Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production
Abstract
1. Introduction
Properties | Unit | Compressed Hydrogen | Liquid Hydrogen | Methanol | Liquid Ammonia |
---|---|---|---|---|---|
Storage Method | - | Compression | Liquefaction | Ambient | Liquefaction |
Storage Temperature | °C | 25 | −252.9 | 25 | 25 |
Storage Pressure | MPa | 69 | 0.1 | 0.1 | 0.99 |
Hydrogen Content | wt.% | 100 | 100 | 12.5 | 17.8 |
Density | kg/m3 | 39 | 70.8 | 792 | 600 |
Explosive Limit in Air | %vol | 4–75 | 4–75 | 6.7–36 | 15–28 |
Gravimetric Energy Density (LHV) | MJ/kg | 120 | 120 | 20.1 | 18.6 |
Volumetric Energy Density (LHV) | MJ/L | 4.5 | 8.49 | 15.8 | 12.7 |
2. Fundamentals of Catalytic NH3 Decomposition
3. Traditional Catalytic Ammonia Burner
4. Catalysts for Ammonia Cracking in Burner Systems
4.1. Ruthenium-Based Catalysts Supported on Metal Oxide
Impact of Promoters on Ru-Based Catalysts
4.2. Ni-Based Catalysts
4.2.1. Ni-Based Catalysts Supported
4.2.2. Influence of Promoters on Ni-Based Catalysts
4.3. Bimetallic Catalyst
5. Burner Operational Factors Affecting Catalyst Performance
5.1. Hourly Space Velocity
5.2. Reaction Temperature
6. Challenges and Future Research Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GHSV | Gas hourly space velocity |
SOFCs | Solid oxide fuel cells |
NOX | Nitrogen oxides |
DFT | Density functional theory |
Wt.% | Weight percent |
HEA | High-entropy alloy |
IM | Impregnation |
DP | Deposition–precipitation |
AC | Activated carbon |
CNFs | Carbon nanofibers |
Cat | Catalyst |
MWCNTs | Multi-walled carbon nanotubes |
References
- Zhai, L.; Liu, S.; Xiang, Z. Ammonia as a Carbon-Free Hydrogen Carrier for Fuel Cells: A Perspective. Ind. Chem. Mater. 2023, 1, 332–342. [Google Scholar] [CrossRef]
- Pinzón, M.; García-Carpintero, R.; de la Osa, A.R.; Romero, A.; Abad-Correa, D.; Sánchez, P. Ammonia as a Hydrogen Carrier: An Energy Approach. Energy Convers. Manag. 2024, 321, 118998. [Google Scholar] [CrossRef]
- Erdemir, D.; Dincer, I. A Quicker Route to Hydrogen Economy with Ammonia. Int. J. Hydrogen Energy 2024, 82, 1230–1237. [Google Scholar] [CrossRef]
- Rodriguez, G.D.M.; Carreño, A.P. Ammonia: A Clean Fuel for a Cleaner Future. In Proceedings of the 10th International Conference on Maritime Transport (MT’24), Barcelona, Spain, 5–7 June 2024. [Google Scholar]
- Kojima, Y.; Yamaguchi, M. Ammonia as a Hydrogen Energy Carrier. Int. J. Hydrogen Energy 2022, 47, 22832–22839. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; Shao, J.; Zhang, Y.; You, H. Ammonia as an Effective Hydrogen Carrier and a Clean Fuel for Solid Oxide Fuel Cells. Energy Convers. Manag. 2021, 228, 113729. [Google Scholar] [CrossRef]
- Aziz, M.; Wijayanta, A.T.; Nandiyanto, A.B.D. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies 2020, 13, 3062. [Google Scholar] [CrossRef]
- Makepeace, J.W.; He, T.; Weidenthaler, C.; Jensen, T.R.; Chang, F.; Vegge, T.; Ngene, P.; Kojima, Y.; de Jongh, P.E.; Chen, P.; et al. Reversible Ammonia-Based and Liquid Organic Hydrogen Carriers for High-Density Hydrogen Storage: Recent Progress. Int. J. Hydrogen Energy 2019, 44, 7746–7767. [Google Scholar] [CrossRef]
- Andersson, J.; Grönkvist, S. Large-Scale Storage of Hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A.; de Angelis, A.R.; Cattaneo, S.; Roccaro, E. Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2. Ind. Eng. Chem. Res. 2023, 62, 10813–10827. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.F.; Bowen, P.J. Ammonia for Power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Hayakawa, A.; Goto, T.; Mimoto, R.; Arakawa, Y.; Kudo, T.; Kobayashi, H. Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures. Fuel 2015, 159, 98–106. [Google Scholar] [CrossRef]
