Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (332)

Search Parameters:
Keywords = resistome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 459 KiB  
Case Report
Urinary Multidrug-Resistant Klebsiella pneumoniae: Essential Oil Countermeasures in a One Health Case Report
by Mălina-Lorena Mihu, Cristiana Ştefania Novac, Smaranda Crăciun, Nicodim Iosif Fiţ, Cosmina Maria Bouari, George Cosmin Nadăş and Sorin Răpuntean
Microorganisms 2025, 13(8), 1807; https://doi.org/10.3390/microorganisms13081807 - 1 Aug 2025
Viewed by 265
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to [...] Read more.
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) is eroding therapeutic options for urinary tract infections. We isolated a multidrug-resistant strain from the urine of a chronically bacteriuric patient and confirmed its identity by Vitek-2 and MALDI-TOF MS. Initial disk-diffusion profiling against 48 antibiotics revealed susceptibility to only 5 agents. One month later, repeat testing showed that tetracycline alone remained active, highlighting the strain’s rapidly evolving resistome. Given the scarcity of drug options, we performed an “aromatogram” with seven pure essential oils, propolis, and two commercial phytotherapeutic blends. Biomicin Forte® produced a 30 mm bactericidal halo, while thyme, tea tree, laurel, and palmarosa oils yielded clear inhibition zones of 11–22 mm. These in vitro data demonstrate that carefully selected plant-derived products can target CR-Kp where conventional antibiotics fail. Integrating aromatogram results into One Health’s stewardship plans may therefore help preserve last-line antibiotics and provide adjunctive options for persistent urinary infections. Full article
(This article belongs to the Special Issue Infectious Disease Surveillance in Romania)
Show Figures

Figure 1

18 pages, 1267 KiB  
Article
Characterization of Antibiotic Administration Factors Associated with Microbiome Disruption and Subsequent Antibiotic-Resistant Infection and Colonization Events in Acute Myeloid Leukemia Patients Receiving Chemotherapy
by Samantha Franklin, Corina Ramont, Maliha Batool, Stephanie McMahon, Pranoti Sahasrabhojane, John C. Blazier, Dimitrios P. Kontoyiannis, Yang Ni and Jessica Galloway-Peña
Antibiotics 2025, 14(8), 770; https://doi.org/10.3390/antibiotics14080770 - 30 Jul 2025
Viewed by 298
Abstract
Background: Broad-spectrum antibiotics are often used for suspected infections in patients with hematologic malignancies due to the risk of severe infections. Although antibiotic use can lead to antimicrobial resistance and microbiome dysbiosis, the effects of antibiotics on the microbiome and resistome in patients [...] Read more.
Background: Broad-spectrum antibiotics are often used for suspected infections in patients with hematologic malignancies due to the risk of severe infections. Although antibiotic use can lead to antimicrobial resistance and microbiome dysbiosis, the effects of antibiotics on the microbiome and resistome in patients with acute myeloid leukemia (AML) undergoing remission induction chemotherapy (RIC) are not well understood. Methods: Various statistical models were utilized to examine the effects of antibiotic administration on the microbiome and resistome over time, as well as differences in AR-infection (ARI) and colonization (ARC) by important CDC-threats in 119 AML patients. Results: A greater number of unique antibiotic classes administered correlated with a loss of unique antibiotic resistance genes (ARGs) (R = −0.39, p = 0.008). Specifically, although a greater number of oxazolidinone administrations was correlated with a greater loss of diversity (R = −0.58, p < 0.001), each additional day of linezolid reduced the risk of ARC by ~30% (HR: 0.663, p = 0.047) and decreased the odds of acquiring genes predicted to confer macrolide (HR: 0.50, p = 0.026) resistance. Conclusions: The number of antibiotic administrations and the types of antibiotics used can influence the risk of antibiotic resistance gene (ARG) expansion and ARC events in AML patients undergoing RIC. While certain antibiotics may reduce microbial diversity, they are not always linked to an increase in ARGs or ARC events. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

