Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration
Abstract
1. Introduction
- Hierarchical and zonal coordinated optimization framework: a novel two-layer hierarchical optimization framework that systematically integrates adaptive network partitioning with distributed cooperative control to address voltage regulation challenges in distribution networks with high renewable penetration.
- Dynamic cluster formation: a novel multi-criteria partitioning strategy that simultaneously considers nodal voltage coupling characteristics, DER regulation capacities, and spatial resource distribution patterns, enabling adaptive clustering for multiple scenarios.
- Coordinated distributed control strategy: a novel ADMM-based optimization framework is proposed that achieves inter-cluster voltage stability through the implementation of boundary consensus constraints, while simultaneously preserving computational efficiency.
2. Distribution Network Clustering Strategy
2.1. K-Means Clustering Algorithm
2.2. Clustering Strategy
2.2.1. Cluster Index
2.2.2. Cluster Objective Function
2.2.3. Cluster Center
2.2.4. Cluster Number K Value Selection
3. Hierarchical Partition Reactive Power Optimization Model
3.1. Reactive Power Optimization Model
3.1.1. Objective Function
3.1.2. Constraints
3.2. Hierarchical Partition Reactive Power Optimization Control Model
4. ADMM Distributed Optimization
4.1. Construction of Lagrange Objective Function
4.2. Cluster Constraint Condition Division
4.3. Distributed Optimization Solution Process
5. Example Analysis
5.1. Simulation Example Construction
- Scenario 1: Without voltage and reactive power optimization, the voltage distribution of the distribution network is output.
- Scenario 2: The centralized reactive power and voltage control strategy is used to optimize the reactive power and voltage of the distribution network.
- Scenario 3: Based on the hierarchical partition reactive power optimization method proposed in this paper, the reactive power and power grid of the distribution network are optimized.
5.2. Result Analysis and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Huang, B.; Zhou, B.; Chen, J.; Wang, Y. An Enhanced Fault Localization Technique for Distribution Networks Utilizing Cost-Sensitive Graph Neural Networks. Processes 2024, 12, 2312. [Google Scholar] [CrossRef]
- Qian, T.; Ming, W.; Shao, C.; Hu, Q.; Wang, X.; Wu, J.; Wu, Z. An Edge Intelligence-Based Framework for Online Scheduling of Soft Open Points With Energy Storage. IEEE Trans. Smart Grid 2024, 15, 2934–2945. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, C.; Du, X.; Chen, T.; Hu, Q.; Wang, Z.; Lu, J. Capacity Configuration of Hybrid Energy Storage System for Ocean Renewables. J. Energy Storage 2025, 116, 116090. [Google Scholar] [CrossRef]
- Qian, T.; Fang, M.; Hu, Q.; Shao, C.; Zheng, J. V2Sim: An Open-Source Microscopic V2G Simulation Platform in Urban Power and Transportation Network. IEEE Trans. Smart Grid 2025, 16, 3167–3178. [Google Scholar] [CrossRef]
- Hu, Q.; Han, R.; Quan, X.; Wu, Z.; Tang, C.; Li, W.; Wang, W. Grid-Forming Inverter Enabled Virtual Power Plants With Inertia Support Capability. IEEE Trans. Smart Grid 2022, 13, 4134–4143. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Q.; Qi, J.; Ajjarapu, V.; Bravo, R.; Chow, J.; Li, Z.; Moghe, R.; Nasr-Azadani, E.; Tamrakar, U.; et al. Review of Challenges and Research Opportunities for Voltage Control in Smart Grids. IEEE Trans. Power Syst. 2019, 34, 2790–2801. [Google Scholar] [CrossRef]