- Ichikawa, A.; Hayakawa, A.; Kitagawa, Y.; Kunkuma Amila Somarathne, K.D.; Kudo, T.; Kobayashi, H. Laminar Burning Velocity and Markstein Length of Ammonia/Hydrogen/Air Premixed Flames at Elevated Pressures. Int. J. Hydrogen Energy 2015, 40, 9570–9578. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.I.; Kwon, O.C. Effects of Ammonia Substitution on Hydrogen/Air Flame Propagation and Emissions. Int. J. Hydrogen Energy 2010, 35, 11332–11341. [Google Scholar] [CrossRef]
- Joo, J.M.; Lee, S.; Kwon, O.C. Effects of Ammonia Substitution on Combustion Stability Limits and NO x Emissions of Premixed Hydrogen-Air Flames. Int. J. Hydrogen Energy 2012, 37, 6933–6941. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, G.; Wang, Z.; Wu, D.; Jangi, M.; Xu, H. Experimental Investigation on Combustion and Emission Characteristics of Non-Premixed Ammonia/Hydrogen Flame. Int. J. Hydrogen Energy 2024, 61, 25–38. [Google Scholar] [CrossRef]
- Ku, J.W.; Ahn, Y.J.; Kim, H.K.; Kim, Y.H.; Kwon, O.C. Propagation and Emissions of Premixed Methane-Ammonia/Air Flames. Energy 2020, 201, 117632. [Google Scholar] [CrossRef]
- Park, Y.K.; Kim, B.S. Catalytic Removal of Nitrogen Oxides (NO, NO2, N2O) from Ammonia-Fueled Combustion Exhaust: A Review of Applicable Technologies. Chem. Eng. J. 2023, 461, 141958. [Google Scholar] [CrossRef]
- Tong, C.; Chen, Z.; Cao, J.; Deng, Z.; Chan, S.H. Improvement of Pure Ammonia Combustion Performance Using the Catalytic Pre-Cracking Method. Int. J. Heat Mass Transf. 2025, 241, 126667. [Google Scholar] [CrossRef]
- Yu, M.; Sun, R.; Luo, G.; Wang, L.; Li, X.; Yao, H. Ammonia Partial Cracking over Low-Cost Ni Catalysts for Enhancing Combustion. Fuel 2024, 367, 131306. [Google Scholar] [CrossRef]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.F.; Wu, G. Low-Temperature Ammonia Decomposition Catalysts for Hydrogen Generation. Appl. Catal. B Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Sun, S.; Jiang, Q.; Zhao, D.; Cao, T.; Sha, H.; Zhang, C.; Song, H.; Da, Z. Ammonia as Hydrogen Carrier: Advances in Ammonia Decomposition Catalysts for Promising Hydrogen Production. Renew. Sustain. Energy Rev. 2022, 169, 112918. [Google Scholar] [CrossRef]
- Yin, S.F.; Zhang, Q.H.; Xu, B.Q.; Zhu, W.X.; Ng, C.F.; Au, C.T. Investigation on the Catalysis of COx-Free Hydrogen Generation from Ammonia. J. Catal. 2004, 224, 384–396. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
- Lanzani, G.; Laasonen, K. NH3 Adsorption and Dissociation on a Nanosized Iron Cluster. Int. J. Hydrogen Energy 2010, 35, 6571–6577. [Google Scholar] [CrossRef]
- Ristig, S.; Poschmann, M.; Folke, J.; Gómez-Cápiro, O.; Chen, Z.; Sanchez-Bastardo, N.; Schlögl, R.; Heumann, S.; Ruland, H. Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply. Chem. Ing. Tech. 2022, 94, 1413–1425. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Li, X.; Deng, L.; He, Z.; Huang, H.; Kobayashi, N. Study on Combustion Characteristics of Hydrogen Addition on Ammonia Flame at a Porous Burner. Energy 2023, 263, 125613. [Google Scholar] [CrossRef]
- Wang, G.; Huang, L.; Tu, H.; Zhou, H.; Chen, X.; Xu, J. Stable Lean Co-Combustion of Ammonia/Methane with Air in a Porous Burner. Appl. Therm. Eng. 2024, 248, 123092. [Google Scholar] [CrossRef]
- Dai, H.; Gao, X.; Liu, C.; Dai, H.; Zhang, L. Lean-Rich Combustion Characteristics of Methane and Ammonia in the Combined Porous Structures for Carbon Reduction and Alternative Fuel Development. Sci. Total Environ. 2024, 938, 173375. [Google Scholar] [CrossRef]
