Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = reference-free displacement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3834 KiB  
Article
An Exact 3D Shell Model for Free Vibration Analysis of Magneto-Electro-Elastic Composite Structures
by Salvatore Brischetto, Domenico Cesare and Tommaso Mondino
J. Compos. Sci. 2025, 9(8), 399; https://doi.org/10.3390/jcs9080399 - 1 Aug 2025
Viewed by 230
Abstract
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and [...] Read more.
The present paper proposes a three-dimensional (3D) spherical shell model for the magneto-electro-elastic (MEE) free vibration analysis of simply supported multilayered smart shells. A mixed curvilinear orthogonal reference system is used to write the unified 3D governing equations for cylinders, cylindrical panels and spherical shells. The closed-form solution of the problem is performed considering Navier harmonic forms in the in-plane directions and the exponential matrix method in the thickness direction. A layerwise approach is possible, considering the interlaminar continuity conditions for displacements, electric and magnetic potentials, transverse shear/normal stresses, transverse normal magnetic induction and transverse normal electric displacement. Some preliminary cases are proposed to validate the present 3D MEE free vibration model for several curvatures, materials, thickness values and vibration modes. Then, new benchmarks are proposed in order to discuss possible effects in multilayered MEE curved smart structures. In the new benchmarks, first, three circular frequencies for several half-wave number couples and for different thickness ratios are proposed. Thickness vibration modes are shown in terms of displacements, stresses, electric displacement and magnetic induction along the thickness direction. These new benchmarks are useful to understand the free vibration behavior of MEE curved smart structures, and they can be used as reference for researchers interested in the development of of 2D/3D MEE models. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

22 pages, 1129 KiB  
Article
Randomised Trial Shows Readymade Oral Nutritional Supplements in Older Malnourished People in the Community Improve Total Nutrient Intakes and Meet More Dietary Reference Values Without Reducing Intake from the Diet
by Marinos Elia, Trevor R. Smith, Abbie L. Cawood, Emily R. Walters and Rebecca J. Stratton
Nutrients 2025, 17(15), 2474; https://doi.org/10.3390/nu17152474 - 29 Jul 2025
Viewed by 616
Abstract
Background: There is little information about the effectiveness of oral nutritional supplements (ONS) in combatting nutrient inadequacies in primary care, where most malnutrition exists. Aim: To examine the extent to which readymade ONS add or displace the nutrients consumed in the diet and [...] Read more.
Background: There is little information about the effectiveness of oral nutritional supplements (ONS) in combatting nutrient inadequacies in primary care, where most malnutrition exists. Aim: To examine the extent to which readymade ONS add or displace the nutrients consumed in the diet and their impact on combatting dietary inadequacies. Methods: 308 free-living people >50 years with medium + high risk of malnutrition (Malnutrition Universal Screening Tool) were randomised to receive readymade low volume (2.4 kcal/mL), liquid ONS plus dietary advice (ONS + DA) or dietary advice alone (DA). Intake was assessed at baseline (24 h recall) and 4-weekly for 12 weeks (3-day diet record). Total nutrient intake was benchmarked against UK and European dietary reference values (DRVs). The proportion of energy and nutrients from the ONS that added or displaced those from the diet (net addition/displacement) was calculated. Results: ONS + DA led to significantly greater total energy and nutritional intakes, with 25/29 nutrient intakes significantly higher than with DA alone. There were no significant differences in dietary energy and nutrient intakes from food between the groups. There was little or no displacement of nutrients from the diet, with over 90% of the energy and nutrients consumed in the ONS additive to the diet. ONS + DA more than halved the number of people with nutrient intakes that failed to meet DRVs and the number of nutrients per person that did not meet DRVs compared to DA alone. Conclusions: Supplementation with readymade, low volume (2.4 kcal/mL) liquid ONS overcomes most nutrient intake inadequacies in malnourished older people in primary care without significantly reducing intake from the diet. This makes ONS an effective way to improve nutritional intakes above dietary advice alone to improve the outcomes for the management of older people at risk of malnutrition. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

