Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (219)

Search Parameters:
Keywords = regional life cycle management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3366 KiB  
Article
Real-Time Integrative Mapping of the Phenology and Climatic Suitability for the Spotted Lanternfly, Lycorma delicatula
by Brittany S. Barker, Jules Beyer and Leonard Coop
Insects 2025, 16(8), 790; https://doi.org/10.3390/insects16080790 - 31 Jul 2025
Viewed by 451
Abstract
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The [...] Read more.
We present a model that integrates the mapping of the phenology and climatic suitability for the spotted lanternfly (SLF), Lycorma delicatula (White, 1845) (Hemiptera: Fulgoridae), to provide guidance on when and where to conduct surveillance and management of this highly invasive pest. The model was designed for use in the Degree-Day, Establishment Risk, and Phenological Event Maps (DDRP) platform, which is an open-source decision support tool to help to detect, monitor, and manage invasive threats. We validated the model using presence records and phenological observations derived from monitoring studies and the iNaturalist database. The model performed well, with more than >99.9% of the presence records included in the potential distribution for North America, a large proportion of the iNaturalist observations correctly predicted, and a low error rate for dates of the first appearance of adults. Cold and heat stresses were insufficient to exclude the SLF from most areas of the conterminous United States (CONUS), but an inability for the pest to complete its life cycle in cold areas may hinder establishment. The appearance of adults occurred several months earlier in warmer regions of North America and Europe, which suggests that host plants in these areas may experience stronger feeding pressure. The near-real-time forecasts produced by the model are available at USPest.org and the USA National Phenology Network to support decision making for the CONUS. Forecasts of egg hatch and the appearance of adults are particularly relevant for surveillance to prevent new establishments and for managing existing populations. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 339
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

35 pages, 3995 KiB  
Review
Recent Advancements in Latent Thermal Energy Storage and Their Applications for HVAC Systems in Commercial and Residential Buildings in Europe—Analysis of Different EU Countries’ Scenarios
by Belayneh Semahegn Ayalew and Rafał Andrzejczyk
Energies 2025, 18(15), 4000; https://doi.org/10.3390/en18154000 - 27 Jul 2025
Viewed by 626
Abstract
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) [...] Read more.
Heating, ventilation, and air-conditioning (HVAC) systems account for the largest share of energy consumption in European Union (EU) buildings, representing approximately 40% of the final energy use and contributing significantly to carbon emissions. Latent thermal energy storage (LTES) using phase change materials (PCMs) has emerged as a promising strategy to enhance HVAC efficiency. This review systematically examines the role of latent thermal energy storage using phase change materials (PCMs) in optimizing HVAC performance to align with EU climate targets, including the Energy Performance of Buildings Directive (EPBD) and the Energy Efficiency Directive (EED). By analyzing advancements in PCM-enhanced HVAC systems across residential and commercial sectors, this study identifies critical pathways for reducing energy demand, enhancing grid flexibility, and accelerating the transition to nearly zero-energy buildings (NZEBs). The review categorizes PCM technologies into organic, inorganic, and eutectic systems, evaluating their integration into thermal storage tanks, airside free cooling units, heat pumps, and building envelopes. Empirical data from case studies demonstrate consistent energy savings of 10–30% and peak load reductions of 20–50%, with Mediterranean climates achieving superior cooling load management through paraffin-based PCMs (melting range: 18–28 °C) compared to continental regions. Policy-driven initiatives, such as Germany’s renewable integration mandates for public buildings, are shown to amplify PCM adoption rates by 40% compared to regions lacking regulatory incentives. Despite these benefits, barriers persist, including fragmented EU standards, life cycle cost uncertainties, and insufficient training. This work bridges critical gaps between PCM research and EU policy implementation, offering a roadmap for scalable deployment. By contextualizing technical improvement within regulatory and economic landscapes, the review provides strategic recommendations to achieve the EU’s 2030 emissions reduction targets and 2050 climate neutrality goals. Full article
Show Figures

