Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Characteristics of Raw Materials
3.2. Mechanical Property
3.3. Erosion Resistance and Microstructure
4. Discussion
5. Conclusions
- (1)
- In sintering and mechanical performance testing, specimens incorporating MFG exhibited optimal performance; the liquid-phase-promoting effect and non-wettability of the SiC coating on MFG facilitated uniform liquid-phase spreading, improved sintering behavior, and reduced stress concentration under load.
- (2)
- The slag erosion resistance of MFG-containing specimens was influenced by multiple factors: poor slag–matrix wettability, matrix-induced crack pinning and deflection, SiC’s oxidation resistance, and microcracks.
- (3)
- In summary, the Al2O3-SiC-C castable with 1 wt.% MFG delivered optimal overall performance. This formulation underwent service testing in actual industrial conditions. Beyond the expected extended service life, a pronounced water reduction effect was observed, which will be the focus of subsequent research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranjan, S.; Mazumdar, D.; Chakraborty, I.N.; Sinha, S.; Sarkar, R. Review and Analysis of Metallurgical Processes in Blast Furnace Main Trough and Trough Performances. Trans. Indian Inst. Met. 2022, 75, 589–611. [Google Scholar] [CrossRef]
- ElKhatib, L.W.; Khatib, J.; Assaad, J.J.; Elkordi, A.; Ghanem, H. Refractory Concrete Properties—A Review. Infrastructures 2024, 9, 137. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Ding, F.; Tang, H. Prolonging Campaign Life of Blast Furnace Trough by Water Cooling. Materials 2023, 16, 891. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, M.; Cheng, B.; Wu, F.; Luo, X. Effects of induction furnace conditions on lining refractory via multi-physics field simulation. Appl. Phys. A 2023, 129, 542. [Google Scholar] [CrossRef]
- Liang, X.; Wang, L.; Liu, Z.; Li, Z.; Luo, X.; Wu, F.; Yuan, Q.; Cheng, B. Thermal, flow and inclusions analysis of clogging mechanism in continuous casting process. Case Stud. Therm. Eng. 2025, 65, 105602. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, W.; Liang, X.; Feng, H.; Xu, W.; Wang, P.; Pan, J.; Cheng, B. Machine Learning-Assisted Multi-Property Prediction and Sintering Mechanism Exploration of Mullite-Corundum Ceramics. Materials 2025, 18, 1384. [Google Scholar] [CrossRef]
- Chen, X.-B.; Zhu, L.L.; Zhan, C.-T.; Tian, Y.; Guo, W.-M.; Lin, H.-T. Joining SiC ceramics with CaO-Al2O3-SiO2 mixed powder/glass based on induction heating. Ceram. Int. 2024, 50, 53048–53058. [Google Scholar] [CrossRef]
- Ewais, E.M.M. Carbon based refractories. J. Ceram. Soc. Jpn. 2004, 112, 517–532. [Google Scholar] [CrossRef]
- Sadhu, K.K.; Mandal, N.; Sahoo, R.R. SiC/graphene reinforced aluminum metal matrix composites prepared by powder metallurgy: A review. J. Manuf. Process. 2023, 91, 10–43. [Google Scholar] [CrossRef]
- Shi, W.; Wei, W.; Sun, N.; Mao, Z.; Prakapenka, V.B. Thermal equations of state of corundum and Rh2O3 (II)-type Al2O3 up to 153 GPa and 3400 K. J. Geophys. Res. Solid 2022, 127, e2021JB023805. [Google Scholar] [CrossRef]
- Atzenhofer, C.; Gschiel, S.; Harmuth, H. Phase formation in Al2O3-C refractories with Al addition. J. Eur. Ceram. Soc. 2017, 37, 1805–1810. [Google Scholar] [CrossRef]
- Liao, N.; Li, Y.; Wang, Q.; Zhu, T.; Jin, S.; Sang, S.; Jia, D. Synergic effects of nano carbon sources on thermal shock resistance of Al2O3-C refractories. Ceram. Int. 2017, 43, 14380–14388. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, X.; Liu, Z.; Yu, C.; Deng, C.; Ding, J. Strengthening mechanism and slag corrosion-resistance of low-carbon Al2O3-C refractories: Role of h-BN. J. Mater. Res. Technol. 2023, 27, 3632–3643. [Google Scholar] [CrossRef]
- Jagadeeshwaran, C.; Madhan, K.; Murugaraj, R. Size effect and order–disorder phase transition in MgAl2O4: Synthesized by co-precipitation method. J. Mater. Sci. Mater. Electron. 2018, 29, 18923–18934. [Google Scholar] [CrossRef]
- Hema, N.; Kumar, K.G.; Dhanalakshmi, M.A.; Abbas, M.; Kuppusamy, M. Impact of Dy3+and Ce3+ ion doping on the photoluminescence, thermoluminescence, and electrochemical properties of strontium aluminate (SrAl2O4) and barium aluminate (BaAl2O4) phosphors. J. Mater. Sci. Mater. Electron. 2024, 35, 923. [Google Scholar] [CrossRef]
- Ganesh, K.K.; Balaji, B.P.; Sasikumar, P.; Mary, A.F.; Vimalan, M.; Mohamed, A. Tunable luminescence and electrical properties of cerium doped strontium aluminate (SrAl2O4:Ce3+) phosphors for white LED applications. Heliyon 2023, 9, 17429. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, Y.; Li, Y.; Liao, N.; Wang, H.; Xu, Y.; Sang, S.; Yan, W. Low carbon-containing refractories for advanced iron and steelmaking: Recent progress and perspectives. J. Eur. Ceram. Soc. 2025, 45, 117349. [Google Scholar] [CrossRef]
