Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,051)

Search Parameters:
Keywords = resistance sintering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5112 KiB  
Article
Fabrication of a Porous TiNi3 Intermetallic Compound to Enhance Anti-Corrosion Performance in 1 M KOH
by Zhenli He, Yue Qiu, Yuehui He, Qian Zhao, Zhonghe Wang and Yao Jiang
Metals 2025, 15(8), 865; https://doi.org/10.3390/met15080865 (registering DOI) - 1 Aug 2025
Abstract
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis [...] Read more.
Porous intermetallic compounds have the properties of porous materials as well as a combination of covalent and metallic bonds, and they exhibit high porosity, structural stability, and corrosion resistance. In this work, a porous TiNi3 intermetallic compound was fabricated through reactive synthesis of elemental powders. Next, detailed studies of its phase composition and pore structure characteristics at different sintering temperatures, as well as its corrosion behavior against an alkaline environment, were carried out. The results show that the as-prepared porous TiNi3 intermetallic compound has abundant pore structures, with an open porosity of 56.5%, which can be attributed to a combination of the bridging effects of initial powder particles and the Kirkendall effect occurring during the sintering process. In 1 M KOH solution, a higher positive corrosion potential (−0.979 VSCE) and a lower corrosion current density (1.18 × 10−4 A∙cm−2) were exhibited by the porous TiNi3 intermetallic compound, compared to the porous Ni, reducing the thermodynamic corrosion tendency and the corrosion rate. The corresponding corrosion process is controlled by the charge transfer process, and the increased charge transfer resistance value (713.9 Ω⋅cm2) of TiNi3 makes it more difficult to charge-transfer than porous Ni (204.5 Ω⋅cm2), thus decreasing the rate of electrode reaction. The formation of a more stable passive film with the incorporation of Ti contributes to this improved corrosion resistance performance. Full article
(This article belongs to the Special Issue Advanced Ti-Based Alloys and Ti-Based Materials)
Show Figures

Figure 1

16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 (registering DOI) - 1 Aug 2025
Viewed by 36
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

13 pages, 5833 KiB  
Article
Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects
by Benjun Cheng, Mingyang Huang, Guoqi Liu, Feng Wu and Xiaocheng Liang
Materials 2025, 18(15), 3618; https://doi.org/10.3390/ma18153618 (registering DOI) - 31 Jul 2025
Viewed by 146
Abstract
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. [...] Read more.
Research on raw materials for Al2O3-SiC-C refractory castables used in blast furnace troughs is relatively well established. However, gaps remain in both laboratory and industrial trials concerning the performance of castables incorporating SiC-modified flake graphite and alternative carbon sources. This study investigated the sintering behavior, mechanical properties, and service performance of Al2O3-SiC-C castables utilizing varying contents of modified flake graphite, pitch, and carbon black as carbon sources. Samples were characterized using SEM, XRD, and EDS for phase composition and microstructural morphology analysis. Key findings revealed that the thermal expansion mismatch between the SiC coating and flake graphite in SiC-modified graphite generated a microcrack-toughening effect. This effect, combined with the synergistic reinforcement from both components, enhanced the mechanical properties. The SiC modification layer improved the wettability and oxidation resistance of the flake graphite. This modified graphite further contributed to enhanced erosion resistance through mechanisms of matrix pinning and crack deflection within the microstructure. However, the microcracks induced by thermal mismatch concurrently reduced erosion resistance, resulting in an overall limited net improvement in erosion resistance attributable to the modified graphite. Specimens containing 1 wt.% modified flake graphite exhibited the optimal overall performance. During industrial trials, this formulation unexpectedly demonstrated a water reduction mechanism requiring further investigation. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