Figure 1

25 pages, 528 KiB  
Review
Life Cycle Assessment and Environmental Load Management in the Cement Industry
by Qiang Su, Ruslan Latypov, Shuyi Chen, Lei Zhu, Lixin Liu, Xiaolu Guo and Chunxiang Qian
Systems 2025, 13(7), 611; https://doi.org/10.3390/systems13070611 - 20 Jul 2025
Viewed by 519
Abstract
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison [...] Read more.
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison of cement production impacts across major producing regions, notably highlighting China’s role as the largest global emitter. It covers the core LCA phases, including goal and scope definition, inventory analysis, impact assessment, and interpretation, and emphasizes the role of LCA in quantifying cradle-to-gate impacts (typically around 0.9–1.0 t CO2 per ton of cement), evaluating the emissions reductions provided by alternative cement types (such as ~30–45% lower emissions using limestone calcined clay cements), informing policy frameworks like emissions trading schemes, and guiding sustainability certifications. Strategies for environmental load reduction in cement manufacturing are quantitatively examined, including technological innovations (e.g., carbon capture technologies potentially cutting plant emissions by up to ~90%) and material substitutions. Persistent methodological challenges—such as data quality issues, scope limitations, and the limited real-world integration of LCA findings—are critically discussed. Finally, specific future research priorities are identified, including developing country-specific LCI databases, integrating techno-economic assessment into LCA frameworks, and creating user-friendly digital tools to enhance the practical implementation of LCA-driven strategies in the cement industry. Full article
Show Figures

Figure 1

34 pages, 3875 KiB  
Article
Basis for a New Life Cycle Inventory for Metals from Mine Tailings Using a Conceptual Model Tool
by Katherine E. Raymond, Mike O’Kane, Mark Logsdon, Yamini Gopalapillai, Kelsey Hewitt, Johannes Drielsma and Drake Meili
Minerals 2025, 15(7), 752; https://doi.org/10.3390/min15070752 - 18 Jul 2025
Viewed by 265
Abstract
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to [...] Read more.
Life Cycle Impact Assessments (LCIAs) examine the environmental impacts of products using life cycle inventories (LCIs) of quantified inputs and outputs of a product through its life cycle. Currently, estimated impacts from mining are dominated by long-term metal release from tailings due to inaccurate assumptions regarding metal release and transport within and from mine materials. A conceptual model approach is proposed to support the development of a new database of LCI data, applying mechanistic processes required for the release and transport of metals through tailings and categorizing model inputs into ‘bins’. The binning approach argues for accuracy over precision, noting that precise metal release rates are likely impossible with the often-limited data available. Three case studies show the range of forecasted metal release rates, where even after decades of monitoring within the tailings and underlying aquifer, metal release rates span several orders of magnitude (<100 mg/L to >100,000 mg/L sulfate at the Faro Mine). The proposed tool may be useful for the development of a new database of LCI data, as well as to analyze mine’s regional considerations during designs for risk evaluation, management and control prior to development, when data is also scarce. Full article
Show Figures

Figure 1

16 pages, 1588 KiB  
Article
Seismic Fragility and Loss Assessment of a Multi-Story Steel Frame with Viscous Damper in a Corrosion Environment
by Wenwen Qiu, Haibo Wen, Chenhui Gong, Zhenkai Zhang, Wenjing Li and Shuo Li
Buildings 2025, 15(14), 2515; https://doi.org/10.3390/buildings15142515 - 17 Jul 2025
Viewed by 210
Abstract
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel [...] Read more.
Corrosion can accelerate the deterioration of the mechanical properties of steel structures. However, few studies have systematically evaluated its impact on seismic performance, particularly with respect to seismic economic losses. In this paper, the seismic fragility and loss assessment of a multi-story steel frame with viscous dampers (SFVD) building are investigated through experimental and numerical analysis. Based on corrosion and tensile test results, OpenSees software 3.3.0 was used to model the SFVD, and the effect of corrosion on the seismic fragility was evaluated via incremental dynamic analysis (IDA). Then, the economic losses of the SFVD during different seismic intensities were assessed at various corrosion times based on fragility analysis. The results show that as the corrosion time increases, the mass and cross-section loss rate of steel increase, causing a decrease in mechanical property indices, and theprobability of exceedance of the SFVD in the limit state increases gradually with increasing corrosion time, with an especially significant impact on the collapse prevention (CP) state. Furthermore, the economic loss assessment based on fragility curves indicates that the economic loss increases with corrosion time. Thus, the aim of this paper is to provide guidance for the seismic design and risk management of steel frame buildings in coastal regions throughout their life cycle. Full article
Show Figures