14 pages, 384 KiB  
Article
Outbreak Caused by VIM-1- and VIM-4-Positive Proteus mirabilis in a Hospital in Zagreb
by Branka Bedenić, Gernot Zarfel, Josefa Luxner, Andrea Grisold, Marina Nađ, Maja Anušić, Vladimira Tičić, Verena Dobretzberger, Ivan Barišić and Jasmina Vraneš
Pathogens 2025, 14(8), 737; https://doi.org/10.3390/pathogens14080737 - 26 Jul 2025
Viewed by 275
Abstract
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of [...] Read more.
Background/objectives: Proteus mirabilis is a frequent causative agent of urinary and wound infections in both community and hospital settings. It develops resistance to expanded-spectrum cephalosporins (ESCs) due to the production of extended-spectrum β-lactamases (ESBLs) or plasmid-mediated AmpC β-lactamases (p-AmpCs). Recently, carbapenem-resistant isolates of P. mirabilis emerged due to the production of carbapenemases, mostly belonging to Ambler classes B and D. Here, we report an outbreak of infections due to carbapenem-resistant P. mirabilis that were observed in a psychiatric hospital in Zagreb, Croatia. The characteristics of ESBL and carbapenemase-producing P. mirabilis isolates, associated with an outbreak, were analyzed. Materials and methods: The antibiotic susceptibility testing was performed by the disk-diffusion and broth dilution methods. The double-disk synergy test (DDST) and inhibitor-based test with clavulanic and phenylboronic acid were applied to screen for ESBLs and p-AmpCs, respectively. Carbapenemases were screened by the modified Hodge test (MHT), while carbapenem hydrolysis was investigated by the carbapenem inactivation method (CIM) and EDTA-carbapenem-inactivation method (eCIM). The nature of the ESBLs, carbapenemases, and fluoroquinolone-resistance determinants was investigated by PCR. Plasmids were characterized by PCR-based replicon typing (PBRT). Selected isolates were subjected to molecular characterization of the resistome by an Inter-Array Genotyping Kit CarbaResisit and whole-genome sequencing (WGS). Results: In total, 20 isolates were collected and analyzed. All isolates exhibited resistance to amoxicillin alone and when combined with clavulanic acid, cefuroxime, cefotaxime, ceftriaxone, cefepime, imipenem, ceftazidime–avibactam, ceftolozane–tazobactam, gentamicin, amikacin, and ciprofloxacin. There was uniform susceptibility to ertapenem, meropenem, and cefiderocol. The DDST and combined disk test with clavulanic acid were positive, indicating the production of an ESBL. The MHT was negative in all except one isolate, while the CIM showed moderate sensitivity, but only with imipenem as the indicator disk. Furthermore, eCIM tested positive in all of the CIM-positive isolates, consistent with a metallo-β-lactamase (MBL). PCR and sequencing of the selected amplicons identified VIM-1 and VIM-4. The Inter-Array Genotyping Kit CarbaResist and WGS identified β-lactam resistance genes blaVIM, blaCTX-M-15, and blaTEM genes; aminoglycoside resistance genes aac(3)-IId, aph(6)-Id, aph(3″)-Ib, aadA1, armA, and aac(6′)-IIc; as well as resistance genes for sulphonamides sul1 and sul2, trimethoprim dfr1, chloramphenicol cat, and tetracycline tet(J). Conclusions: This study revealed an epidemic spread of carbapenemase-producing P. mirabilis in two wards in a psychiatric hospital. Due to the extensively resistant phenotype (XDR), therapeutic options were limited. This is the first report of carbapenemase-producing P. mirabilis in Croatia. Full article
(This article belongs to the Special Issue Emerging and Neglected Pathogens in the Balkans)
Show Figures

