Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Preparation
2.2. Material Characterization
2.3. Design of Sintering Processes
2.4. Cutting Test
3. Results and Discussion
3.1. Mechanical Properties
3.2. Microstructure Characterization
3.3. Coefficient of Thermal Expansion and Residual Stress
3.4. Phase Composition
3.5. Toughening and Strengthening Mechanisms
3.6. Cutting Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulz, H.; Moriwaki, T. High-speed machining. CIRP Ann. 1992, 41, 637–643. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Qiu, L.; Cui, T.; Qiu, G.; Sun, Y. Composition, characteristics and development of advanced ceramic cutting tools. J. Rare Earths 2007, 25, 287–294. [Google Scholar] [CrossRef]
- Whitney, E.D. Ceramic Cutting Tools: Materials, Development and Performance; William Andrew: Norwich, NY, USA, 2012. [Google Scholar]
- Pastor, H. Titanium-carbonitride-based hard alloys for cutting tools. Mater. Sci. Eng. A 1988, 105, 401–409. [Google Scholar] [CrossRef]
- Mills, B. Recent developments in cutting tool materials. J. Mater. Process. Technol. 1996, 56, 16–23. [Google Scholar] [CrossRef]
- Vleugels, J. Fabrication, wear and performance of ceramic cutting tools. Adv. Sci. Technol. 2006, 45, 1776–1785. [Google Scholar] [CrossRef]
- Yin, Z.; Huang, C.; Yuan, J.; Zou, B.; Liu, H.; Zhu, H. Cutting performance and life prediction of an Al2O3/TiC micro–nano-composite ceramic tool when machining austenitic stainless steel. Ceram. Int. 2015, 41, 7059–7065. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, X.; Huang, X.; Ming, W.; An, Q.; Chen, M. Cutting performance and tool wear of SiAlON and TiC-whisker-reinforced Si3N4 ceramic tools in side milling Inconel 718. Ceram. Int. 2022, 48, 3096–3108. [Google Scholar] [CrossRef]
- Cui, X.; Jiao, F.; Ming, P.; Guo, J. Reliability analysis of ceramic cutting tools in continuous and interrupted hard turning. Ceram. Int. 2017, 43, 10109–10122. [Google Scholar] [CrossRef]
- Cui, X.; Wang, D.; Guo, J. Effects of material microstructure and surface microscopic geometry on the performance of ceramic cutting tools in intermittent turning. Ceram. Int. 2018, 44, 8201–8209. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Zhao, J.; Zhang, G.; Zhang, K. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. Int. J. Refract. Met. Hard Mater. 2014, 43, 46–58. [Google Scholar] [CrossRef]
- Xu, W.; Yin, Z.; Yuan, J.; Yan, G. Reliability prediction of a microwave sintered Si3N4-based composite ceramic tool. Ceram. Int. 2021, 47, 16737–16745. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, C.; Liu, H.; Zou, B.; Wang, Z. The influence of TiB2 content on high temperature flexural strength and reliability of the developed titanium carbonitride based ceramic tool material. Ceram. Int. 2020, 46, 10356–10361. [Google Scholar] [CrossRef]