Figure 1

33 pages, 8044 KiB  
Article
Building Ledger Dossier: Case Study of Seismic Damage Mitigation and Building Documentation Tracking Through a Digital Twin Approach
by Giovanni De Gasperis, Sante Dino Facchini and Asif Saeed
Systems 2025, 13(7), 529; https://doi.org/10.3390/systems13070529 - 1 Jul 2025
Viewed by 1034
Abstract
In recent years, numerous regions worldwide have experienced devastating natural disasters, leading to significant structural damage to buildings and loss of human lives. The reconstruction process highlights the need for a reliable method to document and track the maintenance history of buildings. This [...] Read more.
In recent years, numerous regions worldwide have experienced devastating natural disasters, leading to significant structural damage to buildings and loss of human lives. The reconstruction process highlights the need for a reliable method to document and track the maintenance history of buildings. This paper introduces a novel approach for managing and monitoring restoring interventions using a secure and transparent digital framework. We will also present an application aimed at improving building structures with respect to earthquake resistance. The proposed system, referred as the “Building Ledger Dossier”, leverages a Digital Twin approach applied to blockchain to establish an immutable record of all structural interventions. The framework models buildings using OpenSees, while all maintenance, repair activities, and documents are registered as Non-Fungible Tokens on a blockchain network, ensuring timestamping, transparency, and accountability. A Decentralized Autonomous Organization oversees identity management and work validation, enhancing security and efficiency in building restoration efforts. This approach provides a scalable and globally applicable solution for improving both ante-disaster monitoring and post-disaster reconstruction, ensuring a comprehensive, verifiable history of structural interventions and fostering trust among stakeholders. The proposed method is also applicable to other types of processes that require the aforementioned properties for document monitoring, such as the life-cycle management of tax credits and operations in the financial or banking sectors. Full article
Show Figures

