water-logo

Journal Browser

Journal Browser

Groundwater Evolution and Hydrochemical Processes in Mining Environments

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrogeology".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 1417

Special Issue Editors

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Interests: hydrogeology; engineering geology; geological disasters; mining engineering; rock mechanics

E-Mail Website
Guest Editor
College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Interests: engineering geology; hydrogeology; environmental geology
State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Interests: engineering geology and hydrogeology; geological engineering; geological hazards

Special Issue Information

Dear Colleagues,

This Special Issue, "Groundwater Evolution and Hydrochemical Processes in Mining Environments", is centered on examining the intricate dynamics of groundwater behavior and hydrochemical reactions within the context of mining activities. Its primary aim is to provide a detailed analysis of the impact that mining practices have on the activity of groundwater, as well as the subsequent safety and environmental implications. This Special Issue seeks to offer a comprehensive understanding of the challenges and potential mitigation strategies for water management within mining environments.

By scrutinizing the evolution of groundwater and associated hydrochemical processes, this Special Issue aims to inform professionals in hydrogeology, environmental science, and mining engineering about the latest research, methodologies, and strategies for mitigating the adverse effects of mining on groundwater systems. It serves as a crucial platform for disseminating knowledge and fostering dialogue on how to achieve more environmentally responsible and socially conscious mining operations. This Special Issue also explores the role of groundwater in the stability of mining operations, highlighting its significance for the safety of workers and the longevity of mining projects.

Furthermore, this Special Issue addresses the need for innovative approaches to monitor and manage groundwater resources in the face of increasing mining activities. The compilation of research in this Special Issue not only contributes to the scientific community's understanding of groundwater in mining environments but also serves as a guide for policymakers and industry professionals to make informed decisions that balance economic development with environmental stewardship.

Dr. Guang Li
Dr. Qinghai Deng
Dr. Jie Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogeology
  • mining engineering
  • hydrochemical processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 9156 KB  
Article
Integrating Loose Layer Drainage into Mining Subsidence Prediction: A Mathematical Model Validated by Field Measurements and Numerical Simulations
by Bang Zhou, Yueguan Yan, Ming Li, Shengcai Li, Chuanwu Zhao, Jianrong Kang and Jinman Zhang
Water 2025, 17(18), 2687; https://doi.org/10.3390/w17182687 - 11 Sep 2025
Viewed by 204
Abstract
Mining-induced surface subsidence is a typical geological hazard. Loose layer drainage disturbed by coal mining can exacerbate surface subsidence in terms of both the extent and amount, thereby increasing the risk of building deformation and environmental degradation in mining areas. However, currently the [...] Read more.
Mining-induced surface subsidence is a typical geological hazard. Loose layer drainage disturbed by coal mining can exacerbate surface subsidence in terms of both the extent and amount, thereby increasing the risk of building deformation and environmental degradation in mining areas. However, currently the prediction results of surface subsidence considering these two factors are not precise enough, which contradicts the principles of green coal mining. Firstly, this paper introduces the probability integral method, which predicts mining-induced surface subsidence. Subsequently, based on the soil–water coupled theory and the derived characteristic curve of groundwater level decline, a surface subsidence prediction model that considers loose layer drainage is constructed using triple integral transformation. Finally, a more precise surface subsidence prediction model considering both factors is proposed based on the principle of superposition. The model is applied to the mining of working panel 1309 in Shanxi province, China, an area rich in coal yet scarce in water resources. When compared with the measured subsidence data, the proposed model achieves a root mean square error (RMSE) of 27 mm, while the RMSEs of existing models are 78 mm and 123 mm, respectively. The prediction accuracy has been significantly improved. In addition, the proposed model is further validated through fluid–solid coupling numerical calculations in FLAC3D. The subsidence results considering the single effect of each factor also demonstrated good validation accuracy. Overall, the proposed model can accurately describe the surface subsidence considering both factors. This research can provide a theoretical guide for assessing the environmental impact and building damage, while contributing to the sustainable development of land use and groundwater resource in mining areas. Full article
Show Figures

Figure 1

13 pages, 5349 KB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 357
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

14 pages, 2718 KB  
Article
Mining-Influenced Water from the Abandoned Hausham Colliery in Southern Germany—A Case of Unmonitored Natural Attenuation
by Sylke Hilberg, Nicola Yousefi and Thomas Rinder
Water 2025, 17(9), 1253; https://doi.org/10.3390/w17091253 - 23 Apr 2025
Viewed by 618
Abstract
Coal mining in Upper Bavaria ended in the 1960s and the mines were flooded. This study investigates the mining-influenced water and its environmental implications in the Hausham Mine, one of many unmonitored coal mines in the region and along the northern edge of [...] Read more.
Coal mining in Upper Bavaria ended in the 1960s and the mines were flooded. This study investigates the mining-influenced water and its environmental implications in the Hausham Mine, one of many unmonitored coal mines in the region and along the northern edge of the Molasse zone in Austria, Germany and Switzerland. Water and solid samples were collected in the vicinity of the discharge area within a waste rock pile and downstream of a nearby lake. The samples were subjected to chemical and isotopic analysis, with a focus on the potential for natural attenuation. The mine waste discharge has high initial concentrations of calcium, sulfate, and iron, and elevated concentrations of nickel, zinc, and strontium. These element concentrations are significantly reduced along the flow path so that the water is environmentally safe for discharge into the Loidlsee. The reduced contaminant levels are related to the formation of secondary iron precipitates and associated sorption processes, the formation of secondary calcium carbonates, and mixing with another groundwater source. The results indicate that the carbonate-dominated sediments of the Molasse zone contribute substantially to the natural remediation of a potential environmental problem. Full article
Show Figures

Figure 1

Back to TopTop