- Almazroui, A.; Mohagheghi, S. Coordinated Control of Photovoltaic Resources and Electric Vehicles in a Power Distribution System to Balance Technical, Environmental, and Energy Justice Objectives. Processes 2025, 13, 1979. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Marzband, M.; Lehtonen, M. State-of-the-Art of Optimal Active and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes 2021, 9, 1319. [Google Scholar] [CrossRef]
- Liu, X.; Tang, J.; Zhou, Q.; Peng, J.; Huang, N. Coordinated Optimization Scheduling Method for Frequency and Voltage in Islanded Microgrids Considering Active Support of Energy Storage. Processes 2025, 13, 2146. [Google Scholar] [CrossRef]
- Majumdar, A.; Agalgaonkar, Y.P.; Pal, B.C.; Gottschalg, R. Centralized Volt–Var Optimization Strategy Considering Malicious Attack on Distributed Energy Resources Control. IEEE Trans. Sustain. Energy 2018, 9, 148–156. [Google Scholar] [CrossRef]
- Wagle, R.; Sharma, P.; Sharma, C.; Amin, M.; Gonzalez-Longatt, F. Real-Time Volt-Var Control of Grid Forming Converters in DER-Enriched Distribution Network. Front. Energy Res. 2023, 10, 1–18. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Z.; Chen, Y.; Ren, Q.; Zhao, J.; Qiu, S.; Zhao, Y.; Zhang, H. A Hierarchical Distributed and Local Voltage Control Strategy for Photovoltaic Clusters in Distribution Networks. Processes 2025, 13, 1633. [Google Scholar] [CrossRef]
- Xiao, C.; Ren, Y.; Cao, Q.; Wang, L.; Yin, J. A Modified Control Strategy for Three-Phase Four-Switch Active Power Filters Based on Fundamental Positive Sequence Extraction. Processes 2024, 12, 2586. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Wang, Y.; Dong, Z.Y.; Zhang, R. Three-Stage Hierarchically-Coordinated Voltage/Var Control Based on PV Inverters Considering Distribution Network Voltage Stability. IEEE Trans. Sustain. Energy 2022, 13, 868–881. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, P.; Qu, H.; Liu, N.; Zhao, K.; Xiao, C. Optimal Placement and Sizing of Distributed PV-Storage in Distribution Networks Using Cluster-Based Partitioning. Processes 2025, 13, 1765. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, L.; Wu, Q.; Zhang, K.; Li, X.; Zhao, B. Research on Power Stability of Wind-Solar-PEM Hydrogen Production System Based on Virtual Synchronous Machine Control. Processes 2025, 13, 1733. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, X.; Yan, Q.; Li, Y. Spatio-Temporal Adaptive Voltage Coordination Control Strategy for Distribution Networks with High Photovoltaic Penetration. Energies 2025, 18, 2093. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Chen, J.; Liao, Z.; Shu, J. Cluster Voltage Control Method for “Whole County” Distributed Photovoltaics Based on Improved Differential Evolution Algorithm. Front. Energy 2023, 17, 782–795. [Google Scholar] [CrossRef]
- Majumder, S.; Khaparde, S.A.; Agalgaonkar, A.P.; Kulkarni, S.V.; Perera, S. Graph Theory Based Voltage Sag Mitigation Cluster Formation Utilizing Dynamic Voltage Restorers in Radial Distribution Networks. IEEE Trans. Power Deliv. 2022, 37, 18–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, W.; Ye, Y.; Li, Y.; Tang, Y.; Long, Y.; Duan, M. A Novel Non-Intrusive Load Monitoring Method Based on ResNet-Seq2seq Networks for Energy Disaggregation of Distributed Energy Resources Integrated with Residential Houses. Appl. Energy 2023, 349, 121703. [Google Scholar] [CrossRef]
- Hu, Q.; Liang, Y.; Ding, H.; Quan, X.; Wang, Q.; Bai, L. Topological Partition Based Multi-Energy Flow Calculation Method for Complex Integrated Energy Systems. Energy 2022, 244, 123152. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, B.; Jin, X.; Luo, Y.; Song, M.; Ye, Y.; Hu, Q.; Chen, Q.; Zambroni, A.C. Mitigating Power Grid Impact from Proactive Data Center Workload Shifts: A Coordinated Scheduling Strategy Integrating Synergistic Traffic—Data—Power Networks. Appl. Energy 2025, 377, 124697. [Google Scholar] [CrossRef]
