Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion
Abstract
1. Introduction
2. Experimental Materials and Preparation
2.1. Specimen Preparation
2.2. Preparation and Soaking Scheme of Brine Solution
2.3. NMR Testing and Pore Structure Classification Models
2.4. Rock Water Absorption Test
3. Test Results and Analysis
3.1. T2 Distribution Curve Analysis
3.2. Pore Volume Fraction Distribution
3.3. Porosity
3.4. Permeability
3.5. Tortuosity
3.6. Fractal Dimension of Pore Structure
4. Discussion
4.1. Evolution of the Pore Structure of Sandstone Eroded by Brine
4.2. Changes in the Mineral Component Content of Sandstone
5. Conclusions
- (1)
- The water absorption performance of sandstone in aqueous solutions is influenced by the solution’s components; the more complex the composition of the solution, the lower the sandstone’s water absorption performance.
- (2)
- After being soaked in brine, the sandstone’s porosity first increases and then decreases with the soaking time, with the minimum porosity occurring at 21 days. Changes in rock porosity are mainly due to the transformation of mini-pores and meso-pores, whereas the proportion of large pores remains relatively stable. The mineral content of sandstone also changes with an increase in the soaking time.
- (3)
- Different brine components affect the pore and mineral content of sandstone. The pattern of pore changes after immersion in the NaCl solution differs from that of brine, while the patterns observed with the MgSO4 and CaCl2 solutions are the same as those seen with brine.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, B.Q.; Ren, F.H.; Cai, M.F.; Qiao, C. Bayesian Model Based on Markov Chain Monte Carlo for Identifying Mine Water Sources in Submarine Gold Mining. J. Clean. Prod. 2020, 253, 120008. [Google Scholar] [CrossRef]
- Chen, B.; Yu, Y.; Su, Q.; Yang, L.; Fu, T.; Liu, W.; Chen, G.; Lyu, W. The Study on the Genesis of Underground Brine in Laizhou Bay Based on Hydrochemical Data. Water 2023, 15, 3788. [Google Scholar] [CrossRef]
- Peng, K.; Li, X.B.; Wang, Z.W. Hydrochemical Characteristics of Groundwater Movement and Evolution in the Xinli Deposit of the Sanshandao Gold Mine Using FCM and PCA Methods. Environ. Earth Sci. 2015, 73, 7873–7888. [Google Scholar] [CrossRef]
- Tale, F.; Kalantariasl, A.; Shabani, A.; Abbasi, S.; Zohoorian, A.H.; Khamehchi, E. Experimental and Simulation Study of Low Salinity Brine Interactions with Carbonate Rocks. J. Pet. Sci. Eng. 2020, 184, 106497. [Google Scholar] [CrossRef]
- Gu, H.Y.; Ma, F.S.; Guo, J.; Li, K.P.; Lu, R. Assessment of Water Sources and Mixing of Groundwater in a Coastal Mine: The Sanshandao Gold Mine, China. Mine Water Environ. 2018, 37, 351–365. [Google Scholar] [CrossRef]
- Peng, K.; Liu, X.; Huang, W.S.; He, H.Y.; Ren, J.; Luo, S. The Role of Minimum Principal Stress in Tunnel Strainburst Considering Spatial Structure Effect. Theor. Appl. Fract. Mec. 2025, 139, 105085. [Google Scholar] [CrossRef]
- Peng, K.; Liu, X.; Jing, M.; Wu, T.; Luo, K.; Luo, S. Impact-Water Interaction Effects on Mechanical and Energy Characteristics of Granite during Uniaxial Compression. Geoenergy Sci. Eng. 2025, 254, 214033. [Google Scholar] [CrossRef]
- Anovitz, L.M.; Cole, D.R. Characterization and Analysis of Porosity and Pore Structures. Rev. Mineral. Geochem. 2015, 80, 61–164. [Google Scholar] [CrossRef]