21 pages, 13986 KiB  
Article
Seismic Response Analysis of Nuclear Island Structures Considering Complex Soil–Pile–Structure Dynamic Interaction
by Xunqiang Yin, Junkai Zhang, Min Zhao and Weilong Yang
Buildings 2025, 15(15), 2620; https://doi.org/10.3390/buildings15152620 - 24 Jul 2025
Viewed by 365
Abstract
Seismic responses of Nuclear Island (NI) structures have great significance in the foundation adaptability analysis and the seismic design of equipment. However, with the increasing complexity of nuclear power site conditions, establishing a reasonable and effective soil–pile–structure dynamic interaction model has become the [...] Read more.
Seismic responses of Nuclear Island (NI) structures have great significance in the foundation adaptability analysis and the seismic design of equipment. However, with the increasing complexity of nuclear power site conditions, establishing a reasonable and effective soil–pile–structure dynamic interaction model has become the key technical problem that needs to be solved. In this study, a pseudo three-dimensional soil–pile–structure dynamic interaction model considering soil nonlinearity and heterogeneity is developed for seismic response analysis of NI structures. Specifically, the nonlinearity of the near-field soil is described via the equivalent linear method, the radiation damping effect of half space is simulated through viscous boundary, and the displacement/stress conditions at lateral boundaries of the heterogeneous site are derived from free-field response analysis. Meanwhile, an equivalent stiffness–mass principle is established to simplify NI superstructures, while pile group effects are incorporated via a node-coupling scheme within the finite-element framework. Two validation examples are presented to demonstrate the accuracy and efficiency of the proposed model. Finally, seismic response analysis of two typical NI structure of reactor types (CPR1000 and AP1000) based on the actual complex site conditions in China is also presented to study the effect of radiation damping, soil conditions, and pile foundation. Key findings demonstrate the necessity of integrating SSI effects and nonlinear characteristics of non-rock foundations. While the rock-socketed pile exhibits superior performance compared to the CFG pile alternative; this advantage is offset by higher costs and construction complexity. The research findings can serve as a valuable reference for the foundation adaptability analysis and optimizing the design of equipment under the similar complex condition of the soil site. Full article
(This article belongs to the Special Issue Dynamic Response of Civil Engineering Structures under Seismic Loads)
Show Figures