- Alshehri, M.; Yang, J. Voltage Optimization in Active Distribution Networks—Utilizing Analytical and Computational Approaches in High Renewable Energy Penetration Environments. Energies 2024, 17, 1216. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, T.; Chen, T.; Hu, Q.; Chen, H.; Hu, X.; Jiang, Z. A High-Resolution Electric Vehicle Charging Transaction Dataset with Multidimensional Features in China. Sci. Data 2025, 12, 643. [Google Scholar] [CrossRef]
- Fusco, G.; Russo, M. A Decentralized Approach for Voltage Control by Multiple Distributed Energy Resources. IEEE Trans. Smart Grid 2021, 12, 3115–3127. [Google Scholar] [CrossRef]
- Hyun, S.; Kim, G.; Park, J.; Choi, Y. Optimal Virtual Power Plant Control Algorithm Considering the Electrical Characteristics of Distributed Energy Resources. Appl. Sci. 2025, 15, 127. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, F.; Ma, P.; Yan, H. Study of Cooperative Management Strategies in Interconnected Microgrid Clusters Via ADMM-Based Optimization. In Proceedings of the 2025 7th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 28–31 March 2025; pp. 1131–1136. [Google Scholar]
- Wang, Z.; Zhang, Z.; Luo, F.; Mu, R.; Wu, X.; Zhang, X.; Duan, J. Coordinated Optimal Operation Method for Snow-Shaped Distribution Networks Based on Game Theory. Energies 2024, 17, 5470. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yang, L.; Wang, Y. Active and Reactive Power Collaborative Optimization for Active Distribution Networks Considering Bi-Directional V2G Behavior. Sustainability 2021, 13, 6489. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, J.; Xie, P.; Zhai, P.; Tao, Y. Power System Loss Reduction Strategy Considering Security Constraints Based on Improved Particle Swarm Algorithm and Coordinated Dispatch of Source–Grid–Load–Storage. Processes 2025, 13, 831. [Google Scholar] [CrossRef]
Distributed PV | Capacity (MW) |
---|---|
PV1 (Bus 6) | 0.7 |
PV2 (Bus 9) | 0.8 |
PV3 (Bus 10) | 0.9 |
PV4 (Bus 14) | 1 |
PV5 (Bus 15) | 1.1 |
PV6 (Bus 18) | 1.2 |
PV7 (Bus 20) | 1.3 |
PV8 (Bus 21) | 1.4 |
PV9 (Bus 24) | 1.5 |
PV10 (Bus 26) | 1.55 |
PV11 (Bus 30) | 1.6 |
DG | P Capacity (MW) | Q Capacity (MVA) |
---|---|---|
DG1 (Bus 7) | 0.4 | 0.4 |
DG2 (Bus 11) | 0.5 | 0.5 |
DG3 (Bus 15) | 0.4 | 0.4 |
DG4 (Bus 20) | 0.3 | 0.3 |
DG5 (Bus 29) | 0.4 | 0.4 |
DG | Power Loss (kW) |
---|---|
Scenario 1 | 83.5912 |
Scenario 2 | 35.7311 |
Scenario 3 | 30.5314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, B.; Liu, K.; Li, Y.; Jiang, Z.; Qin, P.; Zhang, W.; Zhang, Y. Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration. Processes 2025, 13, 2423. https://doi.org/10.3390/pr13082423
Zhai B, Liu K, Li Y, Jiang Z, Qin P, Zhang W, Zhang Y. Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration. Processes. 2025; 13(8):2423. https://doi.org/10.3390/pr13082423
Chicago/Turabian StyleZhai, Bingxu, Kaiyu Liu, Yuanzhuo Li, Zhilin Jiang, Panhao Qin, Wang Zhang, and Yuanshi Zhang. 2025. "Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration" Processes 13, no. 8: 2423. https://doi.org/10.3390/pr13082423
APA StyleZhai, B., Liu, K., Li, Y., Jiang, Z., Qin, P., Zhang, W., & Zhang, Y. (2025). Cluster Partitioning and Reactive Power–Voltage Control Strategy for Distribution Systems with High-Penetration Distributed PV Integration. Processes, 13(8), 2423. https://doi.org/10.3390/pr13082423