Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,737)

Search Parameters:
Keywords = risk-based scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 (registering DOI) - 2 Aug 2025
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
30 pages, 1130 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 (registering DOI) - 2 Aug 2025
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
13 pages, 906 KiB  
Article
Integrated Flushing and Corrosion Control Measures to Reduce Lead Exposure in Households with Lead Service Lines
by Fatemeh Hatam, Mirjam Blokker and Michele Prevost
Water 2025, 17(15), 2297; https://doi.org/10.3390/w17152297 (registering DOI) - 2 Aug 2025
Abstract
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase [...] Read more.
The quality of water in households can be affected by plumbing design and materials, water usage patterns, and source water quality characteristics. These factors influence stagnation duration, disinfection residuals, metal release, and microbial activity. In particular, stagnation can degrade water quality and increase lead release from lead service lines. This study employs numerical modeling to assess how combined corrosion control and flushing strategies affect lead levels in household taps with lead service lines under reduced water use. To estimate potential health risks, the U.S. EPA model is used to predict the percentage of children likely to exceed safe blood lead levels. Lead exceedances are assessed based on various regulatory requirements. Results show that exceedances at the kitchen tap range from 3 to 74% of usage time for the 5 µg/L standard, and from 0 to 49% for the 10 µg/L threshold, across different scenarios. Implementing corrosion control treatment in combination with periodic flushing proves effective in lowering lead levels under the studied low-consumption scenarios. Under these conditions, the combined strategy limits lead exceedances above 5 µg/L to only 3% of usage time, with none above 10 µg/L. This demonstrates its value as a practical short-term strategy for households awaiting full pipe replacement. Targeted flushing before peak water use reduces the median time that water remains stagnant in household pipes from 8 to 3 h at the kitchen tap under low-demand conditions. Finally, the risk model indicates that the combined approach can reduce the predicted percentage of children with blood lead levels exceeding 5 μg/dL from 61 to 6% under low water demand. Full article
Show Figures

Figure 1

20 pages, 11379 KiB  
Article
Silk Fibroin–Alginate Aerogel Beads Produced by Supercritical CO2 Drying: A Dual-Function Conformable and Haemostatic Dressing
by Maria Rosaria Sellitto, Domenico Larobina, Chiara De Soricellis, Chiara Amante, Giovanni Falcone, Paola Russo, Beatriz G. Bernardes, Ana Leite Oliveira and Pasquale Del Gaudio
Gels 2025, 11(8), 603; https://doi.org/10.3390/gels11080603 (registering DOI) - 2 Aug 2025
Abstract
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity [...] Read more.
Infection control and bleeding management in deep wounds remain urgent and unmet clinical challenges that demand innovative, multifunctional, and sustainable solutions. Unlike previously reported sodium alginate and silk fibroin-based gel formulations, the present work introduces a dual-functional system combining antimicrobial and haemostatic activity in the form of conformable aerogel beads. This dual-functional formulation is designed to absorb exudate, promote clotting, and provide localized antimicrobial action, all essential for accelerating wound repair in high-risk scenarios within a single biocompatible system. Aerogel beads were obtained by supercritical drying of a silk fibroin–sodium alginate blend, resulting in highly porous, spherical structures measuring 3–4 mm in diameter. The formulations demonstrated efficient ciprofloxacin encapsulation (42.75–49.05%) and sustained drug release for up to 12 h. Fluid absorption reached up to four times their weight in simulated wound fluid and was accompanied by significantly enhanced blood clotting, outperforming a commercial haemostatic dressing. These findings highlight the potential of silk-based aerogel beads as a multifunctional wound healing platform that combines localized antimicrobial delivery, efficient fluid and exudate management, biodegradability, and superior haemostatic performance in a single formulation. This work also shows for the first time how the prilling encapsulation technique with supercritical drying is able to successfully produce silk fibroin and sodium alginate composite aerogel beads. Full article
(This article belongs to the Special Issue Aerogels and Composites Aerogels)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 (registering DOI) - 1 Aug 2025
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
16 pages, 3183 KiB  
Case Report
A Multidisciplinary Approach to Crime Scene Investigation: A Cold Case Study and Proposal for Standardized Procedures in Buried Cadaver Searches over Large Areas
by Pier Matteo Barone and Enrico Di Luise
Forensic Sci. 2025, 5(3), 34; https://doi.org/10.3390/forensicsci5030034 (registering DOI) - 1 Aug 2025
Abstract
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar [...] Read more.
This case report presents a multidisciplinary forensic investigation into a cold case involving a missing person in Italy, likely linked to a homicide that occurred in 2008. The investigation applied a standardized protocol integrating satellite imagery analysis, site reconnaissance, vegetation clearance, ground-penetrating radar (GPR), and cadaver dog (K9) deployment. A dedicated decision tree guided each phase, allowing for efficient allocation of resources and minimizing investigative delays. Although no human remains were recovered, the case demonstrates the practical utility and operational robustness of a structured, evidence-based model that supports decision-making even in the absence of positive findings. The approach highlights the relevance of “negative” results, which, when derived through scientifically validated procedures, offer substantial value by excluding burial scenarios with a high degree of reliability. This case is particularly significant in the Italian forensic context, where the adoption of standardized search protocols remains limited, especially in complex outdoor environments. The integration of geophysical, remote sensing, and canine methodologies—rooted in forensic geoarchaeology—provides a replicable framework that enhances both investigative effectiveness and the evidentiary admissibility of findings in court. The protocol illustrated in this study supports the consistent evaluation of large and morphologically complex areas, reduces the risk of interpretive error, and reinforces the transparency and scientific rigor expected in judicial settings. As such, it offers a model for improving forensic search strategies in both national and international contexts, particularly in long-standing or high-profile missing persons cases. Full article
Show Figures