- Xing, Y.; Deng, J.; Li, S.; Yue, H.; Meng, R.; Gao, P. Cutting performance and wear characteristics of Al2O3/TiC ceramic cutting tools with WS2/Zr soft-coatings and nano-textures in dry cutting. Wear 2014, 318, 12–26. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Vereschaka, A.A.; Vereschaka, A.S.; Kutin, A. Cutting tools made of layered composite ceramics with nano-scale multilayered coatings. Procedia CIRP 2012, 1, 301–306. [Google Scholar] [CrossRef]
- Gevorkyan, E.; Rucki, M.; Panchenko, S.; Sofronov, D.; Chałko, L.; Mazur, T. Effect of SiC addition to Al2O3 ceramics used in cutting tools. Materials 2020, 13, 5195. [Google Scholar] [CrossRef]
- Liu, B.; Wei, W.; Gan, Y.; Duan, C.; Cui, H. Preparation, mechanical properties and microstructure of TiB2 based ceramic cutting tool material toughened by TiC whisker. Int. J. Refract. Met. Hard Mater. 2020, 93, 105372. [Google Scholar] [CrossRef]
- Taya, M.; Hayashi, S.; Kobayashi, A.S.; Yoon, H.S. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress. J. Am. Ceram. Soc. 1990, 73, 1382–1391. [Google Scholar] [CrossRef]
- Outeiro, J.C. Residual Stresses in Machining. Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques; Elsevier: Amsterdam, The Netherlands, 2020; pp. 297–360. [Google Scholar]
- Du, C.; Huang, C.; Li, S.; Liu, H. Research progress of laminated composite ceramic cutting tools. Adv. Eng. Mater. 2023, 25, 2300564. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, B.; Xiao, G.; Yi, M.; Zhang, J.; Chen, H.; Zhou, T.; Chen, Z.; Wu, J.; Xu, C. Mechanical properties and cutting performance of laminated graphene composite ceramic tools. J. Manuf. Process. 2022, 81, 717–726. [Google Scholar] [CrossRef]
- Lugovy, M.; Slyunyayev, V.; Orlovskaya, N.; Blugan, G.; Kuebler, J.; Lewis, M. Apparent fracture toughness of Si3N4-based laminates with residual compressive or tensile stresses in surface layers. Acta Mater. 2005, 53, 289–296. [Google Scholar] [CrossRef]
- Kong, Y.; Yin, Y.; Feng, X.; Zhang, Z.; Ding, F.; Tong, L.; Zhang, J. Negative thermal expansion behaviour of graphdiyne. Nano Today 2023, 48, 101695. [Google Scholar] [CrossRef]
- Zhang, W.; He, L.; Zhou, Y.; Tang, D.; Ding, B.; Zhou, C.; Dyson, P.J.; Nazeeruddin, M.K.; Li, X. Multiple roles of negative thermal expansion material for high-performance fully-air processed perovskite solar cells. Chem. Eng. J. 2023, 457, 141216. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Y.; Jiang, Z.; Huang, J. Enhancing low thermal expansion behavior and strength via induced Zr-rich intermetallic phase in Fe-36Ni Invar alloy. Mater. Des. 2023, 226, 111644. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, D.; Ma, Z.; Zhang, H.; Kang, G.; Chen, Y.; Yu, K.; Ren, Y.; Liu, Y.; Ge, L.; et al. An in-situ study of low thermal expansion and internal stress evolution in FeMn alloys. Mater. Charact. 2022, 194, 112342. [Google Scholar] [CrossRef]
- Sun, L.; Sneller, A.; Kwon, P. ZrW2O8-containing composites with near-zero coefficient of thermal expansion fabricated by various methods: Comparison and optimization. Compos. Sci. Technol. 2008, 68, 3425–3430. [Google Scholar] [CrossRef]