Figure 1

15 pages, 2742 KiB  
Article
Resistome and Phylogenomics of Escherichia coli Strains Obtained from Diverse Sources in Jimma, Ethiopia
by Mulatu Gashaw, Esayas Kebede Gudina, Guenter Froeschl, Ralph Matar, Solomon Ali, Liegl Gabriele, Amelie Hohensee, Thomas Seeholzer, Arne Kroidl and Andreas Wieser
Antibiotics 2025, 14(7), 706; https://doi.org/10.3390/antibiotics14070706 - 14 Jul 2025
Viewed by 350
Abstract
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods [...] Read more.
Introduction: In recent years, antimicrobial resistance (AMR) rates have increased significantly in bacterial pathogens, particularly extended beta-lactam resistance. This study aimed to investigate resistome and phylogenomics of Escherichia coli (E. coli) strains isolated from various sources in Jimma, Ethiopia. Methods: Phenotypic antibiotic resistance patterns of E. coli isolates were determined using automated Kirby–Bauer disc diffusion and minimum inhibitory concentration (MIC). Isolates exhibiting phenotypic resistance to beta-lactam antibiotics were further analyzed with a DNA microarray to confirm the presence of resistance-encoding genes. Additionally, multilocus sequence typing (MLST) of seven housekeeping genes was conducted using PCR and Oxford Nanopore-Technology (ONT) to assess the phylogenetic relationships among the E. coli isolates. Results: A total of 611 E. coli isolates from human, animal, and environmental sources were analyzed. Of these, 41.6% (254) showed phenotypic resistance to at least one of the tested beta-lactams, 96.1% (244) thereof were confirmed genotypically. More than half of the isolates (53.3%) had two or more resistance genes present. The most frequent ESBL-encoding gene was CTX-M-15 (74.2%; 181), followed by TEM (59.4%; 145) and CTX-M-9 (4.1%; 10). The predominant carbapenemase gene was NDM-1, detected in 80% (12 out of 15) of carbapenem-resistant isolates. A phylogenetic analysis revealed clonality among the strains obtained from various sources, with international high-risk clones such as ST131, ST648, ST38, ST73, and ST405 identified across various niches. Conclusions: The high prevalence of CTX-M-15 and NDM-1 in multidrug-resistant E. coli isolates indicates the growing threat of AMR in Ethiopia. The discovery of these high-risk clones in various niches shows possible routes of transmission and highlights the necessity of a One Health approach to intervention and surveillance. Strengthening antimicrobial stewardship, infection prevention, and control measures are crucial to mitigate the spread of these resistant strains. Full article
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Hybrid Genome and Clinical Impact of Emerging Extensively Drug-Resistant Priority Bacterial Pathogen Acinetobacter baumannii in Saudi Arabia
by J. Francis Borgio
Life 2025, 15(7), 1094; https://doi.org/10.3390/life15071094 - 12 Jul 2025
Viewed by 405
Abstract
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain [...] Read more.
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain (IRMCBCU95U) isolated from a transtracheal aspirate sample from a female patient with end-stage renal disease in Saudi Arabia. The whole genome of IRMCBCU95U (4.3 Mbp) was sequenced using Oxford Nanopore long-read sequencing to identify and compare the antibiotic-resistance profile and genomic features of A. baumannii IRMCBCU95U. The antibiogram of A. baumannii IRMCBCU95U revealed resistance to multiple antibiotics, including cefepime, ceftazidime, ciprofloxacin, imipenem, meropenem and piperacillin/tazobactam. A comparative genomic analysis between IRMCBCU95U and A. baumannii K09-14 and ATCC 19606 identified significant genetic heterogeneity and mosaicism among the strains. This analysis also demonstrated the hybrid nature of the genome of IRMCBCU95U and indicates that horizontal gene transfer may have occurred between these strains. The IRMCBCU95U genome has a diverse range of genes associated with antimicrobial resistance and mobile genetic elements (ISAba1 and IS26) associated with the spread of multidrug resistance. The presence of virulence-associated genes that are linked to iron acquisition, motility and transcriptional regulation confirmed that IRMCBCU95U is a priority human pathogen. The plasmid fragment IncFIB(pNDM-Mar) observed in the strain is homologous to the plasmid in Klebsiella pneumoniae (439 bp; similarity: 99.09%), which supports its antimicrobial resistance. From these observations, it can be concluded that the clinical A. baumannii IRMCBCU95U isolate is an emerging extensively drug-resistant human pathogen with a novel combination of resistance genes and a plasmid fragment. The complex resistome of IRMCBCU95U highlights the urgent need for genomic surveillance in hospital settings in Saudi Arabia to fight against the spread of extensively drug-resistant A. baumannii. Full article
Show Figures