23 pages, 9108 KiB  
Article
COx-Free Hydrogen Production via CH4 Decomposition on Alkali-Incorporated (Mg, La, Ca, Li) Ni-Al Catalysts
by Morgana Rosset, Yan Resing Dias, Liliana Amaral Féris and Oscar William Perez-Lopez
Nanoenergy Adv. 2025, 5(3), 10; https://doi.org/10.3390/nanoenergyadv5030010 - 30 Jul 2025
Viewed by 142
Abstract
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation [...] Read more.
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation during catalytic methane decomposition (CMD). The catalysts were evaluated by two activation methods: H2 reduction and direct heating with CH4. The MgNA-R catalyst achieved the highest CH4 conversion (65%) at 600 °C when reduced with H2, attributed to a stronger Ni-Al interaction. Under CH4 activation, LaNA-C achieved a 55% conversion at the same temperature, associated with a smaller crystallite size and higher reducibility due to La incorporation. Although all catalysts deactivated due to carbon deposition and/or sintering, LaNA-C was the only sample that could resist deactivation for a longer period, as La appears to have a protective effect on the active phase. Post-reaction characterizations revealed the formation of graphitic and filamentous carbon. Raman spectroscopy exhibited a higher degree of graphitization and structural order in LaNA-C, whereas SEM showed a more uniform distribution of carbon filaments. TEM confirmed the presence of multi-walled carbon nanotubes with encapsulated Ni particles in La-promoted samples. These results demonstrate that La addition improves the catalytic performance under CH4 activation and carbon structure. This finding offers a practical advantage for CMD processes, as it reduces or eliminates the need to use hydrogen during catalyst activation. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Graphical abstract

12 pages, 1916 KiB  
Article
Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
by Geoffrey Swift, Sai Ram Gajjala and Rasit Koc
Crystals 2025, 15(8), 686; https://doi.org/10.3390/cryst15080686 - 28 Jul 2025
Viewed by 210
Abstract
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site [...] Read more.
Novel high-entropy perovskite oxide powders were synthesized using a sol-gel process. The B-site contained five cations: chromium, cobalt, iron, manganese, and nickel. The B-site cations were present on an equiatomic basis. The A-site cation was lanthanum, with calcium doping. The amount of A-site doping varied from 0 to 30 at%, yielding a composition of La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ. The resulting perovskite powders were pressurelessly sintered in air at 1400 °C for 2 h. Sintered densities were measured, and the grain structure was imaged via scanning electron microscopy to investigate the effect of doping. Samples were cut and polished, and their resistance was measured at varying temperatures in air to obtain the electrical conductivity and the mechanism that governs it. Plots of electrical conductivity as a function of composition and temperature indicate that the increased configurational entropy of the perovskite materials has a demonstrable effect. Full article
Show Figures

Figure 1

18 pages, 4344 KiB  
Review
Additive Manufacturing Technologies and Their Applications in Dentistry: A Systematic Literature Review
by Dragana Oros, Marko Penčić, Marko Orošnjak and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8346; https://doi.org/10.3390/app15158346 - 26 Jul 2025
Viewed by 356
Abstract
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings [...] Read more.
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings remains fragmented. Here, we perform a Systematic Literature Review (SLR) using the PRISMA protocol, retrieving 19 closely related primary studies. The evidence is synthesized across three axes: application domain, AM technology, and critical quality parameters. Dental restorations, prosthetics, crowns, and implants are the most common applications, while fused deposition modeling, stereolithography, digital light processing, selective laser sintering, and laser-directed energy deposition are the most used technologies. AM materials include polymers, metals, and emerging biomaterials. Key quality determinants include dimensional accuracy, wear and corrosion resistance, and photosensitivity. Notably, biocompatibility and cytotoxicity remain underexplored yet critical factors for ensuring long-term clinical safety. The evidence also suggests a lack of in vivo studies, insufficient tribological and microbiological testing, including limited data degradation pathways of AM materials under oral conditions. Understanding that there are disconnects between the realization of the clinical and the economic benefits of 3D printing in dentistry, future research requires standardized testing frameworks and long-term biocompatibility validation. Full article
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology
by Anita Kajzer, Gabriela Wielgus, Krystian Drobina, Aleksandra Żurawska and Wojciech Kajzer
Appl. Sci. 2025, 15(15), 8311; https://doi.org/10.3390/app15158311 - 25 Jul 2025
Viewed by 273
Abstract
The main aim of this study was to evaluate the influence of heat and surface treatment on the physicochemical properties of samples produced using Direct Metal Sintering incremental technology from Ti64ELI titanium powder. Two groups of samples were selected for the study: sandblasted [...] Read more.
The main aim of this study was to evaluate the influence of heat and surface treatment on the physicochemical properties of samples produced using Direct Metal Sintering incremental technology from Ti64ELI titanium powder. Two groups of samples were selected for the study: sandblasted and mechanically polished samples. Each group consisted of samples in the initial state and after heat treatment carried out at temperatures of 800 °C, 910 °C, and 1020 °C. The article presents the results of microscopic metallographic observations, wettability and surface topography, hardness, and resistance to pitting corrosion in Ringer’s solution, together with microscopic evaluation of the surfaces before and after testing. Based on the test results, both heat and surface treatments were found to alter the functional properties of the printed samples. All the tested samples show hydrophilic properties. Heat treatment at 1020 °C produces the best resistance to pitting corrosion. This information is important when selecting the mechanical properties of the biomaterial and the physicochemical properties of the surface for a specific type of stabilizer. The choice of appropriate heat treatment and surface treatment of the implant will also depend on the length of time the implant remains in the body. Full article
(This article belongs to the Special Issue Recent Advances of Additive Manufacturing in the Modern Industry)
Show Figures