- Pelletant, A.; Reveron, H.; Chevalier, J.; Fantozzi, G.; Guinot, F.; Blanchard, L.; Falzon, F. Thermal expansion of β-eucryptite in oxide-based ceramic composites. J. Eur. Ceram. Soc. 2013, 33, 531–538. [Google Scholar] [CrossRef]
- Xu, X.; Rao, Z.; Wu, J.; Li, Y.; Zhang, Y.; Lao, X. In-situ synthesis and thermal shock resistance of cordierite/silicon carbide composites used for solar absorber coating. Sol. Energy Mater. Sol. Cells 2014, 130, 257–263. [Google Scholar] [CrossRef]
- Chen, R.; Jin, X.; Hei, D.; Lin, P.; Liu, F.; Zhan, J.; Lao, D.; Li, M.; Jia, W.; Shan, Q.; et al. Enhanced mechanical strength of SiC reticulated porous ceramics via addition of in-situ chopped carbon fibers. J. Alloys Compd. 2021, 888, 161638. [Google Scholar] [CrossRef]
- Gupta, M.K.; Mittal, R.; Chaplot, S.L. Negative thermal expansion behavior in orthorhombic Sc2 (MoO4) 3 and Sc2 (WO4) 3. J. Appl. Phys. 2019, 126, 125114. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, N.; Liu, Q.; Li, Y.; Xu, G.; Cheng, X.; Yang, J. Sc2W3O12/Cu composites with low thermal expansion coefficient and high thermal conductivity for efficient cooling of electronics. J. Alloys Compd. 2019, 779, 108–114. [Google Scholar] [CrossRef]
- Yamamura, Y.; Ikeuchi, S.; Saito, K. Characteristic phonon spectrum of negative thermal expansion materials with framework structure through calorimetric study of Sc2M3O12 (M=W and Mo). Chem. Mater. 2009, 21, 3008–3016. [Google Scholar] [CrossRef]
- Liu, Q.; Fan, C.; Wu, G.; Zhao, Y.; Sun, X.; Cheng, X.; Shen, J.; Hu, Y. In-situ synthesis of Sc2W3O12/YSZ ceramic composites with controllable thermal expansion. Ceram. Int. 2015, 41, 8267–8271. [Google Scholar] [CrossRef]
- Evans, J.S.O.; Mary, T.A.; Sleight, A.W. Negative thermal expansion in Sc2 (WO4) 3. J. Solid State Chem. 1998, 137, 148–160. [Google Scholar] [CrossRef]
- Wu, H.Z.; Lawrence, C.W.; Roberts, S.G.; Derby, B. The strength of Al2O3/SiC nanocomposites after grinding and annealing. Acta Mater 1998, 46, 3839–3848. [Google Scholar] [CrossRef]
- Evans, A.G.; Charles, E.A. Fracture Toughness Determinations by Indentation. J. Am. Ceram. Soc. 1976, 59, 371–372. [Google Scholar] [CrossRef]
- Ohji, T.; Jeong, Y.K.; Choa, Y.H.; Niihara, K. Strengthening and toughening mechanisms of ceramic nanocomposites. J. Am. Ceram. Soc. 1998, 81, 1453–1460. [Google Scholar] [CrossRef]
- Qiu, L.; Li, X.; Qiu, G.; Ma, W.; Sun, Y.; Yu, H. Study on toughness mechanism of ceramic cutting tools. J. Rare Earths 2007, 25, 309–316. [Google Scholar] [CrossRef]
- Cui, E.; Zhao, J.; Wang, X.; Sun, J.; Huang, X.; Wang, C. Microstructure and toughening mechanisms of Al2O3/(W, Ti) C/graphene composite ceramic tool material. Ceram. Int. 2018, 44, 13538–13543. [Google Scholar] [CrossRef]
Raw Material | Particle Size (μm) | Purity | Thermal Expansion Coefficient (α/10−6·K−1) | Elastic Modulus (E/GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
α-Si3N4 | 0.3 | 99.99% | 3.0 | 300 | 0.26 |
WO3 | 0.5 | 99.9% | 7.0 | 110 | 0.26 |