Figure 1

26 pages, 2245 KiB  
Review
Life Cycle Assessment with Carbon Footprint Analysis in Glulam Buildings: A Review
by Ruijing Liu, Lihong Yao, Yingchun Gong and Zhen Wang
Buildings 2025, 15(12), 2127; https://doi.org/10.3390/buildings15122127 - 19 Jun 2025
Viewed by 776
Abstract
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from [...] Read more.
This study provides a bibliometric analysis of life cycle assessments (LCAs) to explore the sustainability potential of mass timber buildings, focusing on glulam. The analysis highlights regional differences in carbon footprint performance within the ISO 14040 and EN 15978 frameworks. LCA results from representative countries across six continents show that wood buildings, compared to traditional materials, have a reduced carbon footprint. The geographical distribution of forest resources significantly influences the carbon footprint of glulam production. Europe and North America demonstrate optimal performance metrics (e.g., carbon sequestration), attributable to advanced technology and investment in long-term sustainable forest management. Our review research shows the lowest glulam carbon footprints (28–70% lower than traditional materials) due to clean energy and sustainable practices. In contrast, Asia and Africa exhibit systemic deficits, driven by resource scarcity, climatic stressors, and land-use pressures. South America and Oceania display transitional dynamics, with heterogeneous outcomes influenced by localized deforestation trends and conservation efficacy. Glulam buildings outperformed concrete and steel across 11–18 environmental categories, with carbon storage offsetting 30–47% of emissions and energy mixes cutting operational impacts by up to 67%. Circular strategies like recycling and prefabrication reduced end-of-life emissions by 12–29% and cut construction time and costs. Social benefits included job creation (e.g., 1 million in the EU) and improved well-being in wooden interiors. To further reduce carbon footprint disparities, this study emphasizes sustainable forest management, longer building lifespans, optimized energy mixes, shorter transport distances, advanced production technologies, and improved recycling systems. Additionally, the circular economy and social benefits of glulam buildings, such as reduced construction costs, value recovery, and job creation, are highlighted. In the future, prioritizing equitable partnerships and enhancing international exchanges of technical expertise will facilitate the adoption of sustainable practices in glulam buildings and advance decarbonization goals in the global building sector. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 1228 KiB  
Article
Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain
by Begoña García Castellanos, Benjamín García García and José García García
Agronomy 2025, 15(6), 1372; https://doi.org/10.3390/agronomy15061372 - 3 Jun 2025
Viewed by 652
Abstract
Spain is the world’s leading producer of organic fresh lemons, with production concentrated in the southeast. Given the relevance of this region in lemon production and the role of organic agriculture in sustainable development, this study establishes the main organic lemon production models [...] Read more.
Spain is the world’s leading producer of organic fresh lemons, with production concentrated in the southeast. Given the relevance of this region in lemon production and the role of organic agriculture in sustainable development, this study establishes the main organic lemon production models in Southeastern Spain (Fino and Verna) and evaluates them from the economic and environmental perspective using life cycle costing (LCC) and life cycle assessment (LCA). Both models present a similar cost structure, with labor and fertilization being the most significant costs. Verna presents higher unit cost due to lower productivity. Organic management entails higher unit costs than conventional due to lower productivity and the higher costs of organic fertilization and biotechnological pest control. In LCA, the contributions of the components to the impacts of the organic models are very similar, due to the similarities in the production models. These contributions also resemble those in conventional management systems, with fertilizers being the largest contributor to impacts. Organic systems generally show lower absolute values than conventional, mainly because of the use of organic fertilizers. Fino shows lower values than Verna, driven by higher productivity. The global warming results showed relatively low emissions, 0.053 and 0.068 kg CO2 eq·kg−1 for Fino and Verna, respectively. Additionally, a sensitivity analysis was performed, introducing variability in non-fresh marketable yields and considering the avoidance of synthetic fertilizers. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 4277 KiB  
Article
Carbon Reduction Potential of Private Electric Vehicles: Synergistic Effects of Grid Carbon Intensity, Driving Intensity, and Vehicle Efficiency
by Kai Liu, Fangfang Liu and Chao Guo
Processes 2025, 13(6), 1740; https://doi.org/10.3390/pr13061740 - 1 Jun 2025
Viewed by 709
Abstract
This study investigates the annual carbon emission disparities between privately-owned electric vehicles (EVs) and internal combustion engine vehicles (ICEVs) by developing a usage-phase life cycle assessment (LCA) model, with a focus on the synergistic impacts of grid carbon intensity, driving intensity (e.g., annual [...] Read more.
This study investigates the annual carbon emission disparities between privately-owned electric vehicles (EVs) and internal combustion engine vehicles (ICEVs) by developing a usage-phase life cycle assessment (LCA) model, with a focus on the synergistic impacts of grid carbon intensity, driving intensity (e.g., annual mileage), and vehicle energy efficiency. Through scenario analyses and empirical case studies in four Chinese megacities, three key findings are obtained: (1) Grid carbon intensity is the primary factor affecting the emission advantages of EVs. EVs demonstrate significant carbon reduction benefits in regions with low-carbon power grids, even when the annual mileage is doubled. However, in coal-dependent grids under intensive usage scenarios, high-energy-consuming EVs may experience emission reversals, where their emissions exceed those of ICEVs. (2) Higher annual mileage among EV owners (1.5–2 times that of ICEV owners) accelerates carbon accumulation, particularly diminishing per-kilometer emission advantages in regions where electricity grids are heavily reliant on fossil fuels. (3) Vehicle energy efficiency heterogeneity plays a critical role: compact, low-energy EVs (e.g., A0-class sedans/SUVs) maintain emission advantages across all scenarios, while high-energy models (e.g., C-class sedans/SUVs) may exceed ICEV emissions even in regions with low-carbon power grids under specific conditions. The study proposes a differentiated policy framework that emphasizes the synergistic optimization of grid decarbonization, vehicle-class-specific management, and user behavior guidance to maximize the carbon reduction potential of EVs. These insights provide a scientific foundation for refining EV adoption strategies and achieving sustainable transportation transitions. Full article
(This article belongs to the Special Issue Life Cycle Assessment (LCA) as a Tool for Sustainability Development)
Show Figures