- Nozari, H.; Karaca, G.; Tuncer, O.; Karabeyoglu, A. Porous Medium Based Burner for Efficient and Clean Combustion of Ammonia–Hydrogen–Air Systems. Int. J. Hydrogen Energy 2017, 42, 14775–14785. [Google Scholar] [CrossRef]
- Vignat, G.; Zirwes, T.; Boigné, É.; Ihme, M. Experimental Demonstration of a Two-Stage Porous Media Burner for Low-Emission Ammonia Combustion. Proc. Combust. Inst. 2024, 40, 105491. [Google Scholar] [CrossRef]
- Hinokuma, S.; Kiritoshi, S.; Kawabata, Y.; Araki, K.; Matsuki, S.; Sato, T.; Machida, M. Catalytic Ammonia Combustion Properties and Operando Characterization of Copper Oxides Supported on Aluminum Silicates and Silicon Oxides. J. Catal. 2018, 361, 267–277. [Google Scholar] [CrossRef]
- Chen, C.; Wu, K.; Ren, H.; Zhou, C.; Luo, Y.; Lin, L.; Au, C.; Jiang, L. Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review. Energy Fuels 2021, 35, 11693–11706. [Google Scholar] [CrossRef]
- Hill, A.K.; Torrente-Murciano, L. Low Temperature H2 Production from Ammonia Using Ruthenium-Based Catalysts: Synergetic Effect of Promoter and Support. Appl. Catal. B Environ. 2015, 172–173, 129–135. [Google Scholar] [CrossRef]
- Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D.S. Ammonia as a Possible Element in an Energy Infrastructure: Catalysts for Ammonia Decomposition. Energy Environ. Sci. 2012, 5, 6278–6289. [Google Scholar] [CrossRef]
- Le, T.A.; Do, Q.C.; Kim, Y.; Kim, T.W.; Chae, H.J. A Review on the Recent Developments of Ruthenium and Nickel Catalysts for COx-Free H2 Generation by Ammonia Decomposition. Korean J. Chem. Eng. 2021, 38, 1087–1103. [Google Scholar] [CrossRef]
- Guan, B.; Chen, J.; Zhuang, Z.; Zhu, L.; Ma, Z.; Hu, X.; Zhu, C.; Zhao, S.; Shu, K.; Dang, H.; et al. Study on the Effect and Mechanism of Support Properties on Ru-Based Catalysts for Ammonia Decomposition. Energy Fuels 2025, 39, 2143–2150. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, F.; Qin, Y.; Zhu, Y.H.; Zhou, J.; Li, N. High Performance Ru Loaded MgO Nanoparticle Catalysts for the Hydrogenation of Pyrrole to Pyrrolidine. Catal. Lett. 2025, 155, 175. [Google Scholar] [CrossRef]
- Yan, W.; Wang, W.; Gu, Q.; Zhang, B.; Bi, G.; Zhuo, H.; Shang, X.; Xu, G.; Wang, F.; Zhang, T.; et al. Interfacial Evolution of Ru/TiO2 Catalysts in NH3 Decomposition. J. Energy Chem. 2025, 108, 47–56. [Google Scholar] [CrossRef]
- Felli, A.; Danielis, M.; Trovarelli, A.; Colussi, S. Parametric Study on Ru/CeO2 Ammonia Decomposition Catalysts for Hydrogen Production. ChemCatChem 2025, e00585. [Google Scholar] [CrossRef]
- Tan, H.; Li, K.; Sioud, S.; Cha, D.; Amad, M.H.; Hedhili, M.N.; Al-Talla, Z.A. Synthesis of Ru Nanoparticles Confined in Magnesium Oxide-Modified Mesoporous Alumina and Their Enhanced Catalytic Performance during Ammonia Decomposition. Catal. Commun. 2012, 26, 248–252. [Google Scholar] [CrossRef]
- Di Carlo, A.; Vecchione, L.; Del Prete, Z. Ammonia Decomposition over Commercial Ru/Al2O3 Catalyst: An Experimental Evaluation at Different Operative Pressures and Temperatures. Int. J. Hydrogen Energy 2014, 39, 808–814. [Google Scholar] [CrossRef]
- Hu, Z.; Mahin, J.; Datta, S.; Bell, T.E.; Torrente-Murciano, L. Ru-Based Catalysts for H2 Production from Ammonia: Effect of 1D Support. Top. Catal. 2019, 62, 1169–1177. [Google Scholar] [CrossRef]
- Hu, X.C.; Fu, X.P.; Wang, W.W.; Wang, X.; Wu, K.; Si, R.; Ma, C.; Jia, C.J.; Yan, C.H. Ceria-Supported Ruthenium Clusters Transforming from Isolated Single Atoms for Hydrogen Production via Decomposition of Ammonia. Appl. Catal. B Environ. 2020, 268, 118424. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P. Mesoporous Ru/MgO Prepared by a Deposition-Precipitation Method as Highly Active Catalyst for Producing COx-Free Hydrogen from Ammonia Decomposition. Appl. Catal. B Environ. 2017, 211, 167–175. [Google Scholar] [CrossRef]