Figure 1

22 pages, 10555 KiB  
Article
Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials
by Zhiyuan Zhang, Xiaolan Bai, Jingjie Zhang, Mingdong Yi, Guangchun Xiao, Tingting Zhou, Hui Chen, Zhaoqiang Chen and Chonghai Xu
Materials 2025, 18(15), 3440; https://doi.org/10.3390/ma18153440 - 22 Jul 2025
Viewed by 385
Abstract
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O [...] Read more.
To address the poor thermal shock resistance and high brittleness of traditional ceramic tools, a novel Si3N4/Sc2W3O12 (SNS) composite ceramic material was developed via in situ synthesis using WO3 and Sc2O3 as precursors and consolidated by spark plasma sintering. Sc2W3O12 with negative thermal expansion was introduced to compensate for matrix shrinkage and modulate interfacial stress. The effects of varying Sc2W3O12 content on thermal expansion, residual stress, microstructure, and mechanical properties were systematically investigated. Among the compositions, SNS3 (12 wt.% Sc2W3O12) exhibited the best overall performance: relative density of 98.8 ± 0.2%, flexural strength of 712.4 ± 30 MPa, fracture toughness of 7.5 ± 0.3 MPa·m1/2, Vickers hardness of 16.3 ± 0.3 GPa, and an average thermal expansion coefficient of 2.81 × 10−6·K−1. The formation of a spherical chain-like Sc-W-O phase at the grain boundaries created a “hard core–soft shell” interface that enhanced crack resistance and stress buffering. Cutting tests showed that the SNS3 tool reduced workpiece surface roughness by 32.91% and achieved a cutting distance of 9500 m. These results validate the potential of this novel multiphase ceramic system as a promising candidate for high-performance and thermally stable ceramic cutting tools. Full article
Show Figures

Figure 1

17 pages, 12649 KiB  
Article
Microstructure, Mechanical Properties, and Electrochemical Corrosion Behavior of CoCrFeNiNb and CoCrFeNiV High-Entropy Alloys Prepared via Mechanical Alloying and Spark Plasma Sintering
by Yan Zhu, Yiwen Liu, Zhaocang Meng and Jianke Tian
Metals 2025, 15(7), 814; https://doi.org/10.3390/met15070814 - 21 Jul 2025
Viewed by 264
Abstract
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. [...] Read more.
This study investigates the microstructural evolution, mechanical behavior, and electrochemical performance of CoCrFeNiNb and CoCrFeNiV HEAs fabricated via mechanical alloying and spark plasma sintering. Microstructural analyses reveal that the alloys have a face-centered cubic (FCC) matrix with Nb-enriched Laves and V-enriched σ phases. The CoCrFeNiNb HEA exhibits superior compressive strength and hardness than CoCrFeNiV due to uniform Laves phases distribution. Fracture surface analysis reveals that at lower sintering temperatures, the fracture is primarily caused by incomplete particle bonding, whereas at higher temperatures, brittle fracture modes dominated via transgranular cracking become predominant. The research results of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that both alloys exhibited superior electrochemical stability in a 3.5 wt.% NaCl solution compared to the CoCrFeNi base alloy. X-ray photoelectron spectroscopy (XPS) analysis confirms the formation of stable oxide layers (Nb2O5 and V2O3) on the precipitated phases, acting as protective barriers against chloride ion penetration. The selective oxidation of Nb and V improves the integrity of the passive film, reducing the corrosion rates and enhancing the long-term durability. These findings highlight the critical role of precipitated phases in enhancing the corrosion resistance of HEAs, and emphasize their potential for use in extreme environments. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Processing and Properties)
Show Figures