Figure 1

11 pages, 485 KiB  
Review
Aquatic Resistome in Freshwater and Marine Environments: Interactions Between Commensal and Pathogenic in the Context of Aquaculture and One Health
by Ana V. Mourão, Diana Fernandes, Telma de Sousa, Rita Calouro, Sónia Saraiva, Gilberto Igrejas and Patrícia Poeta
Microorganisms 2025, 13(7), 1591; https://doi.org/10.3390/microorganisms13071591 - 6 Jul 2025
Viewed by 464
Abstract
Aquatic resistomes are important reservoirs of antibiotic resistance genes (ARGs) and their precursors, which can proliferate and dissipate in pathogenic microorganisms that affect humans and animals, especially due to anthropogenic pressures such as the intensive use of antibiotics in aquaculture, often without effective [...] Read more.
Aquatic resistomes are important reservoirs of antibiotic resistance genes (ARGs) and their precursors, which can proliferate and dissipate in pathogenic microorganisms that affect humans and animals, especially due to anthropogenic pressures such as the intensive use of antibiotics in aquaculture, often without effective regulation. This review addresses the mechanisms of horizontal gene transfer (HGT) in the dissemination of ARGs through mobile genetic elements (MGEs). In freshwater, genera such as Aeromonas, Pseudomonas and Microcystis stand out as vectors of ARGs. In the context of One Health, it is essential to implement sound public policies and strict regulations on the use of antibiotics in aquaculture, and the use of monitoring tools such as environmental DNA (eDNA) and metagenomics allows for the early detection of ARGs, contributing to the protection of human, animal and environmental health. Full article
(This article belongs to the Special Issue New Insights into the Antibiotic Resistance of Aquatic Microorganisms)
Show Figures

Figure 1

36 pages, 1401 KiB  
Review
Microbial Interconnections in One Health: A Critical Nexus Between Companion Animals and Human Microbiomes
by Stylianos Skoufos, Elisavet Stavropoulou, Christina Tsigalou and Chrysoula (Chrysa) Voidarou
Microorganisms 2025, 13(7), 1564; https://doi.org/10.3390/microorganisms13071564 - 3 Jul 2025
Viewed by 593
Abstract
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, [...] Read more.
The One Health approach is rapidly gaining the attention of the scientific community worldwide and is expected to be a major model of scientific reasoning in the 21st century, concerning medical, veterinary and environmental issues. The basic concept of One Health, that humans, animals and their environments are parts of the same natural world affecting each other, is rooted in most ethnic as well as in many religious traditions. Despite this unity and for historical reasons, medical, veterinary and environmental sciences developed independently. The One Health concept tries to reunite these and many other relevant sciences, aiming at a deeper understanding of the interconnection between the natural world, humans and animal health. The dynamic interplay between a host’s microbiome, the microbiomes of other hosts, and environmental microbial communities profoundly influences the host health, given the essential physiological functions the microbiome performs within the organism. The biodiversity of microbiomes is broad and complex. The different areas of the skin, the upper and lower respiratory systems, the ocular cavity, the oral cavity, the gastrointestinal tract and finally the urogenital system of pets and humans alike are niches where a multitude of microorganisms indigenous and transient—commensals and pathogens, thrive in a dynamic antagonistic balance of populations of different phyla, orders, genera and species. The description of these microbiomes attempted in this article is not meant to be exhaustive but rather demonstrative of their complexity. The study of microbiomes is a necessary step towards the One Health approach to pets and humans. Yet, despite the progress made on that subject, the scientific community faces challenges, such as the limitations of studies performed, the scarcity of studies concerning the microbiomes of cats, the multitude of environmental factors affecting the results and others. The two new terms proposed in this article, the “familiome” and the “oikiome”, will aid in the One Health theoretical analysis as well as in its practical approach. The authors strongly believe that new technological breakthroughs, like Big Data Analytics and Artificial Intelligence (AI), will significantly help to overcome these hazards. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