Figure 1

19 pages, 4003 KiB  
Article
The Risk to the Undersea Engineering Ecosystem of Systems: Understanding Implosion in Confined Environments
by Craig Tilton and Arun Shukla
J. Mar. Sci. Eng. 2025, 13(6), 1180; https://doi.org/10.3390/jmse13061180 - 17 Jun 2025
Viewed by 691
Abstract
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, [...] Read more.
As humans continue to develop the undersea engineering ecosystem of systems, the consequences of catastrophic events must continue to be investigated and understood. Almost every undersea pressure vessel, from pipelines to sensors to unmanned vehicles, has the potential to experience a catastrophic collapse, known as an implosion. This collapse can be caused by hydrostatic pressure or any combination of external loadings from natural disasters to pressure waves imparted by other implosion or explosion events. During an implosion, high-magnitude pressure waves can be emitted, which can cause adverse effects on surrounding structures, marine life, or even people. The imploding structure, known as an implodable volume, can be in a free-field or confined environment. Confined implosion is characterized by a surrounding structure that significantly affects the flow of fluid around the implodable volume. Often, the confining structure is cylindrical, with one closed end and one open end. This work seeks to understand the effect of fluid flow restriction on the physics of implosion inside a confining tube. To do so, a comprehensive experimental study is conducted using a unique experimental facility. Thin-walled aluminum cylinders are collapsed inside a confining tube within a large pressure vessel. High-speed photography and 3D Digital Image Correlation are used to gather structural displacement and velocities during the event while an array of dynamic pressure sensors capture the pressure data inside the confining tube. The results of this work show that by changing the size of the open end, referred to as the flow area ratio, there can be a significant effect on the structural deformations and implosion severity. It also reveals that only certain configurations of holes at the open end of the tube play a role in the dynamic pressure pulse measured at the closed end of the tube. By understanding the consequences of an implosion, designers can make decisions about where these pressure vessels should be in relation to other pressure vessels, critical infrastructure, marine life, or people. In the same way that engineers design for earthquakes and analyze the impact their structures have on the environment around them, contributors to the undersea engineering ecosystem should design with implosion in mind. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 1148 KiB  
Article
Three-Dimensional Magneto-Elastic Analysis of Functionally Graded Plates and Shells
by Salvatore Brischetto and Domenico Cesare
J. Compos. Sci. 2025, 9(5), 214; https://doi.org/10.3390/jcs9050214 - 28 Apr 2025
Viewed by 473
Abstract
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the [...] Read more.
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the three equations of equilibrium in three-dimensional form and the three-dimensional divergence equation for the magnetic induction. Governing equations are written in the orthogonal mixed curvilinear reference system (α, β, z) allowing the analysis of several curved and flat geometries (plates, cylindrical shells and spherical shells) thanks to proper considerations of the radii of curvature. The static cases, actuator and sensor configurations and free vibration investigations are proposed. The resolution method uses the imposition of the Navier’s harmonic forms in the two in-plane directions and the exponential matrix methodology in the transverse normal direction. Single-layered and multilayered simply-supported FGPM structures have been investigated. In order to understand the behavior of FGPM structures, numerical values and trends along the thickness direction for displacements, stresses, magnetic potential, magnetic induction and free vibration modes are proposed. In the results section, a first assessment phase is proposed to demonstrate the validity of the formulation and to fix proper values for the convergence of results. Therefore, a new benchmark section is presented. Different cases are proposed for several material configurations, load boundary conditions and geometries. The possible effects involved in this problem (magneto-elastic coupling and effects related to embedded materials and thickness values of the layers) are discussed in depth for each thickness ratio. The innovative feature proposed in the present paper is the exact 3D study of magneto-elastic coupling effects in FGPM plates and shells for static and free vibration analyses by means of a unique and general formulation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

8 pages, 2180 KiB  
Case Report
A Case Report of Median Nerve Entrapment in a Supracondylar Humeral Fracture: Diagnosis, Treatment, and Results After 5 Years of Follow-Up
by Carlo Colonna, Joil Ramazzotti, Francesco Locatelli, Alessandro Crosio and Pierluigi Tos
Reports 2025, 8(1), 23; https://doi.org/10.3390/reports8010023 - 18 Feb 2025
Viewed by 1105
Abstract
Background and Clinical Significance: Neurological complications in extension-type-III supracondylar humeral fractures (SCHFs) in children represent 11% of cases. An extension-type-III SCHF with posterolateral displacement of the distal fragment is commonly associated with damage to the median nerve and the anterior interosseous nerve [...] Read more.
Background and Clinical Significance: Neurological complications in extension-type-III supracondylar humeral fractures (SCHFs) in children represent 11% of cases. An extension-type-III SCHF with posterolateral displacement of the distal fragment is commonly associated with damage to the median nerve and the anterior interosseous nerve (AIN). Neurological complications are often unnoticed, and their immediate postoperative diagnosis is difficult, particularly in young children. Neurapraxia, the most common complication, usually undergoes spontaneous nerve recovery. Case Presentation: We report a case of a 7-year-old patient with postoperative median nerve palsy after an SCHF (Gartland type III) who was referred to our unit from another hospital due to a lack of spontaneous recovery. In addition, motor and sensory functions were absent. As ultrasound (US) indicated nerve kinking at the fracture site, an exploration was performed. The nerve was trapped within the fracture and the callus. It was surgically extracted, and intraoperative examination with US indicated that resecting the kinked nerve, freeing the two stumps, and attempting a primary end-to-end suture represented the best course of action. We present this case with a 5-year follow-up surgery, which showed a good clinical outcome. Conclusions: This case is noteworthy because of its diagnostic and therapeutic pathways, and it is complemented by surgical and ultrasound images that can assist other surgeons in similar circumstances. Full article
(This article belongs to the Section Orthopaedics/Rehabilitation/Physical Therapy)
Show Figures