Figure 1

30 pages, 866 KiB  
Article
Balancing Profitability and Sustainability in Electric Vehicles Insurance: Underwriting Strategies for Affordable and Premium Models
by Xiaodan Lin, Fenqiang Chen, Haigang Zhuang, Chen-Ying Lee and Chiang-Ku Fan
World Electr. Veh. J. 2025, 16(8), 430; https://doi.org/10.3390/wevj16080430 (registering DOI) - 1 Aug 2025
Abstract
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an [...] Read more.
This study aims to develop an optimal underwriting strategy for affordable (H1 and M1) and premium (L1 and M2) electric vehicles (EVs), balancing financial risk and sustainability commitments. The research is motivated by regulatory pressures, risk management needs, and sustainability goals, necessitating an adaptation of traditional underwriting models. The study employs a modified Delphi method with industry experts to identify key risk factors, including accident risk, repair costs, battery safety, driver behavior, and PCAF carbon impact. A sensitivity analysis was conducted to examine premium adjustments under different risk scenarios, categorizing EVs into four risk segments: Low-Risk, Low-Carbon (L1); Medium-Risk, Low-Carbon (M1); Medium-Risk, High-Carbon (M2); and High-Risk, High-Carbon (H1). Findings indicate that premium EVs (L1 and M2) exhibit lower volatility in underwriting costs, benefiting from advanced safety features, lower accident rates, and reduced carbon attribution penalties. Conversely, budget EVs (H1 and M1) experience higher premium fluctuations due to greater accident risks, costly repairs, and higher carbon costs under PCAF implementation. The worst-case scenario showed a 14.5% premium increase, while the best-case scenario led to a 10.5% premium reduction. The study recommends prioritizing premium EVs for insurance coverage due to their lower underwriting risks and carbon efficiency. For budget EVs, insurers should implement selective underwriting based on safety features, driver risk profiling, and energy efficiency. Additionally, incentive-based pricing such as telematics discounts, green repair incentives, and low-carbon charging rewards can mitigate financial risks and align with net-zero insurance commitments. This research provides a structured framework for insurers to optimize EV underwriting while ensuring long-term profitability and regulatory compliance. Full article
Show Figures

Figure 1

13 pages, 733 KiB  
Proceeding Paper
AI-Based Assistant for SORA: Approach, Interaction Logic, and Perspectives for Cybersecurity Integration
by Anton Puliyski and Vladimir Serbezov
Eng. Proc. 2025, 100(1), 65; https://doi.org/10.3390/engproc2025100065 - 1 Aug 2025
Abstract
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level [...] Read more.
This article presents the design, development, and evaluation of an AI-based assistant tailored to support users in the application of the Specific Operations Risk Assessment (SORA) methodology for unmanned aircraft systems. Built on a customized language model, the assistant was trained using system-level instructions with the goal of translating complex regulatory concepts into clear and actionable guidance. The approach combines structured definitions, contextualized examples, constrained response behavior, and references to authoritative sources such as JARUS and EASA. Rather than substituting expert or regulatory roles, the assistant provides process-oriented support, helping users understand and complete the various stages of risk assessment. The model’s effectiveness is illustrated through practical interaction scenarios, demonstrating its value across educational, operational, and advisory use cases, and its potential to contribute to the digital transformation of safety and compliance processes in the drone ecosystem. Full article
Show Figures