20 pages, 1599 KiB  
Article
Amoxicillin Resistance: An In Vivo Study on the Effects of an Approved Formulation on Antibiotic Resistance in Broiler Chickens
by Ádám Kerek, Ábel Szabó and Ákos Jerzsele
Animals 2025, 15(13), 1944; https://doi.org/10.3390/ani15131944 - 1 Jul 2025
Viewed by 429
Abstract
Background: Antimicrobial resistance (AMR) is a growing global concern in poultry production, where antibiotic use can disrupt gut microbiota and enrich antimicrobial resistance genes (ARGs). Objectives: This study aimed to assess the in vivo effects of a veterinary-approved amoxicillin formulation on gut microbiome [...] Read more.
Background: Antimicrobial resistance (AMR) is a growing global concern in poultry production, where antibiotic use can disrupt gut microbiota and enrich antimicrobial resistance genes (ARGs). Objectives: This study aimed to assess the in vivo effects of a veterinary-approved amoxicillin formulation on gut microbiome composition and ARG profiles in broiler chickens. Methods: A total of 120 Ross-308 broiler chickens were randomly allocated into 12 experimental groups (n = 10 per group), with three replicates per treatment. Birds received either full-dose (1×), a subtherapeutic quarter-dose (¼×) of amoxicillin, a placebo (starch), or no treatment. Cloacal swabs were collected on days 0, 14, and 28 for shotgun metagenomic sequencing. One-way ANOVA was used to evaluate treatment effects on body weight, with significant differences observed from day 14 onward (p < 0.0001). Results: The ¼× dose caused a more pronounced microbiome shift than the 1× dose, with a marked reduction in Pseudomonadota and increase in Bacillota and Bacteroidota. ARG abundance declined in the ¼× group (from 1386 to 1012). While TEM-type ESBL genes were ubiquitous, CTX-M-1 emerged only after ¼× treatment. Worryingly, 20 types of vancomycin resistance genes were detected across all samples. Plasmid-borne ARGs and mobile genetic elements decreased in the ¼× group. Conclusions: Even subtherapeutic antibiotic exposure significantly reshapes the gut microbiota composition and ARG landscape, highlighting the need for refined risk assessments and microbiome-conscious antimicrobial policies in poultry farming. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

27 pages, 3232 KiB  
Article
Genomic and Functional Characterization of Multidrug-Resistant E. coli: Insights into Resistome, Virulome, and Signaling Systems
by Vijaya Bharathi Srinivasan, Naveenraj Rajasekar, Karthikeyan Krishnan, Mahesh Kumar, Chankit Giri, Balvinder Singh and Govindan Rajamohan
Antibiotics 2025, 14(7), 667; https://doi.org/10.3390/antibiotics14070667 - 30 Jun 2025
Viewed by 510
Abstract
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, [...] Read more.
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research’s surveillance network identifies Escherichia coli as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Methods: Whole-genome sequencing of E. coli strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Results: Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin–antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. Conclusions: This study presents a comprehensive genomic profile of E. coli ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance. Full article
(This article belongs to the Special Issue Genomic Analysis of Drug-Resistant Pathogens)
Show Figures

