Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,293)

Search Parameters:
Keywords = regional divide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1886 KiB  
Article
Landscape Ecological Risk Assessment of Peri-Urban Villages in the Yangtze River Delta Based on Ecosystem Service Values
by Yao Xiong, Yueling Li and Yunfeng Yang
Sustainability 2025, 17(15), 7014; https://doi.org/10.3390/su17157014 (registering DOI) - 1 Aug 2025
Abstract
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies [...] Read more.
The rapid urbanization process has accelerated the degradation of ecosystem services (ESs) in peri-urban rural areas of the Yangtze River Delta (YRD), leading to increasing landscape ecological risks (LERs). Establishing a scientifically grounded landscape ecological risk assessment (LERA) system and corresponding control strategies is therefore imperative. Using rural areas of Jiangning District, Nanjing as a case study, this research proposes an optimized dual-dimensional coupling assessment framework that integrates ecosystem service value (ESV) and ecological risk probability. The spatiotemporal evolution of LER in 2000, 2010, and 2020 and its key driving factors were further studied by using spatial autocorrelation analysis and geodetector methods. The results show the following: (1) From 2000 to 2020, cultivated land remained dominant, but its proportion decreased by 10.87%, while construction land increased by 26.52%, with minimal changes in other land use types. (2) The total ESV increased by CNY 1.67 × 109, with regulating services accounting for over 82%, among which water bodies contributed the most. (3) LER showed an overall increasing trend, with medium- to highest-risk areas expanding by 55.37%, lowest-risk areas increasing by 10.10%, and lower-risk areas decreasing by 65.48%. (4) Key driving factors include landscape vulnerability, vegetation coverage, and ecological land connectivity, with the influence of distance to road becoming increasingly significant. This study reveals the spatiotemporal evolution characteristics of LER in typical peri-urban villages. Based on the LERA results, combined with terrain features and ecological pressure intensity, the study area was divided into three ecological management zones: ecological conservation, ecological restoration, and ecological enhancement. Corresponding zoning strategies were proposed to guide rural ecological governance and support regional sustainable development. Full article
20 pages, 2382 KiB  
Article
The Impact of the Injected Mass of the Gastrin-Releasing Peptide Receptor Antagonist on Uptake in Breast Cancer: Lessons from a Phase I Trial of [99mTc]Tc-DB8
by Olga Bragina, Vladimir Chernov, Mariia Larkina, Ruslan Varvashenya, Roman Zelchan, Anna Medvedeva, Anastasiya Ivanova, Liubov Tashireva, Theodosia Maina, Berthold A. Nock, Panagiotis Kanellopoulos, Jens Sörensen, Anna Orlova and Vladimir Tolmachev
Pharmaceutics 2025, 17(8), 1000; https://doi.org/10.3390/pharmaceutics17081000 - 31 Jul 2025
Abstract
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific [...] Read more.
Background/Objectives: Gastrin-releasing peptide receptor (GRPR) is overexpressed in breast cancer and might be used as a theranostics target. The expression of GRPR strongly correlates with estrogen receptor (ER) expression. Visualization of GRPR-expressing breast tumors might help to select the optimal treatment. Developing GRPR-specific probes for SPECT would permit imaging-guided therapy in regions with restricted access to PET facilities. In this first-in-human study, we evaluated the safety, biodistribution, and dosimetry of the [99mTc]Tc-DB8 GRPR-antagonistic peptide. We also addressed the important issue of finding the optimal injected peptide mass. Methods: Fifteen female patients with ER-positive primary breast cancer were enrolled and divided into three cohorts receiving [99mTc]Tc-DB8 (corresponding to three distinct doses of 40, 80, or 120 µg DB8) comprising five patients each. Additionally, four patients with ER-negative primary tumors were injected with 80 µg [99mTc]Tc-DB8. The injected activity was 360 ± 70 MBq. Planar scintigraphy was performed after 2, 4, 6, and 24 h, and SPECT/CT scans followed planar imaging 2, 4, and 6 h after injection. Results: No adverse events were associated with [99mTc]Tc-DB8 injections. The effective dose was 0.009–0.014 mSv/MBq. Primary tumors and all known lymph node metastases were visualized irrespective of injected peptide mass. The highest uptake in the ER-positive tumors was 2 h after injection of [99mTc]Tc-DB8 at a 80 µg DB8 dose (SUVmax 5.3 ± 1.2). Injection of [99mTc]Tc-DB8 with 80 µg DB8 provided significantly (p < 0.01) higher uptake in primary ER-positive breast cancer lesions than injection with 40 µg DB8 (SUVmax 2.0 ± 0.3) or 120 µg (SUVmax 3.2 ± 1.4). Tumor-to-contralateral breast ratio after injection of 80 μg was also significantly (p < 0.01, ANOVA test) higher than ratios after injection of other peptide masses. The uptake in ER-negative lesions was significantly lower (SUVmax 2.0 ± 0.3) than in ER-positive tumors. Conclusions: Imaging using [99mTc]Tc-DB8 is safe, tolerable, and associated with low absorbed doses. The tumor uptake is dependent on the injected peptide mass. The injection of an optimal mass (80 µg) provides the highest uptake in ER-positive tumors. At optimal dosing, the uptake was significantly higher in ER-positive than in ER-negative lesions. Full article
Show Figures