- Pilli, V.; Sarkar, R. Study on the nanocarbon containing Al2O3-C continuous casting refractories with reduced fixed carbon content. J. Alloys Compd. 2019, 781, 149–158. [Google Scholar] [CrossRef]
- Zhang, T.T.; Ding, J.; Ma, B.Y.; Liu, Z.L.; Yu, C.; Deng, C.J. A review on graphite surface modification methods towards low carbon-containing refractories. J. Iron Steel Res. Int. 2024, 31, 1291–1303. [Google Scholar] [CrossRef]
- Bag, M.; Adak, S.; Sarkar, R. Nano carbon containing MgO-C refractory: Effect of graphite content. Ceram. Int. 2012, 38, 4909–4914. [Google Scholar] [CrossRef]
- Kashcheev, I.D.; Zemlyanoi, K.G.; Pomortsev, S.A. Study of the structure and properties of graphites for refractory production. Part 2. Properties of periclase- and corundum-graphite refractories with introduction into their composition of graphite from different producers. Refract. Ind. Ceram. 2016, 57, 22–26. [Google Scholar] [CrossRef]
- Kashcheev, I.D.; Zemlyanoi, K.G.; Ust’yantsev, V.M.; Pomortsev, S.A. Study of the structure and properties of graphites for refractory production. Part 1. Physicochemical study of graphites from different deposits. Refract. Ind. Ceram. 2016, 56, 577–582. [Google Scholar] [CrossRef]
- Mills, A.; Farid, M.; Selman, J.R.; Al-Hallaj, S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Appl. Therm. Eng. 2006, 26, 1652–1661. [Google Scholar] [CrossRef]
- Chaika, E.F.; Maryasev, I.G.; Platonov, A.A. Graphite. Evaluation of quality for refractory industry. Refract. Ind. Ceram. 2017, 57, 449–461. [Google Scholar] [CrossRef]
- Mukhopadhyay, S. Effect of surface-treated graphites on the properties of carbon-containing monolithic refractory materials—A comprehensive comparison. Int. J. Appl. Ceram. Technol. 2017, 14, 719–730. [Google Scholar] [CrossRef]
- Liu, M.; Huang, J.; Meng, H.; Liu, C.; Chen, Z.; Yang, H.; Feng, Z.; Li, X.; Luo, R.; Huang, Z.; et al. A novel approach to prepare graphite nanoplatelets exfoliated by three-roll milling in phenolic resin for low-carbon MgO-C refractories. J. Eur. Ceram. Soc. 2023, 43, 4198–4208. [Google Scholar] [CrossRef]
- Inagaki, M. Pores in carbon materials-Importance of their control. New Carbon. Mater. 2009, 24, 193–222. [Google Scholar] [CrossRef]
- Samoilov, V.M. Specific surface area, shape, and size of fine carbon filler particles. Inorg. Mater. 2010, 46, 818–823. [Google Scholar] [CrossRef]
- Bahtli, T.; Hopa, D.Y.; Bostanci, V.M.; Ulvan, N.S.; Yasti, S.Y. Corrosion behaviours of MgO-C refractories: Incorporation of graphite or pyrolytic carbon black as a carbon source. Ceram. Int. 2018, 44, 6780–6785. [Google Scholar] [CrossRef]
- Gui, L.; Hu, N.; Huang, Y.; Zhang, G.; Ye, Y.; Tang, R.; Wang, J. Fracture behavior of MgO-Al2O3-CaO-based porous ceramics prepared with carbon black as pore-forming agent. Constr. Build. Mater. 2025, 473, 141059. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Mondal, C.; Chakraborty, A.; Mali, D.; Ghosh, S. In depth studies on cementitious nanocoatings on graphite for its contribution in corrosion resistance of alumina based refractory composite. Ceram. Int. 2015, 41, 11999–12010. [Google Scholar] [CrossRef]
- Raju, M.; Chandra, S.K.; Mahata, T.; Sarkar, D.; Maiti, H.S. Improvement in the properties of low carbon MgO-C refractories through the addition of graphite-SiC micro-composite. J. Eur. Ceram. Soc. 2022, 42, 1804–1814. [Google Scholar] [CrossRef]
- Ramezani, A.; Mohebi, M.M.; Souri, A. Incorporating Nano-silica as a Binder to Improve Corrosion Resistance of High Alumina Refractory Castables. J. Mater. Eng. Perform. 2013, 22, 1010–1017. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, W.; Schaffoner, S.; Li, Y.; Li, N. Microstructure and mechanical properties of lightweight Al2O3-C refractories using different carbon sources. J. Alloys Compd. 2021, 862, 158036. [Google Scholar] [CrossRef]
- Luz, A.P.; Pandolfelli, V.C. Thermodynamic evaluation of SiC oxidation in Al2O3-MgAl2O4-SiC-C refractory castables. Ceram. Int. 2010, 36, 1863–1869. [Google Scholar] [CrossRef]
- Wang, W.; Li, Q.; Du, A.; Zhao, X.; Fan, Y.; Ma, R.; Cao, X. Excellent thermal shock resistance of Al alloy-infiltrated SiC composites. J. Mater. Process. Technol. 2019, 269, 16–25. [Google Scholar] [CrossRef]
- GB/T 3001-2017; Refractory Materials—Determination of Cold Modulus of Rupture. Standardization Administration of China (SAC): Beijing, China, 2017.
