Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Microstructure
2.3. Electrical Conductivity Measurements
3. Results
3.1. Configurational Entropy
3.2. X-Ray Diffraction
3.3. Grain Structure
3.4. Relative Density
3.5. Electrical Conductivity
3.6. Electrical Conduction Activation Energy
3.7. Effect of Configurational Entropy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, H.U. Fabrication and Property Control of LaCrO3 Based Oxides. In Processing of Crystalline Ceramics; Palmour, H., Davis, R.F., Hare, T.M., Eds.; Springer: Boston, MA, USA, 1978. [Google Scholar]
- Kolisetty, A.; Fu, Z.; Koc, R. Development of La(CrCoFeNi)O3 System Perovskites as Interconnect and Cathode Materials for Solid Oxide Fuel Cells. Ceram. Int. 2017, 43, 7647–7652. [Google Scholar] [CrossRef]
- Rost, C.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.; Hou, D.; Jones, J.; Curtarolo, S.; Maria, J. Entropy-Stabilized Oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef]
- Anand, G.; Wynn, A.P.; Handley, C.M.; Freeman, C.L. Phase stability and distortion in high-entropy oxides. Acta Mater. 2018, 146, 119–125. [Google Scholar] [CrossRef]
- Sehlin, S.; Anderson, H.; Koc, R.; Sparlin, D. Evidence for 2+-4+ Pairing in the (La,Ca)(Cr,Co)O3 Series. Ceram. Trans. 1991, 24, 249–256. [Google Scholar]
- Gajjala, S.R.; Swift, G.; Koc, R. Sintering and Electrical Conductivity of Calcium-Doped Three-Cation Perovskite Materials. J. Mater. Sci. Mater. Eng. 2024, 19, 3. [Google Scholar] [CrossRef]
- Swift, G.; Gajjala, S.R.; Koc, R. Sintering and Electrical Conductivity of Medium-and High-Entropy Calcium-Doped Four B-Site Cation Perovskite Materials. Crystals 2025, 15, 524. [Google Scholar] [CrossRef]
- Koc, R.; Anderson, H. Investigation of Strontium-doped La(Cr,Mn)O3 for Solid Oxide Fuel Cells. J. Mater. Sci. 1992, 27, 5837–5843. [Google Scholar] [CrossRef]
- Dudnikov, V.A.; Orlov, Y.S.; Solovyov, L.A.; Vereshchagin, S.N.; Ustyuzhanin, Y.N.; Zharkov, S.M.; Zeer, G.M.; Borus, A.A.; Bondarev, V.S.; Ovchinnikov, S.G. Crystal Structure and Thermoelectric Properties of Mechanically Activated LaCoO3. J. Taiwan Inst. Chem. Eng. 2024, 162, 105560. [Google Scholar] [CrossRef]
- Chick, L.A.; Liu, J.; Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Maupin, G.D.; Coffey, G.W.; Coyle, C.A. Phase Transitions and Transient Liquid-Phase Sintering in Calcium-Substituted Lanthanum Chromite. J. Am. Ceram. Soc. 1997, 80, 2109–2120. [Google Scholar] [CrossRef]
- Talukdar, A.; Chakrovorty, A.; Sarmah, P.; Paramasivam, P.; Kumar, V.; Yadav, S.K.; Manickkam, S.; Ahmed, M. A Review on Solid Oxide Fuel Cell Technology: An Efficient Energy Conversion System. Int. J. Energy Res. 2024, 2024, 6443247. [Google Scholar] [CrossRef]
- Sun, X.; Pei, Z.; Guo, X.; Ye, X.; Wang, L.; Zhang, Y.; Dong, S. Impact of Ca Ions Substitution at A-site on LaCoO3 Perovskite Energy Applications. Mater. Sci. Eng. B. 2025, 319, 118343. [Google Scholar] [CrossRef]