Graphical abstract

30 pages, 10655 KiB  
Review
Accidents in Oil and Gas Pipeline Transportation Systems
by Nediljka Gaurina-Međimurec, Karolina Novak Mavar, Katarina Simon and Fran Djerdji
Energies 2025, 18(15), 4056; https://doi.org/10.3390/en18154056 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United [...] Read more.
The paper provides an analysis of the causes of accidents in oil and gas pipeline systems. As part of a comprehensive overview of the topic, it also presents the historical development of pipeline systems, from the first commercial oil pipelines in the United States to modern infrastructure projects, with a particular focus on the role of regulatory requirements and measures (prevention, detection, and mitigation) to improve transport efficiency and pipeline safety. The research uses historical accident data from various databases to identify the main causes of accidents and analyse trends. The focus is on factors such as corrosion, third-party interference, and natural disasters that can lead to accidents. A comparison of the various accident databases shows that there are different practises and approaches to operation and reporting. As each database differs in terms of inclusion criteria, the categories are divided into five main groups to allow systematic interpretation of the data and cross-comparison of accident causes. Regional differences in the causes of accidents involving oil and gas pipelines in Europe, the USA, and Canada are visible. However, an integrated analysis shows that the number of accidents is declining in almost all categories. The majority of all recorded accidents are in the “Human factors and Operational disruption” and “Corrosion and Material damage” groups. It is recommended to use the database as required, as each category has its own specifics. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

17 pages, 3273 KiB  
Article
Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration
by Bingxu Zhai, Kaiyu Liu, Yuanzhuo Li, Zhilin Jiang, Panhao Qin, Wang Zhang and Yuanshi Zhang
Processes 2025, 13(8), 2423; https://doi.org/10.3390/pr13082423 - 30 Jul 2025
Viewed by 200
Abstract
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive [...] Read more.
The large-scale integration of renewable energy into power systems poses significant challenges to reactive power and voltage stability. To enhance system stability, this work proposes a cluster partitioning and distributed control strategy for distribution networks with high-penetration distributed PV integration. Firstly, a comprehensive clustering index system, including electrical distance, voltage sensitivity, and regulation ability, is established. Considering the voltage and reactive power support capability of regional clusters, the distribution network is divided into clusters. Subsequently, based on the results of cluster division, a hierarchical partition optimization model is constructed with voltage and reactive power as the optimization objectives. Finally, a distributed optimization algorithm based on ADMM is proposed to solve the optimization model and maximize the utilization of distribution network control resources. The simulation results based on the IEEE 33-node distribution system verify the effectiveness of the proposed distributed optimization strategy. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 86
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

