW China: Implications for the source and evolution of hydrothermal fluids. Ore Geol. Rev. 2017, 88, 809–821. [Google Scholar] [CrossRef]
- Xia, Q.L.; Li, T.F.; Kang, L.; Leng, S.; Wang, X.C. Study on the PTX parameters and fractal characteristics of ore-forming fluids in the east ore section of the pulang copper deposit, southwest China. J. Earth Sci. 2021, 32, 390–407. [Google Scholar] [CrossRef]
- Hu, D.P.; Guan, S.J.; Su, Y.; Li, S.; Li, Z.P.; Yang, F.; Wang, L.; Ren, T. Characteristics of Ore-Forming Fluids and Genesis of the First Mining Area and Eastern Ore Section of the Pulang Porphyry Copper Deposit, Southeastern China: A Comparative Study. Minerals 2024, 14, 98. [Google Scholar] [CrossRef]
- Zajacz, Z.; Candela, P.A.; Piccoli, P.M. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits. Geochim. Cosmochim. Acta 2017, 207, 81–101. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.H.; Dilles, J.H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–334. [Google Scholar] [CrossRef]
- Klemm, L.M.; Pettke, T.; Heinrich, C.A.; Campos, E. Hydrothermal evolution of the El Teniente deposit, Chile: Porphyry Cu-Mo ore deposition from low-salinity magmatic fluids. Econ. Geol. 2007, 102, 1021–1045. [Google Scholar] [CrossRef]
- Klemm, L.M.; Pettke, T.; Heinrich, C.A. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Miner. Depos. 2008, 43, 533–552. [Google Scholar] [CrossRef]
- Sulaksono, A.; Watanabe, Y.; Arribas, A.; Echigo, T.; Furqan, R.A.; Leys, C.A. Reduction of oxidized sulfur in the formation of the Grasberg porphyry copper-gold deposit, Papua, Indonesia. Miner. Depos. 2021, 56, 65. [Google Scholar] [CrossRef]
- Xu, J.B.; Zhao, X.Y.; Deng, M.G.; Li, W.C.; Su, Y. Genesis of Pb–Zn Mineralization in the Pulang Cu Polymetallic Deposit in Yunnan Province, China: Insights from Analyses of Geology, Fluid Inclusions and C–H–O–S Isotopes. Minerals 2024, 14, 176. [Google Scholar] [CrossRef]
- Gustafson, L.B.; Hunt, J.P. The porphyry copper deposit at El Salvador, Chile. Econ. Geol. 1975, 70, 857–912. [Google Scholar] [CrossRef]
- Blundy, J.; Mavrogenes, J.; Tattitch, B.; Sparks, S.; Gilmer, A. Generation of porphyry copper deposits by gas–brine reaction in volcanic arcs. Nat. Geosci. 2015, 8, 235–240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; He, W.; Wang, H.; Xiao, Y. Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet. Minerals 2025, 15, 780. https://doi.org/10.3390/min15080780
Zhang S, He W, Wang H, Xiao Y. Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet. Minerals. 2025; 15(8):780. https://doi.org/10.3390/min15080780
Chicago/Turabian StyleZhang, Shaoying, Wenyan He, Huaqing Wang, and Yiwu Xiao. 2025. "Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet" Minerals 15, no. 8: 780. https://doi.org/10.3390/min15080780
APA StyleZhang, S., He, W., Wang, H., & Xiao, Y. (2025). Thermodynamic Modeling Constrains the Alteration and Mineralization Patterns of the Pulang Porphyry Cu-Au Deposits in Eastern Tibet. Minerals, 15(8), 780. https://doi.org/10.3390/min15080780