Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = regio-selectively carboxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1069 KiB  
Article
Pd/Ligand-Free Synthesis of 2-Alkynylated Pyrano[4,3-d]imidazol-4-ones via One-Pot Cu-Mediated Tandem Sonogashira Coupling/Regioselective 6-endo-dig Oxacyclization Reaction
by Abir Ayachi, Abdellatif Tikad, Vincent Lazeran, Hassan Allouchi, Marc Bletry, Rafâa Besbes, Mohamed Abarbri and Badr Jismy
Molecules 2025, 30(14), 3045; https://doi.org/10.3390/molecules30143045 - 21 Jul 2025
Viewed by 378
Abstract
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one [...] Read more.
Herein, we report a one-pot palladium- and ligand-free tandem Sonogashira coupling/regioselective 6-endo-dig oxacyclization reaction of 2,4-diiodo-1-methyl-imidazole-5-carboxylic acid with terminal alkynes mediated by Copper(I). This impressive approach offers a straightforward, practical, and efficient tandem procedure for accessing 2-alkynylated pyrano[4,3-d]imidazol-4-one in moderate to good yields with an exclusive 6-endo-dig oxacyclization. Notably, this cost-effective methodology demonstrates broad substrate compatibility with various commercially available aliphatic and (hetero)aromatic terminal alkynes. Furthermore, DFT studies were performed to elucidate the origin of this regioselective 6-endo-dig oxacyclization reaction. Full article
Show Figures

Graphical abstract

17 pages, 4127 KiB  
Review
Enzymatic Glycosylation of Ganoderma Terpenoid via Bacterial Glycosyltransferases and Glycoside Hydrolases
by Te-Sheng Chang, Jiumn-Yih Wu, Hsiou-Yu Ding and Tzi-Yuan Wang
Biomolecules 2025, 15(5), 655; https://doi.org/10.3390/biom15050655 - 1 May 2025
Viewed by 582
Abstract
Glycosylation is a critical enzymatic modification that involves the attachment of sugar moieties to target compounds, considerably influencing their physicochemical and biological characteristics. This review explored the role of two primary enzyme classes—glycosyltransferases (GTs) and glycoside hydrolases (GHs, glycosidases)—in catalyzing the glycosylation of [...] Read more.
Glycosylation is a critical enzymatic modification that involves the attachment of sugar moieties to target compounds, considerably influencing their physicochemical and biological characteristics. This review explored the role of two primary enzyme classes—glycosyltransferases (GTs) and glycoside hydrolases (GHs, glycosidases)—in catalyzing the glycosylation of natural products, with a specific focus on Ganoderma triterpenoids. While GTs typically use activated sugar donors, such as uridine diphosphate glucose, certain GHs can leverage more economical sugar sources, such as sucrose and starch, through transglycosylation. This paper also reviewed strategies for producing novel terpenoid glycosides, particularly recently isolated bacterial GTs and GHs capable of glycosylating terpenoids and flavonoids. It summarized the newly synthesized glycosides’ structures and biotransformation mechanisms, enhanced aqueous solubility, and potential applications. The regioselectivity and substrate specificity of GTs and GHs in catalyzing O-glycosylation (glucosylation) at distinct hydroxyl and carboxyl groups were compared. Furthermore, a special case in which the novel glycosylation reactions were mediated by GHs, including the formation of unique glycoside anomers, was included. The advantages and specific capabilities of GT/GH enzymes were evaluated for their potential in biotechnological applications and future research directions. Novel fungal triterpenoid glycosides produced through various glycosidases and sugars is expected to expand their potential applications in the future. Full article
(This article belongs to the Special Issue Recent Advances in the Enzymatic Synthesis of Bioactive Compounds)
Show Figures

