Life Cycle Assessment (LCA) as a Tool for Sustainability Development

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Sustainable Processes".

Deadline for manuscript submissions: closed (15 February 2025) | Viewed by 728

Special Issue Editor


E-Mail Website
Guest Editor
CiSGER, Facultad de Ingeniería, Universidad del Desarrollo, Santiago, Chile
Interests: sustainability; sustainable development; material flow analysis; life cycle assessment

Special Issue Information

Dear Colleagues,

Life Cycle Assessment (LCA) is a comprehensive method used to evaluate the environmental impacts associated with all stages of a product’s life—from raw material extraction through to materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling. By assessing the cumulative environmental impacts resulting from all stages of a product’s life cycle, LCA helps organizations to make more informed decisions that can lead to sustainable development.

LCA provides a detailed examination of the energy and materials used and wastes released to the environment throughout a product’s lifecycle. It aims to identify opportunities to improve the environmental performance of products at various points in their lifecycle and helps to prevent a “problem shifting” scenario where solving one environmental issue may lead to creating another. In the context of sustainable development, LCA is used to evaluate the trade-offs between product alternatives in terms of natural resources, energy use, waste, and emissions. This enables companies and policymakers to improve the sustainability of their products and policies.

The growing importance of sustainability has led LCA to become an essential tool for companies committed to reducing their environmental footprint, complying with regulatory requirements, and enhancing their corporate social responsibility. Through LCA, businesses can achieve a better balance between economic performance and environmental conservation, fostering a more sustainable future.

Dr. Alex Godoy-Faúndez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental impact
  • sustainability
  • product lifecycle
  • resource efficiency
  • emissions reduction
  • waste management
  • trade-offs analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4277 KiB  
Article
Carbon Reduction Potential of Private Electric Vehicles: Synergistic Effects of Grid Carbon Intensity, Driving Intensity, and Vehicle Efficiency
by Kai Liu, Fangfang Liu and Chao Guo
Processes 2025, 13(6), 1740; https://doi.org/10.3390/pr13061740 - 1 Jun 2025
Viewed by 243
Abstract
This study investigates the annual carbon emission disparities between privately-owned electric vehicles (EVs) and internal combustion engine vehicles (ICEVs) by developing a usage-phase life cycle assessment (LCA) model, with a focus on the synergistic impacts of grid carbon intensity, driving intensity (e.g., annual [...] Read more.
This study investigates the annual carbon emission disparities between privately-owned electric vehicles (EVs) and internal combustion engine vehicles (ICEVs) by developing a usage-phase life cycle assessment (LCA) model, with a focus on the synergistic impacts of grid carbon intensity, driving intensity (e.g., annual mileage), and vehicle energy efficiency. Through scenario analyses and empirical case studies in four Chinese megacities, three key findings are obtained: (1) Grid carbon intensity is the primary factor affecting the emission advantages of EVs. EVs demonstrate significant carbon reduction benefits in regions with low-carbon power grids, even when the annual mileage is doubled. However, in coal-dependent grids under intensive usage scenarios, high-energy-consuming EVs may experience emission reversals, where their emissions exceed those of ICEVs. (2) Higher annual mileage among EV owners (1.5–2 times that of ICEV owners) accelerates carbon accumulation, particularly diminishing per-kilometer emission advantages in regions where electricity grids are heavily reliant on fossil fuels. (3) Vehicle energy efficiency heterogeneity plays a critical role: compact, low-energy EVs (e.g., A0-class sedans/SUVs) maintain emission advantages across all scenarios, while high-energy models (e.g., C-class sedans/SUVs) may exceed ICEV emissions even in regions with low-carbon power grids under specific conditions. The study proposes a differentiated policy framework that emphasizes the synergistic optimization of grid decarbonization, vehicle-class-specific management, and user behavior guidance to maximize the carbon reduction potential of EVs. These insights provide a scientific foundation for refining EV adoption strategies and achieving sustainable transportation transitions. Full article
(This article belongs to the Special Issue Life Cycle Assessment (LCA) as a Tool for Sustainability Development)
Show Figures

Figure 1

Back to TopTop