Figure 1

19 pages, 16193 KiB  
Article
Effect of the Shear Band on Water Migration in the Interface Between Lean Clay and an Engineering Structure: A Case Study of Loess-like Soil in Changchun Area, China
by Boxin Wang, Lanting Fu, Qing Wang, Huie Chen, Xue Feng and Jingjing Pan
Water 2025, 17(3), 350; https://doi.org/10.3390/w17030350 - 26 Jan 2025
Cited by 1 | Viewed by 777
Abstract
The entire deformation and overturning of numerous engineering structures commence from the failure of the interface between engineering structures and environmental soils, and the shear band formed by such failure results in variations in the water transfer law within the soil. In this [...] Read more.
The entire deformation and overturning of numerous engineering structures commence from the failure of the interface between engineering structures and environmental soils, and the shear band formed by such failure results in variations in the water transfer law within the soil. In this study, a direct shear test was carried out to analyze the alterations in dry density of the soil both inside and outside the shear band before and after the disruption of the interface between lean clay and structure bodies, and the effect of the shear band on water migration in lean clay in the interface area under different shear displacements and normal stress values was examined. A numerical model of water transfer in lean clay with the shear band was constructed to predict the soil water distribution in the interfacial band across various temporal and spatial conditions. The results indicated that the existence of the shear band in the interface delayed the water migration; shear displacement and normal stress substantially affected the rate of water migration and volumetric water content in the interface region. The established water migration model could effectively simulate the migration patterns of water in the interface region and model the entire process of changes in free water in the soil under different spatial and temporal conditions. The research findings can provide a reference for the evaluation of structural permeability stability in hydraulic engineering. Full article
Show Figures

Figure 1

29 pages, 3225 KiB  
Article
Hierarchical Free Vibration Analysis of Variable-Angle Tow Shells Using Unified Formulation
by Domenico Andrea Iannotta, Gaetano Giunta, Levent Kirkayak and Marco Montemurro
J. Compos. Sci. 2025, 9(2), 55; https://doi.org/10.3390/jcs9020055 - 24 Jan 2025
Viewed by 865
Abstract
This paper investigates the dynamic behavior of shell structures presenting variable-angle tow laminations. The choice of placing fibers along curvilinear patterns allows for a broader structural design space, which is advantageous in several engineering contexts, provided that more complex numerical analyses are managed. [...] Read more.
This paper investigates the dynamic behavior of shell structures presenting variable-angle tow laminations. The choice of placing fibers along curvilinear patterns allows for a broader structural design space, which is advantageous in several engineering contexts, provided that more complex numerical analyses are managed. In this regard, Carrera’s unified formulation has been widely used for studying variable-angle tow plates and shells. This article aims to expand this formulation through the derivation of the complete formulation for a generic shell reference surface. The principle of virtual displacements is used as a variational statement for obtaining, in a weak sense, the stiffness and mass matrices within the finite element solution method. The free vibration problem of singly and doubly curved variable-angle tow shells is then addressed. The proposed approach is compared to Abaqus three-dimensional reference solutions and classical theories to investigate the effectiveness of the developed models in predicting the vibrational frequencies and modes. The results demonstrate a good agreement between the proposed approach and reference solutions. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