Sc2O3 | 0.5 | 99.9% | 8.5 | 140 | 0.24 |
α-Al2O3 | 0.3 | 99.99% | 7.2 | 350 | 0.23 |
Y2O3 | 0.5 | 99.9% | 8.0 | 150 | 0.29 |
Composites | Sc2W3O12 | WO3 | Sc2O3 |
---|---|---|---|
SNS0 | 0.00 | 0.00 | 0.00 |
SNS1 | 8.00 | 6.68 | 1.32 |
SNS2 | 10.00 | 8.35 | 1.65 |
SNS3 | 12.00 | 10.02 | 1.98 |
SNS4 | 16.00 | 13.36 | 2.64 |
Code | Si3N4/wt.% | Al2O3/wt.% | Y2O3/wt.% | WO3/wt.% | Sc2O3/wt.% |
---|---|---|---|---|---|
SNS0 | 90.00 | 3.00 | 7.00 | 0.00 | 0.00 |
SNS1 | 82.00 | 3.00 | 7.00 | 6.68 | 1.32 |
SNS2 | 80.00 | 3.00 | 7.00 | 8.35 | 1.65 |
SNS3 | 78.00 | 3.00 | 7.00 | 10.02 | 1.98 |
SNS4 | 74.00 | 3.00 | 7.00 | 13.36 | 2.64 |
Clearance Angle α° | Rake Angle γ° | Edge Inclination Angle | Cutting Edge Angle | Corner Radius γε | Chamfer |
---|---|---|---|---|---|
5° | −5° | 0° | 45° | 0.5 mm | −10° × 0.1 mm |
No. | Cutting Speed vc (m/min) | Cutting Depth ap (mm) | Axial Force Fa (N) | Radial Fr (N) | Main Cutting Force Fc (N) | Cutting Temperature T (°C) | Surface Roughness Ra (μm) |
---|---|---|---|---|---|---|---|
1 | 100 | 0.05 | 23 | 69 | 81 | 79.5 | 1.24 |
2 | 100 | 0.1 | 22 | 70 | 90 | 141.3 | 1.202 |
3 | 100 | 0.15 | 28 | 84 | 103 | 163.7 | 1.324 |
4 | 100 | 0.2 | 37 | 91 | 114 | 221.6 | 1.389 |
5 | 150 | 0.05 | 23 | 79 | 92 | 128.4 | 0.499 |
6 | 150 | 0.1 | 21 | 80 | 89 | 205.7 | 0.452 |
7 | 150 | 0.15 | 26 | 96 | 97 | 228.9 | 0.572 |
8 | 150 | 0.2 | 35 | 101 | 131 | 314.1 | 0.637 |
9 | 200 | 0.05 | 24 | 73 | 97 | 75.9 | 0.679 |
10 | 200 | 0.1 | 21 | 102 | 119 | 134.8 | 0.632 |
11 | 200 | 0.15 | 31 | 121 | 146 | 161.1 | 0.752 |
12 | 200 | 0.2 | 43 | 167 | 179 | 247.3 | 0.817 |
13 | 250 | 0.05 | 26 | 76 | 102 | 158.6 | 0.425 |
14 | 250 | 0.1 | 25 | 81 | 108 | 217.4 | 0.398 |
15 | 250 | 0.15 | 31 | 149 | 156 | 246.9 | 0.498 |
16 | 250 | 0.2 | 48 | 186 | 201 | 324.2 | 0.563 |
Type | Axial Force Fa (N) | Radial Force Fr (N) | Main Cutting Force Fc (N) | Cutting Temperature T (°C) |
---|---|---|---|---|
SNS0 | 18 | 68 | 82 | 139.1 |
SNS3 | 19 | 76 | 83 | 176 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Bai, X.; Zhang, J.; Yi, M.; Xiao, G.; Zhou, T.; Chen, H.; Chen, Z.; Xu, C. Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials. Materials 2025, 18, 3440. https://doi.org/10.3390/ma18153440
Zhang Z, Bai X, Zhang J, Yi M, Xiao G, Zhou T, Chen H, Chen Z, Xu C. Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials. Materials. 2025; 18(15):3440. https://doi.org/10.3390/ma18153440
Chicago/Turabian StyleZhang, Zhiyuan, Xiaolan Bai, Jingjie Zhang, Mingdong Yi, Guangchun Xiao, Tingting Zhou, Hui Chen, Zhaoqiang Chen, and Chonghai Xu. 2025. "Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials" Materials 18, no. 15: 3440. https://doi.org/10.3390/ma18153440
APA StyleZhang, Z., Bai, X., Zhang, J., Yi, M., Xiao, G., Zhou, T., Chen, H., Chen, Z., & Xu, C. (2025). Mechanical Properties and Cutting Performance of Si3N4/Sc2W3O12 Composite Ceramic Tools Materials. Materials, 18(15), 3440. https://doi.org/10.3390/ma18153440