Figure 1

15 pages, 2943 KiB  
Article
Phenolic Acid Decarboxylase for Carbon Dioxide Fixation: Mining, Biochemical Characterization, and Regioselective Enzymatic β-carboxylation of para-hydroxystyrene Derivatives
by Jie Chen, Shirong Wang, Junru Zhou, Jiaxing Xu, Bin Wu, Zhen Gao and Bingfang He
Catalysts 2025, 15(3), 210; https://doi.org/10.3390/catal15030210 - 22 Feb 2025
Viewed by 923
Abstract
The use of CO2 as a C1 carbon source for the synthesis of valuable chemicals through biotechnology methods represents an effective strategy to fix carbon dioxide. Phenolic acid decarboxylases possess the capability to introduce a carboxyl group into para-hydroxystyrenes for the [...] Read more.
The use of CO2 as a C1 carbon source for the synthesis of valuable chemicals through biotechnology methods represents an effective strategy to fix carbon dioxide. Phenolic acid decarboxylases possess the capability to introduce a carboxyl group into para-hydroxystyrenes for the regionally selective synthesis of (E)-para-hydroxycinnamic acids, utilizing bicarbonate as a CO2 source. It is difficult to achieve this reaction with traditional chemical methods, and only a few enzymes have been isolated and characterized. Here, we mined which low amino acid sequence shared its identity with those of related decarboxylases and which heterologously expressed phenolic acid decarboxylase PAD_Cs from Clostridium sp. DSM 8431 in E. coli. The recombinant PAD_Cs displayed maximum activity at 50 °C, and pH 5.0. PAD_Cs showed distinct carboxylation ability. The carboxylated substrates have a wide range of substitution modes on aromatic systems, including alkyl and alkoxy groups as well as halogens. Furthermore, the carboxylation conversion rates were impressive: para-hydroxystyrene exceeded 20% and 2-methoxy-4-vinylphenol surpassed 26%. This study indicated that PAD_Cs might serve as a potential enzyme source in biotechnological CO2 fixation. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

26 pages, 5293 KiB  
Article
New Benzothiazole–Monoterpenoid Hybrids as Multifunctional Molecules with Potential Applications in Cosmetics
by Desislava Kirkova, Yordan Stremski, Maria Bachvarova, Mina Todorova, Bogdan Goranov, Stela Statkova-Abeghe and Margarita Docheva
Molecules 2025, 30(3), 636; https://doi.org/10.3390/molecules30030636 - 31 Jan 2025
Viewed by 1442
Abstract
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for [...] Read more.
The Thymus vulgaris and Origanum vulgare essential oils (contained thymol and carvacrol in a range of 35–80%) are used in various products in the fields of medicine, cosmetics, and foods. Molecular hybridization between benzothiazole (BT) and phenolic monoterpenoids is a promising method for the development of biologically active compounds. New benzothiazole–monoterpenoid hybrids were synthesized through a regioselective α-amidoalkylation reaction of thymol and carvacrol with high yields (70–96%). This approach is both simple and cost-effective, employing easily accessible and inexpensive reagents to produce target molecules. The structure of the synthesized compounds was characterized spectrally using 1H-, 13C-NMR, FT-IR, and HRMS data. The newly obtained compounds are structural analogues of the UVB filter PBSA, which is used in cosmetics. The spectral properties of the aromatic products thymol hybrid (2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole) and carvacrol hybrid (2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole) were successfully examined, using a validated spectrophotometric method. SPF values varied from 31 to 36, compared to the PBSA (30), and were observed at concentrations of 1–0.25 mM. 2-Hydroxyphenylbenzothiazoles are known antimicrobial and antioxidant agents that have potential applications in the food industry and cosmetics as preservatives and antioxidants. In this context, antimicrobial activity of the hybrid compounds was evaluated using the agar diffusion method against E. coli, S. aureus, P. aeruginosa, and C. albicans. Compounds of methyl-2-(4-hydroxy-2-isopropyl-5-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate containing carvacrol fragments showed high activity against Staphylococcus aureus ATCC 25923 (with 0.044 μmol content). The radical scavenging activity was determined using ABTS and DPPH assays, the highest activity was exhibited by the thymol hybrids ethyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—133.70 ± 10 µM) and methyl-2-(4-hydroxy-5-isopropyl-2-methylphenyl)benzo[d]thiazole-3(2H)-carboxylate (IC50—157.50 ± 10 µM), defined by ABTS. The aromatic benzothiazole–monoterpenoid hybrids are classified using in silico analyses as non-mutagenic, with low toxicity, and they are non-irritating to the skin. These compounds were identified as new hit scaffolds for multifunctional molecules in cosmetics. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