Figure 1

18 pages, 385 KiB  
Review
Fetal Supraventricular Tachycardia: What Do We Know up to This Day?
by Sophia Tsokkou, Ioannis Konstantinidis, Vasileios Anastasiou, Alkis Matsas, Eleni Stamoula, Emmanuela Peteinidou, Antonia Sioga, Theodora Papamitsou, Antonios Ziakas and Vasileios Kamperidis
J. Pers. Med. 2025, 15(8), 341; https://doi.org/10.3390/jpm15080341 (registering DOI) - 1 Aug 2025
Abstract
Fetal tachyarrhythmias, particularly supraventricular tachycardia (SVT) and atrial flutter (AFL), pose significant clinical challenges, especially when complicated by hydrops fetalis. This article provides a comprehensive review of the tachyarrhythmia types, the diagnostic modalities applied, and the therapeutic strategies followed in fetal tachyarrhythmias. Diagnostic [...] Read more.
Fetal tachyarrhythmias, particularly supraventricular tachycardia (SVT) and atrial flutter (AFL), pose significant clinical challenges, especially when complicated by hydrops fetalis. This article provides a comprehensive review of the tachyarrhythmia types, the diagnostic modalities applied, and the therapeutic strategies followed in fetal tachyarrhythmias. Diagnostic techniques such as M-mode echocardiography and fetal magnetocardiography (fMCG) are highlighted for their capacity to provide real-time, high-quality assessments of fetal cardiac rhythms. The review, also, focuses on pharmacologic management via transplacental therapy, discussing the safety and efficacy of the key agents including digoxin, flecainide, and sotalol, under different clinical scenarios, such as hydropic fetus and renal impairment. In addition to transplacental administration, alternative approaches such as direct fetal intramuscular or intravascular injections are examined. These direct methods, while potentially more effective in refractory cases, carry risks that necessitate specialized expertise and careful consideration of maternal and fetal safety. The limitations of current evidence, largely based on small case studies and retrospective analyses, underscore the need for larger, prospective multicenter observational studies and randomized control trials to establish standardized protocols for fetal tachyarrhythmia management. Overall, this review advocates for a personalized, multidisciplinary approach, emphasizing early fetal tachyarrhythmias diagnosis, tailored treatment regimens that balances efficacy with safety, and rigorous monitoring to optimize outcomes for both the fetus and the mother. Full article
(This article belongs to the Special Issue Advances in Prenatal Diagnosis and Maternal Fetal Medicine)
Show Figures

Graphical abstract

24 pages, 7997 KiB  
Article
Comparative Analysis of Habitat Expansion Mechanisms for Four Invasive Amaranthaceae Plants Under Current and Future Climates Using MaxEnt
by Mao Lin, Xingzhuang Ye, Zixin Zhao, Shipin Chen and Bao Liu
Plants 2025, 14(15), 2363; https://doi.org/10.3390/plants14152363 - 1 Aug 2025
Abstract
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) [...] Read more.
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) are prioritized due to CNY 2.6 billion annual ecosystem damages in China. By coupling multi-species comparative analysis with a parameter-optimized Maximum Entropy (MaxEnt) model integrating climate, soil, and topographical variables in China under Shared Socioeconomic Pathways (SSP) 126/245/585 scenarios, we reveal divergent expansion mechanisms (e.g., 247 km faster northward shift in A. palmeri than D. ambrosioides) that redefine invasion corridors in the North China Plain. Under current conditions, the suitable habitats of these species span from 92° E to 129° E and 18° N to 49° N, with high-risk zones concentrated in central and southern China, including the Yunnan–Guizhou–Sichuan region and the North China Plain. Temperature variables (Bio: Bioclimatic Variables; Bio6, Bio11) were the primary contributors based on permutation importance (e.g., Bio11 explained 56.4% for C. argentea), while altitude (e.g., 27.3% for A. palmeri) and UV-B (e.g., 16.2% for A. palmeri) exerted lower influence. Model validation confirmed high accuracy (mean area under the curve (AUC) > 0.86 and true skill statistic (TSS) > 0.6). By the 2090s, all species showed net habitat expansion overall, although D. ambrosioides exhibited net total contractions during mid-century under the SSP126/245 scenarios, C. argentea experienced reduced total suitability during the 2050s–2070s despite high-suitability growth, and A. palmeri and A. spinosus expanded significantly in both total and highly suitable habitat. All species shifted their distribution centroids northward, aligning with warming trends. Overall, these findings highlight the critical role of temperature in driving range dynamics and underscore the need for latitude-specific monitoring strategies to mitigate invasion risks, providing a scientific basis for adaptive management under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