- He, M.M.; Zhang, Z.Q.; Zhu, J.W.; Li, N. Correlation Between the Constant Mi of Hoek–Brown Criterion and Porosity of Intact Rock. Rock Mech. Rock Eng. 2022, 55, 923–936. [Google Scholar] [CrossRef]
- Xue, L.; Qi, M.; Qin, S.Q.; Li, G.L.; Li, P.; Wang, M. A Potential Strain Indicator for Brittle Failure Prediction of Low-Porosity Rock: Part I—Experimental Studies Based on the Uniaxial Compression Test. Rock Mech. Rock Eng. 2015, 48, 1763–1772. [Google Scholar] [CrossRef]
- Heidari, M.; Khanlari, G.R.; Torabi-Kaveh, M.; Kargarian, S.; Saneie, S. Effect of Porosity on Rock Brittleness. Rock Mech. Rock Eng. 2014, 47, 785–790. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, F.F.; Guo, P.Y.; Li, J.B.; Gong, W.L.; Guo, Z.B.; Sun, X.M. Nanoscale Pore Structure Characterization and Permeability of Mudrocks and Fine-Grained Sandstones in Coal Reservoirs by Scanning Electron Microscopy, Mercury Intrusion Porosimetry, and Low-Field Nuclear Magnetic Resonance. Geofluids 2018, 2018, 2905141. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Cai, Y.D.; Liu, Y. Characterizations of Full-Scale Pore Size Distribution, Porosity and Permeability of Coals: A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. Int. J. Coal Geol. 2018, 196, 148–158. [Google Scholar] [CrossRef]
- Medina-Rodriguez, B.X.; Frouté, L.; Alvarado, V.; Kovscek, A.R. Multimodal Study of the Impact of Stimulation pH on Shale Pore Structure, with an Emphasis on Organics Behavior in Alkaline Environments. Fuel 2023, 331, 125649. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.Q.; Zhang, W.G.; Lin, S.C.; Zhang, Y.M.; Yang, Y.; Wang, P.Q.; Chen, L. Fracture Mode of Water-Immersed Sandstone Based on Micro CT and Statistical Damage Model under Triaxial Compression. Eng. Fract. Mech. 2025, 315, 110781. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, H.; Yang, C.; Zhao, K.; Wang, X.; Zheng, Z. Characterizing Imbibition and Void Structure Evolution in Damaged Rock Salt under Humidity Cycling by Low-Field. Eng. Geol. 2024, 328, 107371. [Google Scholar] [CrossRef]
- Zhang, H.X.; Sun, W.; Xie, Q.; Chen, Y.; Tu, Z.; Ban, Y. Study on Mechanical Properties and Damage Characteristics of Acid Corrosion in Granite Based on NMR Technology. Eng. Geol. 2024, 340, 107678. [Google Scholar] [CrossRef]
- Doughty, D.A.; Tomutsa, L. Imaging Pore Structure and Connectivity by High Resolution NMR Microscopy. Int. J. Rock Mech. Min. Sci. 1997, 34, e1–e69. [Google Scholar] [CrossRef]
- Yu, L.Q.; Yao, Q.G.; Chong, Z.H.; Li, Y.H.; Xu, Q.; Xie, H.G.; Ye, P.Y. Mechanical and Micro-Structural Damage Mechanisms of Coal Samples Treated with Dry–Wet Cycles. Eng. Geol. 2022, 304, 106637. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.M.; Shao, Z.L. Experimental Study on Changes of Pore Structure and Mechanical Properties of Sandstone after High-Temperature Treatment Using Nuclear Magnetic Resonance. Eng. Geol. 2020, 275, 105739. [Google Scholar] [CrossRef]
- Gong, Y.F.; Song, J.X.; Wu, S.Z.; Zhang, Y.W. Evolution of Pore Structure and Analysis of Freeze Damage in Granite during Cyclic Freeze-Thaw Using NMR technique. Eng. Geol. 2024, 335, 107545. [Google Scholar] [CrossRef]