17 pages, 2886 KiB  
Article
Application of Biotechnology and Chiral Technology Methods in the Production of Ectoine Enantiomers
by Marcela Šišić, Mladenka Jurin, Ana Šimatović, Dušica Vujaklija, Andreja Jakas and Marin Roje
Appl. Sci. 2024, 14(18), 8353; https://doi.org/10.3390/app14188353 - 17 Sep 2024
Viewed by 1503
Abstract
Natural ectoine, (+)-(4S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid, is an extremely important small biomolecule belonging to the class of osmolytic/osmoprotective compounds. It stabilizes biomacromolecules such as DNA and proteins and protects them from denaturation by heat, dehydration, and UV radiation. The rapidly growing interest in [...] Read more.
Natural ectoine, (+)-(4S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxylic acid, is an extremely important small biomolecule belonging to the class of osmolytic/osmoprotective compounds. It stabilizes biomacromolecules such as DNA and proteins and protects them from denaturation by heat, dehydration, and UV radiation. The rapidly growing interest in this compound resulted in currently exclusive biotechnological production, while a chemical process along with enantioseparation as an alternative has not yet been established. An improved chemical synthesis of racemic ectoine starting from γ-butyrolactone in very good yield is described. Regioselective monoacetylation is achieved by the complexation of a copper(II)-ion with two molecules of 2,4-diamonobutyric acid in the key synthetic step. The racemic ectoine was synthesized with the aim of being successfully enantioseparated for the first time by high-performance liquid chromatography (HPLC) using a teicoplanin-based Chiral-T column in different solvent systems. The presence of (+)-ectoine was determined and quantified using an HPLC protocol on the Synergy Polar-RP column in fermentation broths inoculated with different strains of Streptomyces sp. bacteria isolated from the Adriatic Sea and grown on different NaCl concentrations. Full article
(This article belongs to the Special Issue Natural Products: Sources and Applications)
Show Figures

Figure 1

5 pages, 870 KiB  
Short Note
(R/S)-Ethyl 2-Acetoxy-4-phenyl-4H-chromene-3-carboxylate
by Nevena I. Petkova-Yankova, Ana I. Koleva and Rositca D. Nikolova
Molbank 2024, 2024(3), M1875; https://doi.org/10.3390/M1875 - 26 Aug 2024
Viewed by 1535
Abstract
A simple protocol for the preparation of O-acylated enol form (R/S)-ethyl-2-acetoxy-4-phenyl-4H-chromene-3-carboxylate 5 was presented. The compound was characterized by 1H-, 13C-and DEPT135 NMR spectra, including {1H,1H} COSY, {1H,13C} HSQC, {1 [...] Read more.
A simple protocol for the preparation of O-acylated enol form (R/S)-ethyl-2-acetoxy-4-phenyl-4H-chromene-3-carboxylate 5 was presented. The compound was characterized by 1H-, 13C-and DEPT135 NMR spectra, including {1H,1H} COSY, {1H,13C} HSQC, {1H,13C} HMBC, and 2D-NOESY spectra. The preferred regioselectivity for O-acylation of 3,4-dihydrocoumarin 5 in the presence of substituent in the 4th position in the chroman ring and accounting for the steric hindrance of the ester group in the 3rd place was confirmed. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

18 pages, 3448 KiB  
Article
Spectral Assignment in the [3 + 2] Cycloadditions of Methyl (2E)-3-(Acridin-4-yl)-prop-2-enoate and 4-[(E)-2-Phenylethenyl]acridin with Unstable Nitrile N-Oxides
by Lucia Ungvarská Maľučká and Mária Vilková
Molecules 2024, 29(12), 2756; https://doi.org/10.3390/molecules29122756 - 9 Jun 2024
Cited by 2 | Viewed by 1404
Abstract
The investigation of cycloaddition reactions involving acridine-based dipolarophiles revealed distinct regioselectivity patterns influenced mainly by the electronic factor. Specifically, the reactions of methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate and 4-[(1E)-2-phenylethenyl]acridine with unstable benzonitrile N-oxides were studied. For methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate, the formation of two [...] Read more.
The investigation of cycloaddition reactions involving acridine-based dipolarophiles revealed distinct regioselectivity patterns influenced mainly by the electronic factor. Specifically, the reactions of methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate and 4-[(1E)-2-phenylethenyl]acridine with unstable benzonitrile N-oxides were studied. For methyl-(2E)-3-(acridin-4-yl)-prop-2-enoate, the formation of two regioisomers favoured the 5-(acridin-4-yl)-4,5-dihydro-1,2-oxazole-4-carboxylates, with remarkable exclusivity in the case of 4-methoxybenzonitrile oxide. Conversely, 4-[(1E)-2-phenylethenyl]acridine displayed reversed regioselectivity, favouring products 4-[3-(substituted phenyl)-5-phenyl-4,5-dihydro-1,2-oxazol-4-yl]acridine. Subsequent hydrolysis of isolated methyl 5-(acridin-4-yl)-3-phenyl-4,5-dihydro-1,2-oxazole-4-carboxylates resulted in the production of carboxylic acids, with nearly complete conversion. During NMR measurements of carboxylic acids in CDCl3, decarboxylation was observed, indicating the formation of a new prochiral carbon centre C-4, further confirmed by a noticeable colour change. Overall, this investigation provides valuable insights into regioselectivity in cycloaddition reactions and subsequent transformations, suggesting potential applications across diverse scientific domains. Full article
(This article belongs to the Special Issue New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy)
Show Figures