- GB/T 8931-2007; Refractory Materials—Test Method for Slag Resistance. Standardization Administration of China (SAC): Beijing, China, 2007.
- GB/T 30873-2014; Refractory Materials—Test Method for Thermal Shock Resistance. Standardization Administration of China (SAC): Beijing, China, 2014.
- Lei, C.; Ding, D.; Wang, E.; Xiao, G.; Sang, C.; Feng, C.; Hou, X. Dip-coating of recycled spent mullite-SiC aggregates in alumina sol and its effects on properties of Al2O3-SiC-C castables. Constr. Build. Mater. 2025, 483, 141717. [Google Scholar] [CrossRef]
- Nallusamy, T.; Vijayakumar, S. Reinforcements, Manufacturing Techniques, and Respective Property Changes of Al2O3/SiC Based Composites: A Review. Silicon 2022, 14, 3129–3146. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Wu, J.; Zhang, C.; Zhou, S.; Wu, C. Fabrication and characterization of porous mullite ceramics with ultra-low shrinkage and high porosity via sol-gel and solid state reaction methods. Ceram. Inter. 2021, 47, 20141–20150. [Google Scholar] [CrossRef]
- Das, D.; Banu, N.; Bisi, B.; Mahato, J.C.; Srihari, V.; Halder, R.; Dev, B.N. Real time investigation of the effect of thermal expansion coefficient mismatch on film-substrate strain partitioning in Ag/Si systems. J. Appl. Phys. 2016, 120, 135301. [Google Scholar] [CrossRef]
- Raj, S.V. Thermal expansion behavior of hot-pressed engineered matrices. Ceram. Inter. 2016, 42, 2557–2569. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, J.; Zhou, M.; Shen, K. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon. Mater. 2022, 37, 544–555. [Google Scholar] [CrossRef]
- Li, Z.; Li, T.; Xia, T.; Qian, Y.; Yang, Z.; Lu, Z. High-temperature effects on the compressive behaviors of SiC-coated carbon-bonded carbon fiber composites: Insights into mechanical properties and cyclic deformation recovery. J. Mater. Res. Technol. 2025, 36, 8264–8276. [Google Scholar] [CrossRef]
Materials | P0.5 | P1.0 | P1.5 | C0.5 | C1.0 | C1.5 | M0.5 | M1.0 | M1.5 |
---|---|---|---|---|---|---|---|---|---|
Brown fused alumina | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 | 66 |
Black silicon carbide | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Silica fume | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
α-Al2O3 micro powder | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Metallic silicon powder | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
ASF | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Calcium aluminate cement | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Bonds (deionized water) | +4 | +4 | +4 | +4 | +4 | +4 | +4 | +4 | +4 |
Pitch | +0.5 | +1 | +1.5 | - | - | - | - | - | - |
CB | - | - | - | +0.5 | +1 | +1.5 | - | - | - |
MFG | - | - | - | - | - | - | +0.5 | +1 | +1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, B.; Huang, M.; Liu, G.; Wu, F.; Liang, X. Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects. Materials 2025, 18, 3618. https://doi.org/10.3390/ma18153618
Cheng B, Huang M, Liu G, Wu F, Liang X. Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects. Materials. 2025; 18(15):3618. https://doi.org/10.3390/ma18153618
Chicago/Turabian StyleCheng, Benjun, Mingyang Huang, Guoqi Liu, Feng Wu, and Xiaocheng Liang. 2025. "Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects" Materials 18, no. 15: 3618. https://doi.org/10.3390/ma18153618
APA StyleCheng, B., Huang, M., Liu, G., Wu, F., & Liang, X. (2025). Wettability-Enhanced SiC–Graphite Synergy in Al2O3-SiC-C Castables: Carbon Resource Comparation, Sintering Response, and Latent Rheology Effects. Materials, 18(15), 3618. https://doi.org/10.3390/ma18153618