29 pages, 3400 KiB  
Article
Synthetic Data Generation for Machine Learning-Based Hazard Prediction in Area-Based Speed Control Systems
by Mariusz Rychlicki and Zbigniew Kasprzyk
Appl. Sci. 2025, 15(15), 8531; https://doi.org/10.3390/app15158531 (registering DOI) - 31 Jul 2025
Abstract
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a [...] Read more.
This work focuses on the possibilities of generating synthetic data for machine learning in hazard prediction in area-based speed monitoring systems. The purpose of the research conducted was to develop a methodology for generating realistic synthetic data to support the design of a continuous vehicle speed monitoring system to minimize the risk of traffic accidents caused by speeding. The SUMO traffic simulator was used to model driver behavior in the analyzed area and within a given road network. Data from OpenStreetMap and field measurements from over a dozen speed detectors were integrated. Preliminary tests were carried out to record vehicle speeds. Based on these data, several simulation scenarios were run and compared to real-world observations using average speed, the percentage of speed limit violations, root mean square error (RMSE), and percentage compliance. A new metric, the Combined Speed Accuracy Score (CSAS), has been introduced to assess the consistency of simulation results with real-world data. For this study, a basic hazard prediction model was developed using LoRaWAN sensor network data and environmental contextual variables, including time, weather, location, and accident history. The research results in a method for evaluating and selecting the simulation scenario that best represents reality and drivers’ propensities to exceed speed limits. The results and findings demonstrate that it is possible to produce synthetic data with a level of agreement exceeding 90% with real data. Thus, it was shown that it is possible to generate synthetic data for machine learning in hazard prediction for area-based speed control systems using traffic simulators. Full article
Show Figures

Figure 1

17 pages, 3595 KiB  
Article
Sensor-Based Monitoring of Fire Precursors in Timber Wall and Ceiling Assemblies: Research Towards Smarter Embedded Detection Systems
by Kristian Prokupek, Chandana Ravikumar and Jan Vcelak
Sensors 2025, 25(15), 4730; https://doi.org/10.3390/s25154730 (registering DOI) - 31 Jul 2025
Abstract
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and [...] Read more.
The movement towards low-emission and sustainable building practices has driven increased use of natural, carbon-based materials such as wood. While these materials offer significant environmental advantages, their inherent flammability introduces new challenges for timber building safety. Despite advancements in fire protection standards and building regulations, the risk of fire incidents—whether from technical failure, human error, or intentional acts—remains. The rapid detection of fire onset is crucial for safeguarding human life, animal welfare, and valuable assets. This study investigates the potential of monitoring fire precursor gases emitted inside building structures during pre-ignition and early combustion stages. The research also examines the sensitivity and effectiveness of commercial smoke detectors compared with custom sensor arrays in detecting these emissions. A representative structural sample was constructed and subjected to a controlled fire scenario in a laboratory setting, providing insights into the integration of gas sensing technologies for enhanced fire resilience in sustainable building systems. Full article
Show Figures

Figure 1

26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 43
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 184
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

18 pages, 10854 KiB  
Article
A Novel Method for Predicting Landslide-Induced Displacement of Building Monitoring Points Based on Time Convolution and Gaussian Process
by Jianhu Wang, Xianglin Zeng, Yingbo Shi, Jiayi Liu, Liangfu Xie, Yan Xu and Jie Liu
Electronics 2025, 14(15), 3037; https://doi.org/10.3390/electronics14153037 - 30 Jul 2025
Viewed by 135
Abstract
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks [...] Read more.
Accurate prediction of landslide-induced displacement is essential for the structural integrity and operational safety of buildings and infrastructure situated in geologically unstable regions. This study introduces a novel hybrid predictive framework that synergistically integrates Gaussian Process Regression (GPR) with Temporal Convolutional Neural Networks (TCNs), herein referred to as the GTCN model, to forecast displacement at building monitoring points subject to landslide activity. The proposed methodology is validated using time-series monitoring data collected from the slope adjacent to the Zhongliang Reservoir in Wuxi County, Chongqing, an area where slope instability poses a significant threat to nearby structural assets. Experimental results demonstrate the GTCN model’s superior predictive performance, particularly under challenging conditions of incomplete or sparsely sampled data. The model proves highly effective in accurately characterizing both abrupt fluctuations within the displacement time series and capturing long-term deformation trends. Furthermore, the GTCN framework outperforms comparative hybrid models based on Gated Recurrent Units (GRUs) and GPR, with its advantage being especially pronounced in data-limited scenarios. It also exhibits enhanced capability for temporal feature extraction relative to conventional imputation-based forecasting strategies like forward-filling. By effectively modeling both nonlinear trends and uncertainty within displacement sequences, the GTCN framework offers a robust and scalable solution for landslide-related risk assessment and early warning applications. Its applicability to building safety monitoring underscores its potential contribution to geotechnical hazard mitigation and resilient infrastructure management. Full article
Show Figures

Figure 1

Back to TopTop