Figure 1

15 pages, 2081 KiB  
Article
Metagenomics Reveal Dynamic Coastal Ocean Reservoir of Antibiotic Resistance Genes
by Stacy A. Suarez, Alyse A. Larkin, Melissa L. Brock, Allison R. Moreno, Adam J. Fagan and Adam C. Martiny
J. Mar. Sci. Eng. 2025, 13(6), 1165; https://doi.org/10.3390/jmse13061165 - 13 Jun 2025
Viewed by 627
Abstract
Exposure to antibiotic-resistant microbial communities in coastal waters is an important threat to human health. Through a ten-year coastal time series, we used metagenomics from 236 time points to provide a comprehensive understanding of the seawater resistome, temporal distribution, and factors influencing frequencies [...] Read more.
Exposure to antibiotic-resistant microbial communities in coastal waters is an important threat to human health. Through a ten-year coastal time series, we used metagenomics from 236 time points to provide a comprehensive understanding of the seawater resistome, temporal distribution, and factors influencing frequencies of specific resistance types. Here, we predicted that antibiotic resistance gene frequencies would increase during the winter due to increased rainfall, with terrestrial and enteric taxa serving as the primary carriers of resistance genes in coastal waters. We found that seasonal and interannual trends of antibiotic resistance genes vary by gene and the taxa carrying them, as opposed to a general increase in most resistance genes during specific seasons. However, we found that precipitation and Enterococcus levels may be accurate indicators for total antibiotic resistance gene levels in Newport Beach coastal water. Resistance genes were primarily carried by marine taxa, though some terrestrial taxa and opportunistic pathogens also harbored these genes. Non-marine taxa can be introduced through rain, human activity, or sewage spills. By using metagenomics, we were able to elucidate the antibiotic-resistant bacterial communities in Newport Beach coastal water and demonstrate both seasonal and multiannual trends in their abundance with important implications for local health and safety. Full article
(This article belongs to the Special Issue Microbial Biogeography in Global Oceanic Systems)
Show Figures

Figure 1

16 pages, 1870 KiB  
Article
Companion Animals as Reservoirs of Multidrug Resistance—A Rare Case of an XDR, NDM-1-Producing Pseudomonas aeruginosa Strain of Feline Origin in Greece
by Marios Lysitsas, Eleftherios Triantafillou, Irene Chatzipanagiotidou, Anastasios Triantafillou, Georgia Agorou, Maria Eleni Filippitzi, Antonis Giakountis and George Valiakos
Vet. Sci. 2025, 12(6), 576; https://doi.org/10.3390/vetsci12060576 - 12 Jun 2025
Viewed by 1511
Abstract
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. [...] Read more.
A backyard cat with symptoms of otitis was transferred to a veterinary clinic in Central Greece. A sample was obtained and P. aeruginosa was isolated. The strain exhibited an extensively drug-resistant (XDR) profile, as it was non-susceptible to all tested agents except colistin. DNA extraction and whole-genome sequencing (WGS) were performed using a robotic extractor and Ion Torrent technology, respectively. The genome was assembled and screened for resistance and virulence determinants. The isolate belonged to the high-risk clone ST308 with a total of 67 antibiotic resistance genes (ARGs) and 221 virulence factor-related genes being identified. No plasmids were detected. The metallo-beta-lactamase (MBL) blaNDM-1 gene and 46 efflux pumps were included in the strain’s resistome. Both ARGs conferring tolerance to disinfecting agents and biofilm-related genes were identified, associated with the ability of this clone to adapt and persist in healthcare facilities. This case highlights the risk of relevant bacterial clones spreading in the community and even being transmitted to companion animals, causing challenging opportunistic infections to susceptible individuals, while others may become carriers, further spreading the clones to their owners, other animals and the environment. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