20 pages, 8292 KiB  
Article
Landscape Zoning Strategies for Small Mountainous Towns: Insights from Yuqian Town in China
by Qingwei Tian, Yi Xu, Shaojun Yan, Yizhou Tao, Xiaohua Wu and Bifan Cai
Sustainability 2025, 17(15), 6919; https://doi.org/10.3390/su17156919 - 30 Jul 2025
Viewed by 149
Abstract
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, [...] Read more.
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, this study focused on Yuqian, a quintessential small mountainous town in Hangzhou, Zhejiang Province. The town’s layout was divided into a grid network measuring 70 m × 70 m. A two-step cluster process was employed using ArcGIS and SPSS software to analyze five landscape variables: altitude, slope, land use, heritage density, and visual visibility. Further, eCognition software’s semi-automated segmentation technique, complemented by manual adjustments, helped delineate landscape character types and areas. The overlay analysis integrated these areas with administrative village units, identifying four landscape character types across 35 character areas, which were recategorized into four planning and management zones: urban comprehensive service areas, agricultural and cultural tourism development areas, industrial development growth areas, and mountain forest ecological conservation areas. This result optimizes the current zoning types. These zones closely match governmental sustainable development zoning requirements. Based on these findings, we propose integrated landscape management and conservation strategies, including the cautious expansion of urban areas, leveraging agricultural and cultural tourism, ensuring industrial activities do not impact the natural and village environment adversely, and prioritizing ecological conservation in sensitive areas. This approach integrates spatial and administrative dimensions to enhance landscape connectivity and resource sustainability, providing key guidance for small town development in mountainous regions with unique environmental and cultural contexts. Full article
Show Figures

Figure 1

21 pages, 4865 KiB  
Article
Impact of Laser Power and Scanning Speed on Single-Walled Support Structures in Powder Bed Fusion of AISI 316L
by Dan Alexander Gallego, Henrique Rodrigues Oliveira, Tiago Cunha, Jeferson Trevizan Pacheco, Oksana Kovalenko and Neri Volpato
J. Manuf. Mater. Process. 2025, 9(8), 254; https://doi.org/10.3390/jmmp9080254 - 30 Jul 2025
Viewed by 156
Abstract
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing [...] Read more.
Laser beam powder bed fusion of metals (PBF-LB/M, or simply L-PBF) has emerged as one of the most competitive additive manufacturing technologies for producing complex metallic components with high precision, design freedom, and minimal material waste. Among the various categories of additive manufacturing processes, L-PBF stands out, paving the way for the execution of part designs with geometries previously considered unfeasible. Despite offering several advantages, parts with overhang features require the use of support structures to provide dimensional stability of the part. Support structures achieve this by resisting residual stresses generated during processing and assisting heat dissipation. Although the scientific community acknowledges the role of support structures in the success of L-PBF manufacturing, they have remained relatively underexplored in the literature. In this context, the present work investigated the impact of laser power and scanning speed on the dimensioning, integrity and tensile strength of single-walled block type support structures manufactured in AISI 316L stainless steel. The method proposed in this work is divided in two stages: processing parameter exploration, and mechanical characterization. The results indicated that support structures become more robust and resistant as laser power increases, and the opposite effect is observed with an increment in scanning speed. In addition, defects were detected at the interfaces between the bulk and support regions, which were crucial for the failure of the tensile test specimens. For a layer thickness corresponding to 0.060 mm, it was verified that the combination of laser power and scanning speed of 150 W and 500 mm/s resulted in the highest tensile resistance while respecting the dimensional deviation requirement. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