- Huang, C.; Yu, Y.; Yang, J.; Yan, Y.; Wang, D.; Hu, F.; Wang, X.; Zhang, R.; Feng, G. Ru/La 2 O 3 Catalyst for Ammonia Decomposition to Hydrogen. Appl. Surf. Sci. 2019, 476, 928–936. [Google Scholar] [CrossRef]
- Su, Z.; Guan, J.; Liu, Y.; Shi, D.; Wu, Q.; Chen, K.; Zhang, Y.; Li, H. Research Progress of Ruthenium-Based Catalysts for Hydrogen Production from Ammonia Decomposition. Int. J. Hydrogen Energy 2024, 51, 1019–1043. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.H.; Wang, S.; Ma, Q.; Rudolph, V.; Lu, G.Q. Effects of Nitrogen Doping on the Structure of Carbon Nanotubes (CNTs) and Activity of Ru/CNTs in Ammonia Decomposition. Chem. Eng. J. 2010, 156, 404–410. [Google Scholar] [CrossRef]
- Leung, K.C.; Hong, S.; Li, G.; Xing, Y.; Ng, B.K.Y.; Ho, P.L.; Ye, D.; Zhao, P.; Tan, E.; Safonova, O.; et al. Confined Ru Sites in a 13X Zeolite for Ultrahigh H2 Production from NH3 Decomposition. J. Am. Chem. Soc. 2023, 145, 14548–14561. [Google Scholar] [CrossRef]
- Gong, S.; Du, Z.; Tang, Y.; Chen, J. Encapsulation of Ru Nanoparticles within NaY Zeolite for Ammonia Decomposition. Int. J. Hydrogen Energy 2024, 88, 142–150. [Google Scholar] [CrossRef]
- Zhu, N.; Yang, F.; Hong, Y.; Liang, J. Hydrogen Production from Ammonia Decomposition: Advances in Ru- and Ni-Based Catalysts. Int. J. Hydrogen Energy 2025, 98, 1243–1261. [Google Scholar] [CrossRef]
- Pyrz, W.; Vijay, R.; Binz, J.; Lauterbach, J.; Buttrey, D.J. Characterization of K-Promoted Ru Catalysts for Ammonia Decomposition Discovered Using High-Throughput Experimentation. Top. Catal. 2008, 50, 180–191. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, Y.; Shen, X.; Cai, Z. Ruthenium Catalyst Supported on Ba Modified ZrO 2 for Ammonia Decomposition to CO x -Free Hydrogen. Int. J. Hydrogen Energy 2019, 44, 7300–7307. [Google Scholar] [CrossRef]
- Chung, D.B.; Kim, H.Y.; Jeon, M.; Lee, D.H.; Park, H.S.; Choi, S.H.; Nam, S.W.; Jang, S.C.; Park, J.H.; Lee, K.Y.; et al. Enhanced Ammonia Dehydrogenation over Ru/La(x)-Al2O3 (x = 0–50 Mol%): Structural and Electronic Effects of La Doping. Int. J. Hydrogen Energy 2017, 42, 1639–1647. [Google Scholar] [CrossRef]
- Yin, S.F.; Xu, B.Q.; Ng, C.F.; Au, C.T. Nano Ru/CNTs: A Highly Active and Stable Catalyst for the Generation of COx-Free Hydrogen in Ammonia Decomposition. Appl. Catal. B Environ. 2004, 48, 237–241. [Google Scholar] [CrossRef]
- Armenise, S.; Cazaña, F.; Monzón, A.; García-Bordejé, E. In Situ Generation of COx-Free H2 by Catalytic Ammonia Decomposition over Ru-Al-Monoliths. Fuel 2018, 233, 851–859. [Google Scholar] [CrossRef]
- Furusawa, T.; Kuribara, H.; Kimura, K.; Sato, T.; Itoh, N. Development of a Cs-Ru/CeO2 Spherical Catalyst Prepared by Impregnation and Washing Processes for Low-Temperature Decomposition of NH3: Characterization and Kinetic Analysis Results. Ind. Eng. Chem. Res. 2020, 59, 18460–18470. [Google Scholar] [CrossRef]
- Yamazaki, K.; Matsumoto, M.; Ishikawa, M.; Sato, A. NH3 Decomposition over Ru/CeO2-PrOx Catalyst under High Space Velocity Conditions for an on-Site H2 Fueling Station. Appl. Catal. B Environ. 2023, 325, 122352. [Google Scholar] [CrossRef]
- Hu, X.C.; Wang, W.W.; Si, R.; Ma, C.; Jia, C.J. Hydrogen Production via Catalytic Decomposition of NH3 Using Promoted MgO-Supported Ruthenium Catalysts. Sci. China Chem. 2019, 62, 1625–1633. [Google Scholar] [CrossRef]