- Jácomo, M.H.; Trindade, R.I.F.; Lucas-Oliveira, E.; Bonagamba, T.J. Magnetic Matrix Effects on NMR Relaxation Times in Sandstones: A Case Study in Solimões Basin. J. Appl. Geophys. 2020, 179, 104081. [Google Scholar] [CrossRef]
- Foley, I.; Farooqui, S.A.; Kleinberg, R.L. Effect of Paramagnetic Ions on NMR Relaxation of Fluids at Solid Surfaces. J. Magn. Reson. Ser. A 1996, 123, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Washburn, K.E.; Sandor, M.; Cheng, Y. Evaluation of Sandstone Surface Relaxivity Using Laser-Induced Breakdown Spectroscopy. J. Magn. Reson. 2017, 275, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.S.; Cao, L.W. Failure Analysis of Water-Bearing Sandstone Using Acoustic Emission and Energy Dissipation. Eng. Fract. Mech. 2020, 231, 107021. [Google Scholar] [CrossRef]
- Xie, K.; Jiang, D.; Sun, Z.; Chen, J.; Zhang, W.; Jiang, X. NMR, MRI and AE Statistical Study of Damage Due to a Low Number of Wetting–Drying Cycles in Sandstone from the Three Gorges Reservoir Area. Rock Mech. Rock Eng. 2018, 51, 3625–3634. [Google Scholar] [CrossRef]
- Katika, K.; Addassi, M.; Alam, M.M.; Fabricius, I.L. The Effect of Divalent Ions on the Elasticity and Pore Collapse of Chalk Evaluated from Compressional Wave Velocity and Low-Field Nuclear Magnetic Resonance (NMR). J. Pet. Sci. Eng. 2015, 136, 88–99. [Google Scholar] [CrossRef]
- Yu, L.Y.; Zhang, Z.Q.; Wu, J.Y.; Liu, R.C.; Qin, H.; Fan, P.X. Experimental Study on the Dynamic Fracture Mechanical Properties of Limestone after Chemical Corrosion. Theor. Appl. Fract. Mech. 2020, 108, 102620. [Google Scholar] [CrossRef]
- Li, S.G.; Huo, R.K.; Yoshiaki, F.J.; Ren, D.Z.; Song, Z.P. Effect of Acid-Temperature-Pressure on the Damage Characteristics of Sandstone. Int. J. Rock Mech. Min. Sci. 2019, 122, 104079. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Z.; Liu, X.; Sheng, Y.; Yang, D. Micro-Damage Evolution and Macro-Mechanical Property Degradation of Limestone Due to Chemical Effects. Int. J. Rock Mech. Min. Sci. 2018, 110, 257–265. [Google Scholar] [CrossRef]
- Feng, X.-T.; Chen, S.; Li, S. Effects of Water Chemistry on Microcracking and Compressive Strength of Granite. Int. J. Rock Mech. Min. 2001, 38, 557–568. [Google Scholar] [CrossRef]
- Zou, Y.S.; Li, S.H.; Ma, X.F.; Zhang, S.C.; Li, N.; Chen, M. Effects of CO2–Brine–Rock Interaction on Porosity/Permeability and Mechanical Properties during Supercritical-CO2 Fracturing in Shale Reservoirs. J. Nat. Gas Sci. Eng. 2018, 49, 157–168. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Q.; Yang, X.; Dang, C.; Geng, J. Sandstone Weathering under Dry–Wet Cycling in NaCl Solution. Bull. Eng. Geol. Environ. 2022, 81, 490. [Google Scholar] [CrossRef]
- Shao, J.; You, L.; Kang, Y.; Zhang, K. Salt Dissolution and Pore Structure Changes Induced by Fracturing Fluid in Shale Reservoirs. Energy Fuels 2024, 38, 11675–11684. [Google Scholar] [CrossRef]
- Heggheim, T.; Madland, M.V.; Risnes, R.; Austad, T. A Chemical Induced Enhanced Weakening of Chalk by Seawater. J. Pet. Sci. Eng. 2005, 46, 171–184. [Google Scholar] [CrossRef]
- Peng, K.; Luo, K.; Wang, Y.M.; Luo, S.; Ma, T.X.; Jing, M.; Zhang, J. Stress Wave Propagation and Energy Characteristics of Impact-Damaged and Water-Soaked Sandstone with Different Length-to-Diameter Ratios. J. Rock Mech. Geotech. 2025; in press. [Google Scholar] [CrossRef]