- Bai, F.; Schulwitz, J.; Priamushko, T.; Hagemann, U.; Kostka, A.; Heidelmann, M.; Cherevko, S.; Muhler, M.; Li, T. Correlating Atomic-Scale Structural and Compositional Details of Ca-doped LaCoO3 Perovskite Nanoparticles with Activity and Stability Towards the Oxygen Evolution Reaction. J. Catal. 2024, 438, 115697. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, P.-Y.; Wang, F.; Wuliji, H.; Zhu, H.; Wang, J. Enhancing Strategy of the Small-Polaron Conductivity in LaCrO3: First-Principles Calculations and Experimental Validation. ACS Appl. Mater. Interfaces 2024, 16, 15073–15083. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.; Chen, S.; Lin, S.; Gan, J.; Chin, T.; Shun, T.; Tsau, C.; Chang, S. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Bérardan, D.; Franger, S.; Dragoe, D.; Meena, A.; Dragoe, N. Colossal Dielectric Constant in High Entropy Oxides. Phys. Status Solidi Rapid Res. Lett. 2016, 10, 328–333. [Google Scholar] [CrossRef]
- Bérardan, D.; Franger, S.; Meena, A.; Dragoe, N. Room Temperature Lithium Superionic Conductivity in High Entropy Oxides. J. Mater. Chem. A 2016, 4, 9536–9541. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiang, H.; Dai, F.; Peng, Z.; Zhou, Y. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A Novel High-Entropy Ceramic with Low Thermal Conductivity and Sluggish Grain Growth Rate. J. Mater. Sci. Technol. 2019, 35, 2647–2651. [Google Scholar] [CrossRef]
- Takaba, H.; Kimura, S.; Alam, M. Crystal and Electronic Structures of Substituted Halide Perovskites Based on Density Functional Calculation and Molecular Dynamics. Chem. Phys. 2017, 485, 22–28. [Google Scholar] [CrossRef]
- Lufaso, M.; Woodward, P. Prediction of the Crystal Structures of Perovskites Using the Software Program SPuDS. Acta Cryst. B 2001, 57, 725–738. [Google Scholar] [CrossRef]
- Jarin, S.; Yuan, Y.; Zhang, M.; Hu, M.; Rana, M.; Wang, S.; Knibbe, R. Predicting the Crystal Structure and Lattice Parameters of the Perovskite Materials via Different Machine Learning Models Based on Basic Atom Properties. Crystals 2022, 12, 1570–1590. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiaojie, X. Modeling of Lattice Parameters of Cubic Perovskite Oxides and Halides. Heliyon 2021, 7, e07601. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Liang, Z.; Ning, H.; Fu, X.; Xu, Z.; Qiu, T.; Xu, W.; Yao, R.; Peng, J. High-Entropy Oxides: Advanced Research on Electrical Properties. Coatings 2021, 11, 628–644. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent 3,330,697, 11 July 1967. [Google Scholar]
- Gajjala, S.R.; Fu, Z.; Koc, R. Investigation of (La1-X,CaX)(Ni0.25Fe0.25Cr0.25Co0.25)O3 for Solid Oxide Fuel Cells Cathode Materials. Ceram. Eng. Sci. Proc. 2019, 39, 85–97. [Google Scholar]
- Anandkumar, M.; Trofimov, E. Synthesis, Properties, and Applications of High-Entropy Oxide Ceramics: Current Progress and Future Perspectives. J. Alloy. Compd. 2023, 960, 170690. [Google Scholar] [CrossRef]
- Kiebach, R.; Pirou, S.; Aguilera, L.M. A Review on Dual-Phase Oxygen Transport membranes: From Fundamentals to Commercial Deployment. J. Mater. Chem. A 2022, 10, 2152–2195. [Google Scholar] [CrossRef]
- Li, X.; Hao, S.; Chen, Z.; Huang, T.; Fu, S.; Zhao, F.; You, K.; Luo, H. Roles of the A-Site Ca Dopant in Modifying Surface Properties of a Co-Based Perovskite Catalyst for Selective Oxidation of Cyclohexane. Am. Chem. Soc. 2024, 63, 6087–6099. [Google Scholar] [CrossRef]
- Ulyanova, A.V.; Senina, M.O.; Lemeshev, D.O. Dense ceramics based on solid solutions. J. Phys. Conf. Ser. 2021, 1942, 012049. [Google Scholar] [CrossRef]