- Yin, S.F.; Xu, B.Q.; Wang, S.J.; Ng, C.F.; Au, C.T. Magnesia–Carbon Nanotubes (MgO–CNTs) Nanocomposite: Novel Support of Ru Catalyst for the Generation of COx-Free Hydrogen from Ammonia. Catal. Lett. 2004, 96, 113–119. [Google Scholar] [CrossRef]
- Nagaoka, K.; Eboshi, T.; Abe, N.; Miyahara, S.I.; Honda, K.; Sato, K. Influence of Basic Dopants on the Activity of Ru/Pr6O11 for Hydrogen Production by Ammonia Decomposition. Int. J. Hydrogen Energy 2014, 39, 20731–20735. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Investigation on Catalytic Performance and Desorption Behaviors of Ruthenium Catalysts Supported on Rare-Earth Oxides for NH3 Decomposition. Int. J. Hydrogen Energy 2022, 47, 32543–32551. [Google Scholar] [CrossRef]
- Nagaoka, K.; Honda, K.; Ibuki, M.; Sato, K.; Takita, Y. Highly Active Cs2O/Ru/Pr6O11 as a Catalyst for Ammonia Decomposition. Chem. Lett. 2010, 39, 918–919. [Google Scholar] [CrossRef]
- Wang, F.; Deng, L.; Wu, Z.; Ji, K.; Chen, Q.; Jiang, X. The Dispersed SiO2 Microspheres Supported Ru Catalyst with Enhanced Activity for Ammonia Decomposition. Int. J. Hydrogen Energy 2021, 46, 20815–20824. [Google Scholar] [CrossRef]
- Duan, X.; Zhou, J.; Qian, G.; Li, P.; Zhou, X.; Chen, D. Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition. Cuihua Xuebao/Chin. J. Catal. 2010, 31, 979–986. [Google Scholar] [CrossRef]
- Yao, L.H.; Li, Y.X.; Zhao, J.; Ji, W.J.; Au, C.T. Core-Shell Structured Nanoparticles (M@SiO2, Al2O3, MgO.; M = Fe, Co, Ni, Ru) and Their Application in COx-Free H2 Production via NH3 Decomposition. Catal. Today 2010, 158, 401–408. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, S.; Li, H. Recent Research Progress of Catalysts for Thermocatalytic Ammonia Decomposition. Int. J. Hydrogen Energy 2025, 143, 286–306. [Google Scholar] [CrossRef]
- Li, T.; Zuo, J.; Zhao, Z.; Li, W.; Zhang, K.; Wang, Q.; Du, H.; Liu, H.; Aili, E.; Ye, Y. Hydrogen Production by Ammonia Decomposition: A Strategy to Enhance the Activity and Stability of Metal Catalysts. Int. J. Hydrogen Energy 2025, 97, 1153–1167. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, E.; Gong, F.; Xiao, R. Catalyst Support Effect on Ammonia Decomposition over Ni/MgAl2O4 towards Hydrogen Production. Int. J. Hydrogen Energy 2022, 47, 5044–5052. [Google Scholar] [CrossRef]
- Inokawa, H.; Ichikawa, T.; Miyaoka, H. Catalysis of Nickel Nanoparticles with High Thermal Stability for Ammonia Decomposition. Appl. Catal. A Gen. 2015, 491, 184–188. [Google Scholar] [CrossRef]
- Li, Y.; Wen, J.; Ali, A.M.; Duan, M.; Zhu, W.; Zhang, H.; Chen, C.; Li, Y. Size Structure-Catalytic Performance Correlation of Supported Ni/MCF-17 Catalysts for CO: X-Free Hydrogen Production. Chem. Commun. 2018, 54, 6364–6367. [Google Scholar] [CrossRef]
- Nakamura, I.; Fujitani, T. Role of Metal Oxide Supports in NH3 Decomposition over Ni Catalysts. Appl. Catal. A Gen. 2016, 524, 45–49. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, J.; Ge, Q.; Xu, H.; Li, W. Effects of CeO2 Addition on Ni/Al2O3 Catalysts for the Reaction of Ammonia Decomposition to Hydrogen. Appl. Catal. B Environ. 2008, 80, 98–105. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Promotion Effect of Rare-Earth Elements on the Catalytic Decomposition of Ammonia over Ni/Al2O3 Catalyst. Appl. Catal. A Gen. 2015, 505, 77–85. [Google Scholar] [CrossRef]