Figure 1

42 pages, 3024 KiB  
Article
Developing a Research Roadmap for Highway Bridge Infrastructure Innovation: A Case Study
by Arya Ebrahimpour, Aryan Baibordy and Ahmed Ibrahim
Infrastructures 2025, 10(6), 133; https://doi.org/10.3390/infrastructures10060133 - 30 May 2025
Viewed by 1092
Abstract
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, [...] Read more.
Bridges are assets in every society, and their deterioration can have severe economic, social, and environmental consequences. Therefore, implementing effective asset management strategies is crucial to ensure bridge infrastructure’s long-term performance and safety. Roadmaps can serve as valuable tools for bridge asset managers, helping bridge engineers make informed decisions that enhance bridge safety while maintaining controlled life cycle costs. Although some bridge asset management roadmaps exist, such as the one published by the United States Federal Highway Administration (FHWA), there is a lack of structured research roadmaps that are both region-specific and adaptable as guiding frameworks for similar studies. For instance, the FHWA roadmap cannot be universally applied across diverse regional contexts. This study addresses this critical gap by developing a research roadmap tailored to Idaho, USA. The roadmap was developed using a three-phase methodological approach: (1) a comprehensive analysis of past and ongoing Department of Transportation (DOT)-funded research projects over the last five years, (2) a nationwide survey of DOT funding and research practices, and (3) a detailed assessment of Idaho Transportation Department (ITD) deficiently rated bridge inventory, including individual element condition states. In the first phase, three filtering stages were implemented to identify the top 25 state projects. A literature review was conducted for each project to provide ITD’s Technical Advisory Committee (TAC) members with insights into research undertaken by various state DOTs. Moreover, in the second phase, approximately six questionnaires were designed and distributed to other state DOTs. These questionnaires primarily covered topics related to bridge research priorities and funding allocation. In the final phase, a condition state analysis was conducted using data-driven methods. Key findings from this three-phase methodological approach highlight that ultra-high-performance concrete (UHPC), bridge deck preservation, and maintenance strategies are high-priority research areas across many DOTs. Furthermore, according to the DOT responses, funding is most commonly allocated to projects related to superstructure and deck elements. Finally, ITD found that the most deficient elements in Idaho bridges are reinforced concrete abutments, reinforced concrete pile caps and footings, reinforced concrete pier walls, and movable bearing systems. These findings were integrated with insights from ITD’s TAC to generate a prioritized list of 23 high-impact research topics aligned with Idaho’s specific needs and priorities. From this list, the top six topics were selected for further investigation. By adopting this strategic approach, ITD aims to enhance the efficiency and effectiveness of its bridge-related research efforts, ultimately contributing to safer and more resilient transportation infrastructure. This paper could be a helpful resource for other DOTs seeking a systematic approach to addressing their bridge research needs. Full article
Show Figures

Figure 1

17 pages, 4988 KiB  
Article
Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia
by Bingxuan Liu, Dacheng Wang, Guozhu Mao, Aixia Yang, Yue Jiao and Kaichen Zhang
Land 2025, 14(5), 1092; https://doi.org/10.3390/land14051092 - 17 May 2025
Viewed by 537
Abstract
Inner Mongolia’s grasslands, covering 22% of China’s total grassland area, face critical challenges in balancing livestock production with carbon sequestration under climate change pressures. This study establishes an integrated assessment framework combining remote sensing monitoring, InVEST modeling, and life cycle assessment to analyze [...] Read more.
Inner Mongolia’s grasslands, covering 22% of China’s total grassland area, face critical challenges in balancing livestock production with carbon sequestration under climate change pressures. This study establishes an integrated assessment framework combining remote sensing monitoring, InVEST modeling, and life cycle assessment to analyze the spatial–temporal evolution of grassland ecological carrying capacity and livestock-related carbon emissions from 2000 to 2020. Key findings reveal a 78.8% increase in actual livestock carrying capacity (from 53.09 to 94.94 million sheep units), with Tongliao experiencing 185% growth, while Alxa League showed a 229,500 sheep unit decrease. The theoretical carrying capacity grew by 50.6%, yet severe ecological pressure emerged in western regions, as evidenced by Alxa League’s grass–livestock balance index exceeding 2100%. Carbon sequestration exhibited a northeast–southwest spatial pattern, decreasing by 7.4% during 2015–2020, while greenhouse gas emissions from intensive livestock systems reached 6.40 million tons CO2-eq in Tongliao by 2020. The results demonstrate that regions combining high-intensity husbandry with low carbon storage require urgent intervention. We propose three pathways: adaptive grazing management to reduce overloading in western pastoral zones, carbon monitoring systems to enhance sequestration in vulnerable ecosystems, and emission reduction technologies for intensive farming systems. These strategies provide actionable solutions for reconciling grassland sustainability with China’s dual carbon goals, offering insights for global pastoral ecosystem management. Full article
Show Figures