Figure 1

8 pages, 720 KiB  
Article
Microscopic Characterization of Pb10−xCux(PO4)6O by 31P and 63/65Cu NMR Measurements
by Qing-Ping Ding, Yue Sun, Qiang Hou, Wei Wei, Xin Zhou, Xinyue Wang, Zhixiang Shi and Yuji Furukawa
J. Compos. Sci. 2025, 9(7), 377; https://doi.org/10.3390/jcs9070377 - 18 Jul 2025
Viewed by 757
Abstract
The report of the first room-temperature, ambient-pressure superconductivity in copper-doped lead apatite Pb10−xCux(PO4)6O has attracted lots of attention. However, subsequent studies revealed the presence of numerous impurity phases in the polycrystalline sample, and the [...] Read more.
The report of the first room-temperature, ambient-pressure superconductivity in copper-doped lead apatite Pb10−xCux(PO4)6O has attracted lots of attention. However, subsequent studies revealed the presence of numerous impurity phases in the polycrystalline sample, and the sharp superconducting-like transition is not due to a superconducting transition but most likely due to a reduction in resistivity caused by the first-order structural phase transition of Cu2S at around 385 K from the β phase at high temperature to the γ phase at low temperature. Before now, only bulk measurements have been performed on a Pb10−xCux(PO4)6O powder sample, which could be affected by the impurity phases, masking the intrinsic properties of Pb10−xCux(PO4)6O. In this study, 31P and 63/65Cu nuclear magnetic resonance (NMR) measurements have been performed on a Pb10−xCux(PO4)6O powder sample to investigate its physical properties from a microscopic point of view. Our NMR data evidence the non-magnetic insulating nature of Pb10−xCux(PO4)6O without any trace of electron correlation effects. Furthermore, the 63/65Cu NMR results suggest that no copper or very little copper is substituted for Pb in Pb10(PO4)6O prepared by sintering Pb2SO5 and Cu3P. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Figure 1

17 pages, 4068 KiB  
Article
Mechanical Properties and Tribological Behavior of Al2O3–ZrO2 Ceramic Composites Reinforced with Carbides
by Jana Andrejovská, Dávid Medveď, Marek Vojtko, Richard Sedlák, Piotr Klimczyk and Ján Dusza
Lubricants 2025, 13(7), 310; https://doi.org/10.3390/lubricants13070310 - 17 Jul 2025
Viewed by 343
Abstract
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2 [...] Read more.
To elucidate the key material parameters governing the tribological performance of ceramic composites under dry sliding against steel, this study presents a comprehensive comparative assessment of the microstructural characteristics, mechanical performance, and tribological behavior of two alumina–zirconia (Al2O3–ZrO2) ceramic composites, each reinforced with a 42 vol.% carbide phase: zirconium carbide (ZrC) and tungsten carbide (WC). Specifically, tungsten carbide (WC) was selected for its exceptional bulk mechanical properties, while zirconium carbide (ZrC) was chosen to contrast its potentially different interfacial reactivity against a steel counterface. ZrC and WC were selected as reinforcing phases due to their high hardness and distinct chemical and interfacial properties, which were expected to critically affect the wear and friction behavior of the composites under demanding conditions. Specimens were consolidated via spark plasma sintering (SPS). The investigation encompassed macro- and nanoscale hardness measurements (Vickers hardness HV1, HV10; nanoindentation hardness H), elastic modulus (E), fracture toughness (KIC), coefficient of friction (COF), and specific wear rate (Ws) under unlubricated reciprocating sliding against 100Cr6 steel at normal loads of 10 N and 25 N. The Al2O3–ZrO2–WC composite exhibited an ultrafine-grained microstructure and markedly enhanced mechanical properties (HV10 ≈ 20.9 GPa; H ≈ 33.6 GPa; KIC ≈ 4.7 MPa·m½) relative to the coarse-grained Al2O3–ZrO2–ZrC counterpart (HV10 ≈ 16.6 GPa; H ≈ 27.0 GPa; KIC ≈ 3.2 MPa·m½). Paradoxically, the ZrC-reinforced composite demonstrated superior tribological performance, with a low and load-independent specific wear rate (Ws ≈ 1.2 × 10−9 mm3/Nm) and a stable steady-state COF of approximately 0.46. Conversely, the WC-reinforced system exhibited significantly elevated wear volumes—particularly under the 25 N regime—and a higher, more fluctuating COF. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) of the wear tracks revealed the formation of a continuous, iron-enriched tribofilm on the ZrC composite, derived from counterface material transfer, whereas the WC composite surface displayed only sparse tribofilm development. These findings underscore that, in steel-paired tribological applications of Al2O3–ZrO2–based composites, the efficacy of interfacial tribolayer generation can supersede intrinsic bulk mechanical attributes as the dominant factor governing wear resistance. Full article
Show Figures