- Bird, N.R.A.; Preston, A.R.; Randall, E.W.; Whalley, W.R.; Whitmore, A.P. Measurement of the Size Distribution of Water-Filled Pores at Different Matric Potentials by Stray Field Nuclear Magnetic Resonance. Eur. J. Soil Sci. 2005, 56, 135–143. [Google Scholar] [CrossRef]
- Talabi, O.; Blunt, M.J. Pore-Scale Network Simulation of NMR Response in Two-Phase Flow. J. Pet. Sci. Eng. 2010, 72, 1–9. [Google Scholar] [CrossRef]
- Pfeifer, P.; Avnir, D. Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. J. Chem. Phys. 1983, 79, 3558–3565. [Google Scholar] [CrossRef]
- Paz Ferreiro, J.; Vidal Vázquez, E. Multifractal Analysis of Hg Pore Size Distributions in Soils with Contrasting Structural Stability. Geoderma 2010, 160, 64–73. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.B.; Yin, T.B. Factors Affecting Pore Structure of Granite under Cyclic Heating and Cooling: A Nuclear Magnetic Resonance Investigation. Geothermics 2021, 96, 102198. [Google Scholar] [CrossRef]
- Jia, H.; Ding, S.; Zi, F.; Dong, Y.; Shen, Y. Evolution in Sandstone Pore Structures with Freeze-Thaw Cycling and Interpretation of Damage Mechanisms in Saturated Porous Rocks. CATENA 2020, 195, 104915. [Google Scholar] [CrossRef]
- Kenyon, W.E.; Day, P.I.; Straley, C.; Willemsen, J.F. Compact and Consistent Representation of Rock NMR Data for Permeability Estimation. In Proceedings of the 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, USA, 5–8 October 1986. [Google Scholar]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight Gas Sands Permeability Estimation from Mercury Injection Capillary Pressure and Nuclear Magnetic Resonance Data. J. Pet. Sci. Eng. 2012, 88–89, 92–99. [Google Scholar] [CrossRef]
- Yu, B.M.; Li, J.H. A Geometry Model for Tortuosity of Flow Path in Porous Media. Chin. Phys. Lett. 2004, 21, 1569. [Google Scholar] [CrossRef]
- Michalske, T.A.; Freiman, S.W. A Molecular Interpretation of Stress Corrosion in Silica. Nature 1982, 295, 511–512. [Google Scholar] [CrossRef]
- Hadizadeh, J.; Law, R.D. Water-Weakening of Sandstone and Quartzite Deformed at Various Stress and Strain Rates. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 431–439. [Google Scholar] [CrossRef]
Solution Type | Content of Each L Solution Components | Soaking Time | ||
---|---|---|---|---|
NaCl (mol/L) | MgSO4 (mol/L) | CaCl2 (mol/L) | ||
Brine | 2.0 | 0.3 | 0.2 | 14, 21, 35 d |
NaCl | 2.0 | 0 | 0 | 14, 21, 35 d |
MgSO4 | 0 | 0.3 | 0 | 14, 21, 35 d |
CaCl2 | 0 | 0 | 0.2 | 14, 21, 35 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, K.; Wu, T.; Luo, K.; Luo, S.; Zhou, J.; Wang, Y. Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion. Materials 2025, 18, 3500. https://doi.org/10.3390/ma18153500
Peng K, Wu T, Luo K, Luo S, Zhou J, Wang Y. Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion. Materials. 2025; 18(15):3500. https://doi.org/10.3390/ma18153500
Chicago/Turabian StylePeng, Kang, Tao Wu, Kun Luo, Song Luo, Jiaqi Zhou, and Yuanmin Wang. 2025. "Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion" Materials 18, no. 15: 3500. https://doi.org/10.3390/ma18153500
APA StylePeng, K., Wu, T., Luo, K., Luo, S., Zhou, J., & Wang, Y. (2025). Experimental Study on the Pore Structure Evolution of Sandstone Under Brine Erosion. Materials, 18(15), 3500. https://doi.org/10.3390/ma18153500