Figure 1

14 pages, 1352 KiB  
Review
The Baluchistan Melon Fly, Myiopardalis pardalina Bigot: Biology, Ecology, and Management Strategies
by Junyan Liu, Yidie Xu, Mengbo Guo, Kaiyun Fu, Xinhua Ding, Sijia Yu, Xinyi Gu, Wenchao Guo and Jianyu Deng
Insects 2025, 16(5), 514; https://doi.org/10.3390/insects16050514 - 11 May 2025
Viewed by 1473
Abstract
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing [...] Read more.
The Baluchistan melon fly (Myiopardalis pardalina) is a highly invasive tephritid pest. It poses a critical threat to global cucurbit production, with crop losses exceeding 90% during outbreaks. This review synthesises current research on the pest’s biology, ecology, and management, focusing on its severe economic repercussions for key crops—including melon, watermelon, and cucumber—across Africa, Asia, and Europe. M. pardalina has a four-stage life cycle (egg, larva, pupa, and adult) and distinct morphological adaptations. The species’ geographic range continues to expand, driven by global trade networks and its adaptability to shifting climatic conditions. Infestations by this pest severely reduce fruit yields, undermining food security and destabilising rural economies reliant on cucurbit cultivation. We evaluate diverse control strategies, including monitoring and quarantine methods, cultural practices, physical controls, chemical management, biological agents, and emerging genetic tools. This review emphasises the urgency of adopting integrated pest management (IPM) to strategically balance efficacy, ecological sustainability, and operational scalability. By consolidating fragmented knowledge and identifying critical research gaps, this work provides a framework for mitigating M. pardalina’s impacts, offering actionable insights to safeguard agricultural productivity and enhance resilience in vulnerable regions. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

21 pages, 2917 KiB  
Article
A Water Consumption Assessment in the Production of Marble, Granite, and Quartz-Based Composites Using Life Cycle Assessment: A Case Study in Bahia, Brazil
by José Oduque Nascimento de Jesus, Luciano José da Silva, Virginia Parente, Karla Patricia Oliveira Esquerre, Oz Sahin and Wanderbeg Correia de Araujo
Water 2025, 17(10), 1438; https://doi.org/10.3390/w17101438 - 10 May 2025
Viewed by 777
Abstract
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using [...] Read more.
Given the relevance of sustainability, this study analyzed the impacts on water consumption in the production chain of ornamental stone pieces (marble and granite) and quartz-based composites. The goal was to compare the water demand throughout the process, from extraction to manufacturing, using 1 m3 blocks as the unit of analysis. This study was conducted in Bahia, a state with significant ornamental stone production, located in a semi-arid region with limited water availability. The methodology included data collection from participating companies, combined with sectorial information and the Ecoinvent version 3.3 database, modeled using the SimaPro 8.0 software. The impact assessment was carried out using the AWaRE (Water Scarcity Footprint) and ReCiPe Endpoint methods, following the guidelines of Life Cycle Assessment (LCA), as per ABNT NBR ISO 14040 standards. The results showed that marble and granite have lower water demand and environmental impact in the categories of particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification when compared to quartz composites. The highest environmental impact occurred during the processing stage, which requires a large amount of water and generates effluents, losses, and particulate matter. The results indicate that marble and granite demand less water and exhibit lower environmental impacts—across categories like particulate matter, human toxicity, ecotoxicity, eutrophication, and acidification—than quartz composites. Notably, the processing stage incurred the highest environmental burden due to its intensive water use and consequent generation of effluents, losses, and particulate matter. These findings highlight the necessity of efficient water management and the adoption of circular economy principles—including water reuse and waste valorization—to promote long-term sustainability in the ornamental stone industry. Full article
(This article belongs to the Section Water Use and Scarcity)
Show Figures

Figure 1

Back to TopTop