Figure 1

15 pages, 2369 KiB  
Article
Optimization of the Sintering Densification, Microstructure, Mechanical Properties, and Oxidation Resistance of Tib2–Tic–Sic Composite Ceramics via a Two-Step Method
by Fei Han, Wenzhou Sun, Youjun Lu, Junqing Ma and Shidiao Xu
Materials 2025, 18(14), 3297; https://doi.org/10.3390/ma18143297 - 13 Jul 2025
Viewed by 451
Abstract
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study [...] Read more.
In this investigation, TiB2–TiC composite powders, synthesized via the boron/carbon thermal reduction process, were employed as precursor materials. SiC, serving as the tertiary constituent, was incorporated to fabricate TiB2–TiC–SiC composite ceramics utilizing spark plasma sintering technology. The present study initially elucidates the densification mechanisms and investigates the influence of sintering temperature on the densification behavior, microstructural evolution, and mechanical properties of the resultant ceramics. The experimental findings reveal that the sintering process of TiB2–TiC–SiC ceramics exhibits characteristics consistent with solid-phase sintering. As the sintering temperature escalates, both the relative density and mechanical properties of the ceramics initially improve, reaching a maximum at an optimal sintering temperature of 1900 °C, before subsequently declining. Microstructural examinations conducted at this optimal temperature indicate a homogeneous distribution of the two primary phases, with no evidence of excessive grain growth. Furthermore, this research explores the effects of SiC addition on the mechanical performance and oxidation resistance of TiB2–TiC–SiC composite ceramics. The results demonstrate that the incorporation of SiC effectively suppresses grain growth and promotes the formation of rod-like TiB2 microstructures, thereby enhancing the mechanical attributes of the ceramics. Additionally, the addition of SiC significantly improves the oxidation resistance of the composite ceramics compared to their TiB2–TiC binary counterparts Full article
Show Figures

Figure 1

19 pages, 4606 KiB  
Article
Corrosion Behavior of MgTiZn and Mg4TiZn Alloys After Ball Milling and Subsequent Spark Plasma Sintering
by Alexander Helmer, Rahul Agrawal, Manoj Mugale, Tushar Borkar and Rajeev Gupta
Materials 2025, 18(14), 3279; https://doi.org/10.3390/ma18143279 - 11 Jul 2025
Cited by 1 | Viewed by 365
Abstract
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark [...] Read more.
Magnesium-containing multi-principal element alloys (MPEAs) are promising for lightweight applications due to their low density, high specific strength, and biocompatibility. This study examines two Mg-Ti-Zn alloy compositions, equal molar MgTiZn (TZ) and Mg4TiZn (4TZ), synthesized via ball milling followed by spark plasma sintering, focusing on their microstructures and corrosion behaviors. X-ray diffraction and transmission electron microscopy revealed the formation of intermetallic phases, including Ti2Zn and Mg21Zn25 in TZ, while 4TZ exhibited a predominantly Mg-rich phase. Potentiodynamic polarization and immersion tests in 0.1 M NaCl solution showed that both alloys had good corrosion resistance, with values of 3.65 ± 0.65 µA/cm2 for TZ and 4.58 ± 1.64 µA/cm2 for 4TZ. This was attributed to the formation of a TiO2-rich surface film in the TZ, as confirmed by X-ray photoelectron spectroscopy (XPS), which contributed to enhanced passivation and lower corrosion current density. Both alloys displayed high hardness, 5.5 ± 1.0 GPa for TZ and 5.1 ± 0.9 GPa for 4TZ, and high stiffness, with Young’s modulus values of 98.2 ± 11.2 GPa for TZ and 100.8 ± 9.6 GPa for 4TZ. These findings highlight the potential of incorporating Ti and Zn via mechanical alloying to improve the corrosion resistance of Mg-containing MPEAs and Mg-based alloys. Full article
(This article belongs to the Special Issue Study on Electrochemical Behavior and Corrosion of Materials)
Show Figures