Graphical abstract

14 pages, 3820 KiB  
Article
Regioselectively Carboxylated Cellulose Nanofibril Models from Dissolving Pulp: C6 via TEMPO Oxidation and C2,C3 via Periodate–Chlorite Oxidation
by Mengzhe Guo, James D. Ede, Christie M. Sayes, Jo Anne Shatkin, Nicole Stark and You-Lo Hsieh
Nanomaterials 2024, 14(5), 479; https://doi.org/10.3390/nano14050479 - 6 Mar 2024
Cited by 7 | Viewed by 2328
Abstract
Regioselective C6 and C2,C3 carboxylated cellulose nanofibrils (CNFs) have been robustly generated from dissolving pulp, a readily available source of unmodified cellulose, via stoichiometrically optimized 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated and sequential sodium periodate-sodium chlorite (PC) oxidation coupled with high-speed blending. Both regioselectively optimized carboxylated CNF [...] Read more.
Regioselective C6 and C2,C3 carboxylated cellulose nanofibrils (CNFs) have been robustly generated from dissolving pulp, a readily available source of unmodified cellulose, via stoichiometrically optimized 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO)-mediated and sequential sodium periodate-sodium chlorite (PC) oxidation coupled with high-speed blending. Both regioselectively optimized carboxylated CNF series possess the widest ranges of comparable charges (0.72–1.48 mmol/g for T-CNFs vs. 0.72–1.10 mmol/g for PC-CNFs), but similar ranges of thickness (1.3–2.4 nm for T-CNF, 1.8–2.7 nm PC-CNF), widths (4.6–6.6 nm T-CNF, 5.5–5.9 nm PC-CNF), and lengths (254–481 nm T-CNF, 247–442 nm PC-CNF). TEMPO-mediated oxidation is milder and one-pot, thus more time and process efficient, whereas the sequential periodate–chlorite oxidation produces C2,C3 dialdehyde intermediates that are amenable to further chemical functionalization or post-reactions. These two well-characterized regioselectively carboxylated CNF series represent coherent cellulose nanomaterial models from a single woody source and have served as references for their safety study toward the development of a safer-by-design substance evaluation tool. Full article
(This article belongs to the Special Issue From Biomass to Nanomaterials)
Show Figures

Graphical abstract

25 pages, 2974 KiB  
Article
Diastereoselective ZnCl2-Mediated Joullié–Ugi Three-Component Reaction for the Preparation of Phosphorylated N-Acylaziridines from 2H-Azirines
by Julene Allende, Iurre Olaizola, Ana M. Ochoa de Retana, Francisco Palacios and Jesús M. de los Santos
Molecules 2024, 29(5), 1023; https://doi.org/10.3390/molecules29051023 - 27 Feb 2024
Cited by 2 | Viewed by 1691
Abstract
We disclose a direct approach to the diastereoselective synthesis of phosphorus substituted N-acylaziridines based on a one-pot ZnCl2-catalyzed Joullié–Ugi three-component reaction of phosphorylated 2H-azirines, carboxylic acids and isocyanides. Hence, this robust protocol offers rapid access to an array [...] Read more.
We disclose a direct approach to the diastereoselective synthesis of phosphorus substituted N-acylaziridines based on a one-pot ZnCl2-catalyzed Joullié–Ugi three-component reaction of phosphorylated 2H-azirines, carboxylic acids and isocyanides. Hence, this robust protocol offers rapid access to an array of N-acylaziridines in moderate-to-good yields and up to 98:2 dr for substrates over a wide scope. The relevance of this synthetic methodology was achieved via a gram-scale reaction and the further derivatization of the nitrogen-containing three-membered heterocycle. The diastereo- and regioselective ring expansion of the obtained N-acylaziridines to oxazole derivatives was accomplished in the presence of BF3·OEt2 as an efficient Lewid acid catalyst. Full article
(This article belongs to the Special Issue Organophosphorus Chemistry: A New Perspective, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 4734 KiB  
Article
5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors
by Dmitry A. Vasilenko, Nadezhda S. Temnyakova, Sevastian E. Dronov, Eugene V. Radchenko, Yuri K. Grishin, Alexey V. Gabrel’yan, Vladimir L. Zamoyski, Vladimir V. Grigoriev, Elena B. Averina and Vladimir A. Palyulin
Int. J. Mol. Sci. 2023, 24(22), 16135; https://doi.org/10.3390/ijms242216135 - 9 Nov 2023
Cited by 3 | Viewed by 1691
Abstract
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with [...] Read more.
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5′-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10−12–10−6 M) with maximum potentiation of 77% at 10−10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs. Full article
Show Figures