14 pages, 627 KiB  
Article
Early Warning Approach to Identify Positive Cases of SARS-CoV-2 in School Settings in Italy
by Caterina Milli, Cristina Stasi, Francesco Profili, Caterina Silvestri, Martina Pacifici, Michela Baccini, Gian Maria Rossolini, Fabrizia Mealli, Alberto Antonelli, Chiara Chilleri, Fabio Morecchiato, Nicla Giovacchini, Vincenzo Baldo, Maurizio Ruscio, Francesca Malacarne, Francesca Martin, Emanuela Occoni, Rosa Prato, Domenico Martinelli, Leonardo Ascatigno, Francesca Fortunato, Maria Cristina Rota and Fabio Volleradd Show full author list remove Hide full author list
Microorganisms 2025, 13(8), 1775; https://doi.org/10.3390/microorganisms13081775 - 30 Jul 2025
Viewed by 133
Abstract
During the COVID-19 pandemic, some studies suggested that transmission events could originate from schools. This study aimed to evaluate early-warning methods for identifying asymptomatic COVID-19 cases by implementing screening programs in schools. This study was conducted between September 2021 and May 2023, employing [...] Read more.
During the COVID-19 pandemic, some studies suggested that transmission events could originate from schools. This study aimed to evaluate early-warning methods for identifying asymptomatic COVID-19 cases by implementing screening programs in schools. This study was conducted between September 2021 and May 2023, employing a rotation-screening plan for COVID-19 detection on a sample of students aged 14 to 19 years attending secondary schools in the regions of Tuscany, Veneto, Apulia and Friuli-Venezia Giulia. The schools were divided into two groups: experimental and control, with a ratio of 1:2. Two types of molecular salivary tests for SARS-CoV-2 were used to conduct the screening. This study included 16 experimental schools and 32 control schools. Out of 2527 subjects, 11,475 swabs were administrated, with 9177 tests deemed valid for analysis (a 20% loss of tests). Among these, 89 subjects (3.5%) tested positive. In control schools, 1895 subjects (6.5%) tested positive for SARS-CoV-2. This study recorded peaks in infections during the winter and autumn months, consistent with patterns observed in the general population. Beginning in September 2022, a shift occurred, with 2.6% of positive cases reported in the case schools compared to 0.3% in the control schools. Initially, most cases of COVID-19 were detected in the control schools; however, as the pandemic emergency phase concluded, cases were primarily identified through active screening in experimental schools. Although student participation in the active screening campaign was low during the project’s extension phase, this approach was efficacious in the early identification of positive cases. Full article
Show Figures

Figure 1

22 pages, 3476 KiB  
Article
Digital Inequality and Smart Inclusion: A Socio-Spatial Perspective from the Region of Xanthi, Greece
by Kyriaki Kourtidou, Yannis Frangopoulos, Asimenia Salepaki and Dimitris Kourkouridis
Smart Cities 2025, 8(4), 123; https://doi.org/10.3390/smartcities8040123 - 28 Jul 2025
Viewed by 289
Abstract
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with [...] Read more.
This study explores digital inequality as a socio-spatial phenomenon within the context of smart inclusion, focusing on the Regional Unit of Xanthi, Greece—a region marked by ethno-cultural diversity and pronounced urban–rural contrasts. Using a mixed-methods design, this research integrates secondary quantitative data with qualitative insights from semi-structured interviews, aiming to uncover how spatial, demographic, and cultural variables shape digital engagement. Geographic Information System (GIS) tools are employed to map disparities in internet access and ICT infrastructure, revealing significant gaps linked to geography, education, and economic status. The findings demonstrate that digital inequality is particularly acute in rural, minority, and economically marginalized communities, where limited infrastructure intersects with low digital literacy and socio-economic disadvantage. Interview data further illuminate how residents navigate exclusion, emphasizing generational divides, perceptions of technology, and place-based constraints. By bridging spatial analysis with lived experience, this study advances the conceptualization of digitally inclusive smart regions. It offers policy-relevant insights into how territorial inequality undermines the goals of smart development and proposes context-sensitive interventions to promote equitable digital participation. The case of Xanthi underscores the importance of integrating spatial justice into smart city and regional planning agendas. Full article
Show Figures

Figure 1

18 pages, 7213 KiB  
Article
DFCNet: Dual-Stage Frequency-Domain Calibration Network for Low-Light Image Enhancement
by Hui Zhou, Jun Li, Yaming Mao, Lu Liu and Yiyang Lu
J. Imaging 2025, 11(8), 253; https://doi.org/10.3390/jimaging11080253 - 28 Jul 2025
Viewed by 194
Abstract
Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only [...] Read more.
Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only require annotated data but also often involve heavy models with high computational costs, making them unsuitable for real-time processing. To tackle these challenges, a lightweight and unsupervised LLIE method utilizing a dual-stage frequency-domain calibration network (DFCNet) is proposed. In the first stage, the input image undergoes the preliminary feature modulation (PFM) module to guide the illumination estimation (IE) module in generating a more accurate illumination map. The final enhanced image is obtained by dividing the input by the estimated illumination map. The second stage is used only during training. It applies a frequency-domain residual calibration (FRC) module to the first-stage output, generating a calibration term that is added to the original input to darken dark regions and brighten bright areas. This updated input is then fed back to the PFM and IE modules for parameter optimization. Extensive experiments on benchmark datasets demonstrate that DFCNet achieves superior performance across multiple image quality metrics while delivering visually clearer and more natural results. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