Figure 1

20 pages, 925 KiB  
Review
Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production
by Khalid Al Sadi, Ebrahim Nadimi and Dawei Wu
Energies 2025, 18(13), 3505; https://doi.org/10.3390/en18133505 - 2 Jul 2025
Cited by 1 | Viewed by 388
Abstract
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and [...] Read more.
Ammonia is increasingly recognised as a promising carbon-free fuel and hydrogen carrier due to its high hydrogen content, ease of liquefaction, and existing global infrastructure. However, its direct utilisation in combustion systems poses significant challenges, including low flame speed, high ignition temperature, and the formation of nitrogen oxides (NOX). This review explores catalytic ammonia cracking as a viable method to enhance combustion through in situ hydrogen production. It evaluates traditional catalytic burner designs originally developed for hydrocarbon fuels and assesses their adaptability for ammonia-based applications. Special attention is given to ruthenium- and nickel-based catalysts supported on various oxides and nanostructured materials, evaluating their ammonia conversion efficiency, resistance to sintering, and thermal stability. The impact of the main operational parameters, including reaction temperature and gas hourly space velocity (GHSV), is also discussed. Strategies for combining partial ammonia cracking with stable combustion are studied, with practical issues such as catalyst degradation, NOX regulation, and system scalability. The analysis highlights recent advancements in structural catalyst support, which have potential for industrial-scale application. This review aims to provide future development of low-emission, high-efficiency catalytic burner systems and advance ammonia’s role in next-generation hydrogen energy technologies. Full article
Show Figures

Figure 1

14 pages, 4461 KiB  
Article
Phase Transition Behavior and Mechanical Properties of 9 Mol% CaO-PSZ with MnO2 Doping Under Thermal Stress
by Janghoon Kim, Jong-jin Kim, Kanghee Jo, Hwanseok Lee and Heesoo Lee
Appl. Sci. 2025, 15(13), 7437; https://doi.org/10.3390/app15137437 - 2 Jul 2025
Viewed by 258
Abstract
MnO2-doped 9 mol% CaO-stabilized zirconia (CSZ) was investigated in terms of phase stability, microstructure, and mechanical properties before and after thermal cycling. As the MnO2 content increased from 2 to 4 mol%, the monoclinic phase fraction decreased significantly (from 32.6% [...] Read more.
MnO2-doped 9 mol% CaO-stabilized zirconia (CSZ) was investigated in terms of phase stability, microstructure, and mechanical properties before and after thermal cycling. As the MnO2 content increased from 2 to 4 mol%, the monoclinic phase fraction decreased significantly (from 32.6% to 2.5%), while the tetragonal phase fraction increased (from 58.2% to 90.3%), indicating an enhanced phase stability comparable to fully stabilized ZrO2. The cubic phase fraction decreased from 9.2% to 3.4% with 2–3 mol% MnO2, but increased to 7.2% at 4 mol%. The 9 mol% CSZ showed a mixture of grains around 2 μm and 10 μm, while the MnO2-doped CSZ exhibited only grains larger than 30 μm, suggesting that MnO2 acted as a sintering aid. After thermal cycling, increasing the MnO2 content from 2 to 4 mol% led to an increase in the monoclinic phase fraction (from 7.8% to 17.2%) and a decrease in the tetragonal phase fraction (from 53.6% to 21.8%). The Vickers hardness and wear resistance of MnO2-doped CSZ were superior to those of undoped 9-CSZ, and improved as the MnO2 doping level increased. These mechanical properties were maximized in the CSZ doped with 3 mol% MnO2, and this trend persisted after thermal cycling. These results demonstrate that MnO2 doping effectively enhances the phase stability and mechanical performance of CaO-partially stabilized zirconia under thermal stress cycling conditions. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

Back to TopTop