Figure 1

12 pages, 3164 KiB  
Review
Amino Acid Derivatives of Chlorin-e6—A Review
by Maria da Graça H. Vicente and Kevin M. Smith
Molecules 2023, 28(8), 3479; https://doi.org/10.3390/molecules28083479 - 14 Apr 2023
Cited by 10 | Viewed by 2549
Abstract
Details of the structural elucidation of the clinically useful photodynamic therapy sensitizer NPe6 (15) are presented. NPe6, also designated as Laserphyrin, Talaporfin, and LS-11, is a second-generation photosensitizer derived from chlorophyll-a, currently used in Japan for the treatment of human lung, [...] Read more.
Details of the structural elucidation of the clinically useful photodynamic therapy sensitizer NPe6 (15) are presented. NPe6, also designated as Laserphyrin, Talaporfin, and LS-11, is a second-generation photosensitizer derived from chlorophyll-a, currently used in Japan for the treatment of human lung, esophageal, and brain cancers. After the initial misidentification of the structure of this chlorin-e6 aspartic acid conjugate as (13), NMR and other synthetic procedures described herein arrived at the correct structure (15), confirmed using single crystal X-ray crystallography. Interesting new features of chlorin-e6 chemistry (including the intramolecular formation of an anhydride (24)) are reported, allowing chemists to regioselectively conjugate amino acids to each available carboxylic acid on positions 131 (formic), 152 (acetic), and 173 (propionic) of chlorin e6 (14). Cellular investigations of several amino acid conjugates of chlorin-e6 revealed that the 131-aspartylchlorin-e6 derivative is more phototoxic than its 152- and 173-regioisomers, in part due to its nearly linear molecular conformation. Full article
Show Figures

Graphical abstract

17 pages, 6915 KiB  
Article
Regioselective Cyclic Iminium Formation of Ugi Advanced Intermediates: Rapid Access to 3,4-Dihydropyrazin-2(1H)-ones and Other Diverse Nitrogen-Containing Heterocycles
by Naděžda Cankařová and Viktor Krchňák
Molecules 2023, 28(7), 3062; https://doi.org/10.3390/molecules28073062 - 29 Mar 2023
Cited by 1 | Viewed by 2207
Abstract
Herein, advanced intermediates were synthesized through Ugi four-component reactions of isocyanides, aldehydes, masked amino aldehyde, and carboxylic acids, including N-protected amino acids. The presence of a masked aldehyde enabled acid-mediated deprotection and subsequent cyclization via the carbonyl carbon and the amide nitrogen. [...] Read more.
Herein, advanced intermediates were synthesized through Ugi four-component reactions of isocyanides, aldehydes, masked amino aldehyde, and carboxylic acids, including N-protected amino acids. The presence of a masked aldehyde enabled acid-mediated deprotection and subsequent cyclization via the carbonyl carbon and the amide nitrogen. Utilizing N-protected amino acid as a carboxylic acid component, Ugi intermediates could be cyclized from two possible directions to target 3,4-dihydropyrazin-2(1H)-ones. Cyclization to the amino terminus (westbound) and to the carboxyl terminus (eastbound) was demonstrated. Deliberate selection of building blocks drove the reaction regioselectively and yielded diverse heterocycles containing a 3,4-dihydropyrazin-2(1H)-one core, pyrazin-2(1H)-one, and piperazin-2-one, as well as a tricyclic framework with a 3D architecture, 2,3-dihydro-2,6-methanobenzo[h][1,3,6]triazonine-4,7(1H,5H)-dione, from Ugi adducts under mild reaction conditions. The latter bridged heterocycle was achieved diastereoselectively. The reported chemistry represents diversity-oriented synthesis. One common Ugi advanced intermediate was, without isolation, rapidly transformed into various nitrogen-containing heterocycles. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry with Applications)
Show Figures