18 pages, 2100 KiB  
Article
Hybrid ARIMA-ANN for Crime Risk Forecasting: Enhancing Interpretability and Predictive Accuracy Through Socioeconomic and Environmental Indicators
by Paul Iacobescu and Ioan Susnea
Algorithms 2025, 18(8), 470; https://doi.org/10.3390/a18080470 - 27 Jul 2025
Viewed by 261
Abstract
As the demand for more accurate crime prediction and risk assessment grows, researchers have been developing smarter models that blend statistical methods with machine learning. This study compares a hybrid ARIMA-ANN model with traditional classification techniques to see which best forecast monthly crime [...] Read more.
As the demand for more accurate crime prediction and risk assessment grows, researchers have been developing smarter models that blend statistical methods with machine learning. This study compares a hybrid ARIMA-ANN model with traditional classification techniques to see which best forecast monthly crime risk levels in Galați County, Romania. The analysis is based on a newly compiled dataset of 132 monthly observations from January 2014 to December 2024, which combines a broad array of social, economic, and environmental data points. The main variable, ‘Crime risk’, is based on normalized counts of offenses per capita and divided into five balanced levels: very low, low, moderate, high, and very high. The hybrid ARIMA-ANN model merges the strengths of statistical time series analysis with the flexible learning ability of artificial neural networks. Performance is evaluated against multinomial logistic regression, decision trees, random forests, and support vector machines. Overall, the results show that an ARIMA-ANN model consistently outperforms traditional methods, especially in recognizing patterns over time, seasonal trends, and complex nonlinear relationships in crime data. This study not only sets a new benchmark for crime analytics in Romania but also offers a flexible, scalable framework for classifying crime risk levels across different regions. Full article
Show Figures

Figure 1

20 pages, 7024 KiB  
Article
A Bibliometric Analysis of Research on Chinese Wooden Architecture Based on CNKI and Web of Science
by Dongyu Wei, Meng Lv, Haoming Yu, Jun Li, Changxin Guo, Xingbiao Chu, Qingtao Liu and Guang Wu
Buildings 2025, 15(15), 2651; https://doi.org/10.3390/buildings15152651 - 27 Jul 2025
Viewed by 234
Abstract
In the context of the growing emphasis on sustainable development and building safety performance, wooden architecture will attract increasing attention due to its low-carbon characteristics and excellent seismic resistance. In this study, the bibliometric software Citespace is used for data visualization analysis based [...] Read more.
In the context of the growing emphasis on sustainable development and building safety performance, wooden architecture will attract increasing attention due to its low-carbon characteristics and excellent seismic resistance. In this study, the bibliometric software Citespace is used for data visualization analysis based on the literature related to Chinese wooden architecture in the China National Knowledge Infrastructure (CNKI) and the Web of Science (WOS) databases, aiming to construct an analytical framework that integrates quantitative visualization and qualitative thematic interpretation which could reveal the current status, hotspots, and frontier trends of research in this field. The results show the following: Research on Chinese wooden architecture has shown a steady growth trend, indicating that it has received attention from an increasing number of scholars. Researchers and institutions are mainly concentrated in higher learning and research institutions in economically developed regions. Research hotspots cover subjects such as seismic performance, mortise–tenon structures, imitation wood structures, Dong architecture, Liang Sicheng, and the Society for the Study of Chinese Architecture. The research process of Chinese wooden architecture can be divided into three stages: the macro stage, the specific deepening stage, and the inheritance application and interdisciplinary integration stage. In the future, the focus will be on interdisciplinary research on wooden architecture from ethnic minority cultures and traditional dwellings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 6150 KiB  
Article
Evaluation of Eutrophication in Small Reservoirs in Northern Agricultural Areas of China
by Qianyu Jing, Yang Shao, Xiyuan Bian, Minfang Sun, Zengfei Chen, Jiamin Han, Song Zhang, Shusheng Han and Haiming Qin
Diversity 2025, 17(8), 520; https://doi.org/10.3390/d17080520 - 26 Jul 2025
Viewed by 150
Abstract
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton [...] Read more.
Small reservoirs have important functions, such as water resource guarantee, flood control and drought resistance, biological habitat and maintaining regional economic development. In order to better clarify the impact of agricultural activities on the nutritional status of water bodies in small reservoirs, zooplankton were quantitatively collected from four small reservoirs in the Jiuxianshan agricultural area of Qufu, Shandong Province, in March and October 2023, respectively. The physical and chemical parameters in sampling points were determined simultaneously. Meanwhile, water samples were collected for nutrient salt analysis, and the eutrophication of water bodies in four reservoirs was evaluated using the comprehensive nutrient status index method. The research found that the species richness of zooplankton after farming (100 species) was significantly higher than that before farming (81 species) (p < 0.05). On the contrary, the dominant species of zooplankton after farming (7 species) were significantly fewer than those before farming (11 species). The estimation results of the standing stock of zooplankton indicated that the abundance and biomass of zooplankton after farming (92.72 ind./L, 0.13 mg/L) were significantly higher than those before farming (32.51 ind./L, 0.40 mg/L) (p < 0.05). Community similarity analysis based on zooplankton abundance (ANOSIM) indicated that there were significant differences in zooplankton communities before and after farming (R = 0.329, p = 0.001). The results of multi-dimensional non-metric sorting (NMDS) showed that the communities of zooplankton could be clearly divided into two: pre-farming communities and after farming communities. The Monte Carlo test results are as follows (p < 0.05). Transparency (Trans), pH, permanganate index (CODMn), electrical conductivity (Cond) and chlorophyll a (Chl-a) had significant effects on the community structure of zooplankton before farming. Total nitrogen (TN), total phosphorus (TP) and electrical conductivity (Cond) had significant effects on the community structure of zooplankton after farming. The co-linearity network analysis based on zooplankton abundance showed that the zooplankton community before farming was more stable than that after farming. The water evaluation results based on the comprehensive nutritional status index method indicated that the water conditions of the reservoirs before farming were mostly in a mild eutrophic state, while the water conditions of the reservoirs after farming were all in a moderate eutrophic state. The results show that the nutritional status of small reservoirs in agricultural areas is significantly affected by agricultural activities. The zooplankton communities in small reservoirs underwent significant changes driven by alterations in the reservoir water environment and nutritional status. Based on the main results of this study, we suggested that the use of fertilizers and pesticides should be appropriately reduced in future agricultural activities. In order to better protect the water quality and aquatic ecology of the water reservoirs in the agricultural area. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