- Halabi, R.; Simotko, S.; Tsur, Y. The influence of point defects on the sintering of magnesium oxide. J. Am. Ceram. Soc. 2024, 107, 8023–8035. [Google Scholar] [CrossRef]
- Koc, R.; Anderson, H.U. Liquid Phase Sintering of LaCrO3. J. Eur. Ceram. Soc. 1992, 9, 285–292. [Google Scholar] [CrossRef]
- Yokokawa, H.; Sakai, N.; Kawada, T.; Dokiya, M. Thermodynamic Stabilities of Perovskite Oxides for Electrodes and Other Electrochemical Materials. Solid State Ion. 1992, 52, 43–56. [Google Scholar] [CrossRef]
- Mori, M.; Hiei, Y.; Sammes, N.M. Sintering Behavior of Ca- or Sr-Doped LaCrO3 Perovskites Including Second Phase of AECrO4 (AE=Sr, Ca) in Air. Solid State Ion. 2000, 135, 743–748. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Review: Liquid Phase Sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Misusaki, J.; Yoshiro, M.; Yamauchi, S.; Fueki, K. Electrical Conductivity and Seebeck Coefficient of Nonstoichiometric La1-xSrxCoO3-δ. J. Electrochem. Soc. 1989, 136, 2082–2088. [Google Scholar] [CrossRef]
- Kharton, V.; Yaremchenko, A.; Naumovich, E. Research on the Electrochemistry of Oxygen Ion Conductors in the Former Soviet Union. II. Perovskite-Related Oxides. J. Solid State Electrochem. 1999, 3, 303–326. [Google Scholar] [CrossRef]
- Chiba, R.; Yoshimura, F.; Sakurai, Y. An Investigation of LaNi1−xFexO3 as a Cathode Material for Solid Oxide Fuel Cells. Solid State Ion. 1999, 124, 281–288. [Google Scholar] [CrossRef]
- He, Q.; Zhang, X.; Hao, H.; Hu, X. High-Temperature Electronic Transport Properties of La1−xCaxMnO3+δ (0.0≤x≤1.0). Phys. B 2008, 403, 2867–2871. [Google Scholar] [CrossRef]
Starting Material |
---|
La2(CO3)3·XH2O |
Cr(NO3)3·9H2O |
Fe(NO3)3·9H2O |
N2NiO6·6H2O |
Co(NO3)2·6H2O |
MnCO3 |
CaCO3 |
Calcium Content (x, at%) | Configurational Entropy |
---|---|
0 | 1.609R |
0.1 | 1.935R |
0.2 | 2.110R |
0.3 | 2.220R |
Ca doping Fraction, x | Relative Density (%) |
---|---|
0 | 76 |
0.1 | 87 |
0.2 | 87 |
0.3 | 89 |
Ca Doping Fraction, x | Slope | R2 |
---|---|---|
0 | −0.1373 | 0.9979 |
0.1 | −0.1124 | 0.9973 |
0.2 | −0.0937 | 0.9968 |
0.3 | −0.1092 | 0.9806 |
Perovskite Oxide | x = 0 | x = 0.1 | x = 0.2 | x = 0.3 |
---|---|---|---|---|
La1−xCax(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3−δ | 15.4 | 52.8 | 50.9 | 56.5 |
LaCoO3 [36] | 1000 | |||
LaCrO3 (700 °C) [37] | 0.34 | |||
LaFeO3 [38] | 0.1 | |||
LaMnO3 [39] | 80 | |||
LaNiO3 [38] | 40 |
Ca Doping Amount | Slope | R2 | Activation Energy (eV) |
---|---|---|---|
x = 0 | −0.1721 | 0.9970 | 0.344 |
x = 0.1 | −0.1471 | 0.9995 | 0.294 |
x = 0.2 | −0.1285 | 0.9998 | 0.257 |
x = 0.3 | −0.1440 | 0.9928 | 0.287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swift, G.; Gajjala, S.R.; Koc, R. Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials. Crystals 2025, 15, 686. https://doi.org/10.3390/cryst15080686
Swift G, Gajjala SR, Koc R. Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials. Crystals. 2025; 15(8):686. https://doi.org/10.3390/cryst15080686
Chicago/Turabian StyleSwift, Geoffrey, Sai Ram Gajjala, and Rasit Koc. 2025. "Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials" Crystals 15, no. 8: 686. https://doi.org/10.3390/cryst15080686
APA StyleSwift, G., Gajjala, S. R., & Koc, R. (2025). Electrical Conductivity of High-Entropy Calcium-Doped Six- and Seven-Cation Perovskite Materials. Crystals, 15(8), 686. https://doi.org/10.3390/cryst15080686