- Lucentini, I.; Serrano, I.; Soler, L.; Divins, N.J.; Llorca, J. Ammonia Decomposition over 3D-Printed CeO2 Structures Loaded with Ni. Appl. Catal. A Gen. 2020, 591, 117382. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia Decomposition over Nickel Catalysts Supported on Rare-Earth Oxides for the On-Site Generation of Hydrogen. ChemCatChem 2016, 8, 2988–2995. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Guo, Y.; Wang, Y. Highly Active and Stable Ni@SiO2 Catalyst for Ammonia Decomposition. Fuel 2024, 368, 131543. [Google Scholar] [CrossRef]
- Ji, J.; Duan, X.; Qian, G.; Zhou, X.; Chen, D.; Yuan, W. In Situ Production of Ni Catalysts at the Tips of Carbon Nanofibers and Application in Catalytic Ammonia Decomposition. Ind. Eng. Chem. Res. 2013, 52, 1854–1858. [Google Scholar] [CrossRef]
- Prabu, S.; Dharman, R.K.; Chiang, K.Y.; Oh, T.H. Highly Efficient Ni Nanoparticles Embedded on MgO and N-Doped Carbon Nanofibers for Efficient Ammonia Decomposition. J. Ind. Eng. Chem. 2023, 125, 402–409. [Google Scholar] [CrossRef]
- Amini, S.; Meshkani, F.; Rezaei, M. Catalytic Oxidation of CO over Nanocrystalline La1–XCexNiO3 Perovskite-Type Oxides. Chem. Eng. Technol. 2019, 42, 2443–2449. [Google Scholar] [CrossRef]
- Podila, S.; Driss, H.; Ali, A.M.; Al-Zahrani, A.A.; Daous, M.A. Influence of Ce Substitution in LaMO3 (M = Co/Ni) Perovskites for COx-Free Hydrogen Production from Ammonia Decomposition. Arab. J. Chem. 2022, 15, 103547. [Google Scholar] [CrossRef]
- Guo, X.Y.; Wang, J.H.; Zhang, Q.; Li, T.Z.; Dong, H.; Jia, C.J.; Li, C.; Zhang, Y.W. Alkaline Earth Metal Promoted Hydrogen Production from Ammonia Decomposition over Ni/La2O3-Based Catalysts. Appl. Catal. B Environ. 2024, 348, 123844. [Google Scholar] [CrossRef]
- Guo, W.; Vlachos, D.G. Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nat. Commun. 2015, 6, 8619. [Google Scholar] [CrossRef]
- Lucentini, I.; Casanovas, A.; Llorca, J. Catalytic Ammonia Decomposition for Hydrogen Production on Ni, Ru and Ni[Sbnd]Ru Supported on CeO2. Int. J. Hydrogen Energy 2019, 44, 12693–12707. [Google Scholar] [CrossRef]
- Fu, E.; Qiu, Y.; Lu, H.; Wang, S.; Liu, L.; Feng, H.; Yang, Y.; Wu, Z.; Xie, Y.; Gong, F.; et al. Enhanced NH3 Decomposition for H2 Production over Bimetallic M(M=Co, Fe, Cu)Ni/Al2O3. Fuel Process. Technol. 2021, 221, 106945. [Google Scholar] [CrossRef]
- Xie, P.; Yao, Y.; Huang, Z.; Liu, Z.; Zhang, J.; Li, T.; Wang, G.; Shahbazian-Yassar, R.; Hu, L.; Wang, C. Highly Efficient Decomposition of Ammonia Using High-Entropy Alloy Catalysts. Nat. Commun. 2019, 10, 4011. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, Y.; Long, Z.; Zhao, S.; Wang, Y.; Zhang, W. One-Pot Synthesis of Supported Ni@Al2O3 Catalysts with Uniform Small-Sized Ni for Hydrogen Generation via Ammonia Decomposition. Int. J. Hydrogen Energy 2021, 46, 4045–4054. [Google Scholar] [CrossRef]
- Al-Shafei, E.N.; Albahar, M.Z.; Albashrayi, R.; Aljishi, M.; Alasseel, A.; Tanimu, G.; Aitani, A. The Effect of Acidic–Basic Structural Modification of Nickel-Based Catalyst for Ammonia Decomposition for Hydrogen Generation. Mol. Catal. 2023, 550, 113581. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Liu, S.; Li, S.; Liu, G. Ni-CeO2 Nanocomposite with Enhanced Metal-Support Interaction for Effective Ammonia Decomposition to Hydrogen. Chem. Eng. J. 2023, 473, 145371. [Google Scholar] [CrossRef]
- Chen, C.; Fan, X.; Zhou, C.; Lin, L.; Luo, Y.; Au, C.; Cai, G.; Wang, X.; Jiang, L. Hydrogen Production from Ammonia Decomposition over Ni/CeO2 Catalyst: Effect of CeO2 Morphology. J. Rare Earths 2023, 41, 1014–1021. [Google Scholar] [CrossRef]
- He, H.; Jiang, H.; Yang, F.; Liu, J.; Zhang, W.; Jin, M.; Li, Z. Bimetallic NixCo10-x/CeO2 as Highly Active Catalysts to Enhance Mid-Temperature Ammonia Decomposition: Kinetics and Synergies. Int. J. Hydrogen Energy 2023, 48, 5030–5041. [Google Scholar] [CrossRef]