28 pages, 17529 KiB  
Article
Intelligent Functional Clustering and Spatial Interactions of Urban Freight System: A Data-Driven Framework for Decoding Heavy-Duty Truck Behavioral Heterogeneity
by Ruixu Pan, Quan Yuan, Chen Liu, Jiaming Cao and Xingyu Liang
Appl. Sci. 2025, 15(15), 8337; https://doi.org/10.3390/app15158337 - 26 Jul 2025
Viewed by 276
Abstract
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, [...] Read more.
The rapid development of the logistics industry has underscored the urgent need for efficient and sustainable urban freight systems. As a core component of freight systems, heavy-duty trucks (HDT) have been researched regarding surface-level descriptive statistics of their heterogeneities, such as trip volume, frequency, etc., but there is a lack of in-depth analyses of the spatial interaction between freight travel and freight functional clustering, which restricts a systematic understanding of freight systems. Against this backdrop, this study develops a data-driven framework to analyze HDT behavioral heterogeneity and its spatial interactions with a freight functional zone in Shanghai. Leveraging the high-frequency trajectory data of nearly 160,000 HDTs across seven types, we construct a set of regional indicators and employ hierarchical clustering, dividing the city into six freight functional zones. Combined with the HDTs’ application scenarios, functional characteristics, and trip distributions, we further analyze the spatial interaction between the HDTs and clustered zones. The results show that HDT travel patterns are not merely responses to freight demand but complex reflections of urban industrial structures, infrastructure networks, and policy environments. By embedding vehicle behaviors within their spatial and functional contexts, this study reveals a layered freight system in which each HDT type plays a distinct role in supporting economic activities. This research provides a new perspective for deeply understanding the formation mechanisms of HDT trip distributions and offers critical evidence for promoting targeted freight management strategies. Full article
(This article belongs to the Special Issue Intelligent Logistics and Supply Chain Systems)
Show Figures

Figure 1

24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 246
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

Back to TopTop