Graphical abstract

13 pages, 4770 KiB  
Article
Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water
by Edwin Avila, Christos Nixarlidis and Young-Seok Shon
Nanomaterials 2023, 13(2), 348; https://doi.org/10.3390/nano13020348 - 14 Jan 2023
Cited by 3 | Viewed by 3402
Abstract
The catalytic activity and selectivity of two different water-soluble palladium nanoparticles capped with 5-(trimethylammonio)pentanethiolate and 6-(carboxylate)hexanethiolate ligands are investigated using the catalytic reaction of allyl benzene. The results show that the regioselective transformation of allyl benzene to 3-phenylpropanal occurs at room temperature and [...] Read more.
The catalytic activity and selectivity of two different water-soluble palladium nanoparticles capped with 5-(trimethylammonio)pentanethiolate and 6-(carboxylate)hexanethiolate ligands are investigated using the catalytic reaction of allyl benzene. The results show that the regioselective transformation of allyl benzene to 3-phenylpropanal occurs at room temperature and under atmospheric pressure in neat water via a Tsuji–Wacker type oxidation. Conventionally, the Tsuji–Wacker oxidation promotes the Markovnikov oxidation of terminal alkenes to their respective ketones in the presence of dioxygen. Water-soluble Pd nanoparticles, however, catalyze the anti-Markovnikov oxidation of allyl benzene to 3-phenylpropanal in up to 83% yields. Catalytic results of other aromatic alkenes suggest that the presence of benzylic hydrogen is a key to the formation of a p-allyl Pd intermediate and the anti-Markovnikov addition of H2O. The subsequent b-H elimination and tautomerization contribute to the formation of aldehyde products. Water-soluble Pd nanoparticles are characterized using nuclear magnetic resonance (NMR), UV–vis spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). Catalysis results are examined using 1H NMR and/or GC-MS analyses of isolated reaction mixtures. Full article
(This article belongs to the Special Issue Semi-heterogeneous Metal Nanoparticles for Catalytic Applications)
Show Figures

Figure 1

21 pages, 5010 KiB  
Article
Crystal Structure, Hirshfeld Surface Analysis, In-Silico and Antimycotic Investigations of Methyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2-dihydropyrimidine-5-carboxylate
by Alakbar Huseynzada, Matteo Mori, Fiorella Meneghetti, Aygun Israyilova, Elif Guney, Koray Sayin, Laurent R. Chiarelli, Mustafa Demiralp, Ulviyya Hasanova and Vagif Abbasov
Crystals 2023, 13(1), 52; https://doi.org/10.3390/cryst13010052 - 27 Dec 2022
Cited by 2 | Viewed by 3364
Abstract
Herein, we report the preparation of methyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2-dihydropyrimidine-5-carboxylate 2, obtained by the regioselective oxidative dehydrogenation of the dihydropyrimidine derivative 1 in the presence of cerium ammonium nitrate. The structure of compound 2 was investigated by single-crystal X-ray diffraction (SC-XRD), which allowed the [...] Read more.
Herein, we report the preparation of methyl 6-methyl-4-(4-nitrophenyl)-2-oxo-1,2-dihydropyrimidine-5-carboxylate 2, obtained by the regioselective oxidative dehydrogenation of the dihydropyrimidine derivative 1 in the presence of cerium ammonium nitrate. The structure of compound 2 was investigated by single-crystal X-ray diffraction (SC-XRD), which allowed the determination of its tautomeric form. Moreover, the presence of non-covalent interactions and their impact on the crystal structure were analyzed. To better characterize the intermolecular contacts, the Hirshfeld surface and enrichment ratio analyses were performed. Furthermore, the antimycotic activity of compounds 1 and 2 was investigated against Candida albicans, Aspergillus flavus, and Aspergillus niger, and their efficacy was compared to that of fluconazole. Computational investigations on the putative target of the compounds provided insights to explain the better activity of 2 with respect to its synthetic precursor. Full article
Show Figures

Figure 1

28 pages, 1987 KiB  
Article
Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones
by Karolina Dzedulionytė, Melita Veikšaitė, Vít Morávek, Vida Malinauskienė, Greta Račkauskienė, Algirdas Šačkus, Asta Žukauskaitė and Eglė Arbačiauskienė
Molecules 2022, 27(24), 8666; https://doi.org/10.3390/molecules27248666 - 7 Dec 2022
Cited by 6 | Viewed by 3227
Abstract
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. [...] Read more.
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation—yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation. Full article
Show Figures

Figure 1

Back to TopTop