- Hu, X.C.; Wang, W.W.; Jin, Z.; Wang, X.; Si, R.; Jia, C.J. Transition Metal Nanoparticles Supported La-Promoted MgO as Catalysts for Hydrogen Production via Catalytic Decomposition of Ammonia. J. Energy Chem. 2019, 38, 41–49. [Google Scholar] [CrossRef]
- Sima, D.; Wu, H.; Tian, K.; Xie, S.; Foo, J.J.; Li, S.; Wang, D.; Ye, Y.; Zheng, Z.; Liu, Y.Q. Enhanced Low Temperature Catalytic Activity of Ni/Al–Ce0.8Zr0.2O2 for Hydrogen Production from Ammonia Decomposition. Int. J. Hydrogen Energy 2020, 45, 9342–9352. [Google Scholar] [CrossRef]
- Kim, J.; Kim, K.D.; Jung, U.; Park, Y.; Lee, K.B.; Koo, K.Y. Clean Hydrogen Production from Ammonia Decomposition over Zeolite 13X-Supported Ni Catalysts. Sustain. Energy Fuels 2024, 8, 896–904. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; You, H.; Zhang, X.; Shao, J. Na-ZSM-5 Zeolite Nanocrystals Supported Nickel Nanoparticles for Efficient Hydrogen Production from Ammonia Decomposition. ChemCatChem 2021, 13, 3027–3036. [Google Scholar] [CrossRef]
- Zhang, H.; Alhamed, Y.A.; Kojima, Y.; Al-Zahrani, A.A.; Miyaoka, H.; Petrov, L.A. Structure and Catalytic Properties of Ni/MWCNTs and Ni/AC Catalysts for Hydrogen Production via Ammonia Decomposition. Int. J. Hydrogen Energy 2014, 39, 277–287. [Google Scholar] [CrossRef]
- Wu, Z.W.; Li, X.; Qin, Y.H.; Deng, L.; Wang, C.W.; Jiang, X. Ammonia Decomposition over SiO2-Supported Ni–Co Bimetallic Catalyst for COx-Free Hydrogen Generation. Int. J. Hydrogen Energy 2020, 45, 15263–15269. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Chakraborty, D.; Chorkendorff, I.; Dahl, S. Alloyed Ni-Fe Nanoparticles as Catalysts for NH3 Decomposition. Appl. Catal. A Gen. 2012, 447–448, 22–31. [Google Scholar] [CrossRef]
- Hu, R.; Yuan, Y.; Wang, W.; Zhang, T.; Gu, Y.; Yan, A.; Wang, Z. Metal-Organic Framework-Derived FeNi@NC Catalyst for Highly Efficient Hydrogen Generation via Ammonia Decomposition. Mater. Sci. Eng. B 2025, 314, 118051. [Google Scholar] [CrossRef]
- Ajeebi, A.M.; Ali, A.; AlAmoudi, O.M.; Sanhoob, M.A.; Hossain, M.M.; Alghamdi, H.S.; Usman, M.; Zahir, M.H.; Shaikh, M.N. Alumina-Supported Bimetallic Catalysts with Ruthenium and CoNi for Enhanced Ammonia Decomposition. Sustain. Energy Fuels 2025, 9, 2396–2409. [Google Scholar] [CrossRef]
- Guo, W.; Shafizadeh, A.; Shahbeik, H.; Rafiee, S.; Motamedi, S.; Ghafarian Nia, S.A.; Nadian, M.H.; Li, F.; Pan, J.; Tabatabaei, M.; et al. Machine Learning for Predicting Catalytic Ammonia Decomposition: An Approach for Catalyst Design and Performance Prediction. J. Energy Storage 2024, 89, 111688. [Google Scholar] [CrossRef]
- Chen, W.H.; Chou, W.S.; Chein, R.Y.; Hoang, A.T.; Juan, J.C. Multiple-Objective Optimization on Ammonia Decomposition Using Membrane Reactor. Int. J. Hydrogen Energy 2024, 52, 1002–1017. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.U.; Kim, J.R.; Kim, T.W.; Lee, Y.J.; Chae, H.J. Ru-Supported Lanthania-Ceria Composite as an Efficient Catalyst for COx-Free H2 Production from Ammonia Decomposition. Appl. Catal. B Environ. 2021, 285, 119831. [Google Scholar] [CrossRef]
- Gómez-García, M.A.; Pitchon, V.; Kiennemann, A. Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 2005, 31, 445–467. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.; Alavi, S.M.; Rezaei, M. Hydrogen Production from COx-Free Thermocatalytic Decomposition of Methane over the Mesoporous Iron Aluminate Spinel (FeAl2O4) Nanopowder Supported Nickel Catalysts. Int. J. Hydrogen Energy 2022, 47, 18370–18383. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of catalyst deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Zhao, X.; Karakaya, C.; Qian, M.; Zou, R.; Zhang, W.; Lu, Z.; Maiti, D.; Samanta, A.; Wan, W.; Liu, X.; et al. 3D printing synthesis of catalysts. Mater. Today Sustain. 2024, 26, 100746. [Google Scholar] [CrossRef]