34 pages, 2408 KiB  
Review
Multidrug-Resistant Infections and Metabolic Syndrome: An Overlooked Bidirectional Relationship
by Carlo Acierno, Riccardo Nevola, Fannia Barletta, Luca Rinaldi, Ferdinando Carlo Sasso, Luigi Elio Adinolfi and Alfredo Caturano
Biomedicines 2025, 13(6), 1343; https://doi.org/10.3390/biomedicines13061343 - 30 May 2025
Cited by 2 | Viewed by 720
Abstract
Over the past two decades, metabolic syndrome (MetS) and infections caused by multidrug-resistant (MDR) pathogens have emerged as converging global health challenges. Traditionally investigated as separate entities, accumulating evidence increasingly supports a bidirectional relationship between them, mediated by chronic inflammation, immune dysregulation, gut [...] Read more.
Over the past two decades, metabolic syndrome (MetS) and infections caused by multidrug-resistant (MDR) pathogens have emerged as converging global health challenges. Traditionally investigated as separate entities, accumulating evidence increasingly supports a bidirectional relationship between them, mediated by chronic inflammation, immune dysregulation, gut microbiota alterations, and antibiotic-driven expansion of the resistome. This narrative review examines the complex immunometabolic interplay linking MetS and MDR infections, focusing on molecular mechanisms, clinical implications, and prospective research directions. A systematic literature search was conducted using major databases, including PubMed and Scopus, targeting studies from the last 15 years that explore the interface between metabolic dysfunction and antimicrobial resistance. Particular attention is given to key immunometabolic pathways such as the IRS–PI3K–AKT–mTOR axis; the contribution of visceral adiposity and Toll-like receptor (TLR)-mediated inflammation; and the role of gut dysbiosis in augmenting both susceptibility to infections and metabolic derangements. Evidence is presented supporting the hypothesis that MetS increases host vulnerability to MDR pathogens, while chronic MDR infections may reciprocally induce systemic metabolic reprogramming. Viral infections with established metabolic sequelae (e.g., HIV, hepatitis C virus [HCV], and cytomegalovirus [CMV]) are also considered to broaden the conceptual framework. Although current data remain largely associative and fragmented, the emerging MetS–MDR syndemic model poses substantial challenges for translational research, antimicrobial stewardship, and personalized therapeutic strategies. Recognizing this reciprocal relationship is pivotal for refining infection risk stratification, optimizing treatment, and informing public health policies. Further investigations are warranted to elucidate the magnitude and directionality of this association and to identify predictive immunometabolic biomarkers that may guide targeted interventions in high-risk populations. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Infectious Diseases)
Show Figures

Figure 1

18 pages, 546 KiB  
Article
Outbreak of NDM-5-Producing Proteus mirabilis During the COVID-19 Pandemic in an Argentine Hospital
by Barbara Ghiglione, Ana Paula Rodriguez, María Sol Haim, Laura Esther Friedman, Nilton Lincopan, María Eugenia Ochiuzzi and José Alejandro Di Conza
Antibiotics 2025, 14(6), 557; https://doi.org/10.3390/antibiotics14060557 - 29 May 2025
Viewed by 648
Abstract
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos [...] Read more.
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos Aires, Argentina, from October 2020 to April 2021. To our knowledge, this represents the first documented outbreak of NDM-5-producing P. mirabilis in the country. Methods: A total of 82 isolates were recovered from 40 patients, with 41.5% from blood cultures and 18.3% from respiratory and urinary samples, among others. Antimicrobial susceptibility testing, PCR-based methods, and MALDI-TOF MS cluster analysis were conducted. Whole genome sequencing (WGS) was performed to characterize the MLST, resistome and plasmid content. Biofilm formation assays and in vitro rifampicin susceptibility tests were also conducted. Result: Most isolates exhibited resistance to carbapenems, cephalosporins, aminoglycosides, and fluoroquinolones, while retaining susceptibility to aztreonam. Genetic analysis confirmed the co-presence of the blaNDM-5 and blaCTX-M-15 genes. Clonal relationships was supported by PCR-based typing and MALDI-TOF MS cluster analysis. WGS revealed a resistome comprising 25 resistance genes, including rmtB and both β-lactamases, as well as the presence of an incomplete IncQ1 replicon associated with multiple resistance determinants. MLST classified this clone as belonging to ST135. Despite the biofilm-forming capacity observed across strains, rifampicin demonstrated potential for disrupting established biofilms at concentrations ≥32 µg/mL in vitro. The MDR profile of the outbreak strain significantly limited therapeutic options. Conclusions: This study highlights the growing threat of NDM-producing P. mirabilis in Argentina. The absence of surveillance cultures from the index case limits insights into the outbreak’s origin. These findings underscore the importance of integrating genomic surveillance into infection control protocols to mitigate the spread of MDR pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