- Kovacev, N.; Li, S.; Li, W.; Zeraati-Rezaei, S.; Tsolakis, A.; Essa, K. Additive Manufacturing of Novel Hybrid Monolithic Ceramic Substrates. Aerospace 2022, 9, 255. [Google Scholar] [CrossRef]
Catalyst | Ru Loading (wt.%) | Reaction Temperature (°C) | GHSV () | NH3 Conversion (%) | Reference |
---|---|---|---|---|---|
Ru/Al2O3 | 5 | 450 | 30,000 | 24.8 | [55] |
Ru/Al2O3/Monolith | 3 | 450 | 35,000 | 18 | [56] |
Ru/CeO2 | 7 | 350 | 6000 | 25 | [43] |
Ru/CeO2 | 1 | 300 | 22,000 | 33 | [44] |
Cs-Ru/CeO2 | 5 | 250 | 2000 | 40 | [57] |
Ru/CeO2-PrOx | 4.7 | 350 | 30,000 | 20 | [58] |
Ru/MgO | 1.75 | 350 | 22,000 | 20 | [59] |
Ru/MgO-DP | 5 | 400 | 30,000 | 23 | [45] |
Ru/MgO-CNTs | 4.8 | 350 | 60,000 | 30 | [60] |
K-Ru/MgO-CNTs | 4.8 | 350 | 60,000 | 39 | [60] |
Ru/MgO-Pr6O11 | 5 | 350 | 3000 | 25 | [61] |
Ru/La2O3 | 4.8 | 350 | 18,000 | 15 | [46] |
Ru/La2O3 | 2 | 350 | 6000 | 12 | [62] |
Cs2O-Ru/La2O3 | 5 | 250 | 3000 | 18 | [63] |
Ru/SiO2 | 5 | 350 | 30,000 | 20 | [64] |
Ru/TiO2 | 3 | 400 | 30,000 | 10 | [39] |
Ru/ZrO2 | 3 | 450 | 30,000 | 20 | [53] |
Ru-Ba/ZrO2 | 3 | 350 | 30,000 | 20 | [53] |
Ru-Ba/ZrO2 | 3 | 450 | 30,000 | 23.6 | [53] |
K-Ru/Ba/ZrO2 | 3 | 450 | 30,000 | 32.5 | [53] |
Cs-Ru/Ba/ZrO2 | 3 | 450 | 30,000 | 37.8 | [53] |
Ru/CNFs | 7.9 | 350 | 6500 | 20 | [65] |
K–Ru/CNTs | 5 | 350 | 60,000 | 20 | [55] |
Ru@NaY-zeolite | 1.35 | 375 | 9000 | 20 | [50] |
Ru@SiO2-zeolite | 3 | 400 | 60,000 | 37 | [66] |
Catalyst | Ni Loading (wt.%) | Reaction Temperature (°C) | GHSV () | NH3 Conversion (%) | Reference |
---|---|---|---|---|---|
Ni/Al2O3 | 25 | 400 | 24,000 | 15 | [87] |
Ni/Al2O3 | 30 | 450 | 12,000 | 16.9 | [72] |
Ni/Al2O3–CeO2 | 43.4 | 500 | 30,000 | 71.9 | [73] |
Ni-Mg/Al2O4 | 5 | 350 | 30,000 | 18 | [69] |
Ni/Al2O3–La | 9 | 450 | 6000 | 30 | [74] |
Ni/Al2O3–K | 15 | 430 | 450 | 32.4 | [88] |
Ni/CeO2 | 10 | 450 | 30,000 | 25 | [89] |
Ni/CeO2 | 10 | 500 | 30,000 | 20 | [90] |
Ni/CeO2 | 30 | 450 | 12,000 | 28.6 | [72] |
Ni7.5Co2.5/CeO2 | 7.5 | 450 | 30,000 | 21 | [91] |
Ni/Y2O3 | 10 | 475 | 6000 | 40 | [76] |
Ni/La-MgO | 20 | 400 | 22,000 | 30 | [92] |
Ni/Al-Ce0.8Zr0.2O2 | 8 | 450 | 9000 | 24 | [93] |
Ni/Ce0.8Zr0.2O2 | 10.7 | 450 | 9000 | 20 | [93] |
Ni@SiO2 | 15 | 450 | 30,000 | 18 | [77] |
Ni/13X zeolite | 15 | 475 | 30,000 | 18 | [94] |
Ni/Na-ZSM-5 | 10 | 450 | 6000 | 20 | [95] |
Ni/MWCNTs | 5 | 425 | 6000 | 20 | [96] |
Ni-Co/SiO2 | 5 | 400 | 30,000 | 18 | [97] |
Ni-Co/Al2O3 | 4.9 | 400 | 30,000 | 15 | [85] |
Ni-Fe/Al2O3 | 20 | 400 | 80,000 | 20 | [98] |
Fe-Ni@NC | 10 | 450 | 30,000 | 20 | [99] |
Ru–Co-Ni/Al2O3 | 50 | 363 | 20,400 | 25 | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Sadi, K.; Nadimi, E.; Wu, D. Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production. Energies 2025, 18, 3505. https://doi.org/10.3390/en18133505
Al Sadi K, Nadimi E, Wu D. Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production. Energies. 2025; 18(13):3505. https://doi.org/10.3390/en18133505
Chicago/Turabian StyleAl Sadi, Khalid, Ebrahim Nadimi, and Dawei Wu. 2025. "Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production" Energies 18, no. 13: 3505. https://doi.org/10.3390/en18133505
APA StyleAl Sadi, K., Nadimi, E., & Wu, D. (2025). Catalytic Ammonia Combustion: Legacy Catalytic Burner Designs and Catalyst Requirements for In Situ Hydrogen Production. Energies, 18(13), 3505. https://doi.org/10.3390/en18133505