23 pages, 1791 KiB  
Article
Prediction of Antibiotic Resistance Genes in Cyanobacterial Strains by Whole Genome Sequencing
by Duarte Balata, Tânia Rosado, Francisco Pina-Martins, Vera Manageiro, Carina Menezes, Eugénia Ferreira, Octávio S. Paulo, Manuela Caniça and Elsa Dias
Microorganisms 2025, 13(6), 1252; https://doi.org/10.3390/microorganisms13061252 - 28 May 2025
Viewed by 485
Abstract
Cyanobacteria are ubiquitous in freshwater environments, but their role in aquatic resistome remains unclear. In this work, we performed whole genome sequencing on 43 cyanobacterial strains isolated from Portuguese fresh/wastewaters. From 43 available non-axenic unicyanoabacterial cultures (containing only one cyanobacterial strain and their [...] Read more.
Cyanobacteria are ubiquitous in freshwater environments, but their role in aquatic resistome remains unclear. In this work, we performed whole genome sequencing on 43 cyanobacterial strains isolated from Portuguese fresh/wastewaters. From 43 available non-axenic unicyanoabacterial cultures (containing only one cyanobacterial strain and their co-occurring bacteria), it was possible to recover 41 cyanobacterial genomes from the genomic assemblies using a genome binning software, 26 of which were classified as high-quality based on completeness, contamination, N50 and contig number thresholds. By using the comprehensive antibiotic resistance database (CARD) on the assembled samples, we detected four antibiotic resistance gene (ARG) variants, conferring resistance in pathogenic bacteria to tetracyclines, fluoroquinolones (adeF-type) and macrolides (ermF-type, mefC-type and mphG-type). Among these, adeF-type was the most prevalent gene, found across 11 cyanobacterial genomes from the Nostocales order. Planktothrix presented the highest variety of close ARG matches, with hits for the macrolide resistance genes ermF-type, mefC-type and mphG-type. An analysis of the genomic assemblies also revealed an additional 12 ARGs in bacteria from the phyla Firmicutes, Proteobacteria and Bacteroidetes, present in the cyanobacterial cultures, foreseeing the horizontal gene transfer of ARGs with cyanobacteria. Additionally, more than 200 partial ARGs were detected on each recovered cyanobacterial genome, allowing for future studies of antibiotic resistance genotype/phenotype in cyanobacteria. These findings highlight the importance of further efforts to understand the role of cyanobacteria on the aquatic resistome from a One Health perspective. Full article
(This article belongs to the Special Issue New Insights into the Antibiotic Resistance of Aquatic Microorganisms)
Show Figures

Figure 1

21 pages, 1811 KiB  
Review
Impact of Heavy Metal and Resistance Genes on Antimicrobial Resistance: Ecological and Public Health Implications
by Carlos G. Sánchez-Corona, Luis Uriel Gonzalez-Avila, Cecilia Hernández-Cortez, Jorge Rojas-Vargas, Graciela Castro-Escarpulli and Hugo G. Castelán-Sánchez
Genes 2025, 16(6), 625; https://doi.org/10.3390/genes16060625 - 24 May 2025
Viewed by 1006
Abstract
Heavy metals (HMs) are widespread pollutants that can exert selection pressure on microbial populations due to their toxicity and persistence, leading to the evolution of heavy metal resistance genes (HMRGs). These genes are part of the resistome, and their spread often occurs via [...] Read more.
Heavy metals (HMs) are widespread pollutants that can exert selection pressure on microbial populations due to their toxicity and persistence, leading to the evolution of heavy metal resistance genes (HMRGs). These genes are part of the resistome, and their spread often occurs via mobile genetic elements that allow co-selection with antibiotic and biocide resistance genes. Such processes have an impact on microbial biodiversity, biogeochemical cycling and public health in agriculture, industry and urban areas. The selection pressure exerted by HM promotes the spread of multidrug-resistant strains and thus increases ecological and health risks. This review discusses the interaction between HMRGs and genetic determinants such as virulence genes that influence biofilm formation, cellular homeostasis and oxidative stress. It also discusses the dual role of HMRGs in promoting ecological functions such as bioremediation while potentially limiting them by reducing microbial diversity. Understanding such interactions contributes significantly to targeting different systems to overcome the challenges associated with antimicrobial resistance (AMR). Full article
Show Figures

Figure 1

Back to TopTop