14 pages, 3874 KiB  
Article
Mechanism and Characterization of Bicomponent-Filler-Reinforced Natural Rubber Latex Composites: Experiment and Molecular Dynamics (MD)
by Zhipeng Feng, Hongzhou Zhu, Bo Hu, Huabin Chen and Yong Yan
Molecules 2025, 30(2), 349; https://doi.org/10.3390/molecules30020349 - 16 Jan 2025
Cited by 2 | Viewed by 1241
Abstract
The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve superior elasticity and mechanical properties has been widely applied across various fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their potential applications. In this study, multi-walled carbon [...] Read more.
The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve superior elasticity and mechanical properties has been widely applied across various fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their potential applications. In this study, multi-walled carbon nanotube (MWCNT)–silica (SiO2)/NR composites were prepared using a solution blending method, aiming to enhance the performance of NR composites through the synergistic effects of dual-component fillers. The mechanical properties, dispersion behavior, and Payne effect of three types of composites—SiO2/NR (SNR), MWCNT/NR (MNR), and MWCNT-SiO2/NR (MSNR)—were investigated. In addition, the mean square displacement (MSD), fractional free volume (FFV), and binding energy of the three composites were simulated using molecular dynamics (MD) models. The results showed that the addition of a two-component filler increased the tensile strength, elongation at break, and Young’s modulus of NR composites by 56.4%, 72.41%, and 34.44%, respectively. The Payne effect of MSNR was reduced by 4.5% compared to MNR and SNR. In addition, the MD simulation results showed that the MSD and FFV of MSNR were reduced by 21% and 17.44%, respectively, and the binding energy was increased by 69 times, which was in agreement with the experimental results. The underlying mechanisms between the dual-component fillers were elucidated through dynamic mechanical analysis (DMA), a rubber process analyzer (RPA), and field emission scanning electron microscopy (SEM). This study provides an effective reference for broadening the application fields of NR. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 8585 KiB  
Article
Fundamental Investigation of the Application Behavior and Stabilization Potential of Milling Tools with Structured Flank Faces on the Minor Cutting Edges
by Raphael Isaak Elias Schönecker, Jonas Baumann, Rafael Garcia Carballo and Dirk Biermann
J. Manuf. Mater. Process. 2024, 8(4), 174; https://doi.org/10.3390/jmmp8040174 - 10 Aug 2024
Cited by 2 | Viewed by 1581
Abstract
In milling processes in which material removal is performed periodically from solid material, dynamic effects are generally considered to be responsible for instabilities and subsequent productivity limits. Usually, in such applications, the process-inherent complex dynamic load spectrum on machines, tools and workpieces is [...] Read more.
In milling processes in which material removal is performed periodically from solid material, dynamic effects are generally considered to be responsible for instabilities and subsequent productivity limits. Usually, in such applications, the process-inherent complex dynamic load spectrum on machines, tools and workpieces is considered together with vibration-based relative displacements that can be attributed to the regenerative effect. There are numerous techniques in the literature addressing the suppression of these dynamic effects, but they require a large amount of analysis and implementation effort as well as specific expert knowledge. The approach presented here, however, provides a universally applicable method for suppressing chatter vibrations and deflections. By applying structure elements to the flanks of the minor cutting edges of HSS end mills, it was possible to increase the chatter-free limiting depth of cut ap,crit in the milling processes of the aluminum alloy EN AW-7075. Structured tools were used in ramp milling tests to investigate various effects, such as the influence of certain geometric design features on the stabilization potential compared to a reference tool. Furthermore, the effects of varied process parameter configurations and wear-related effects on the performance of the tool concept were focused on as well. The three key design features of the cutting edge and the structured profiles were identified from the results of the investigation, which, when combined in the most efficient design, in each case led to the development of an optimized structure and process configuration with cumulative potential for increasing the stability limit up to 200%. Full article
(This article belongs to the Special Issue Dynamics and Machining Stability for Flexible Systems)
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
A Practical Approach to Alignment and Error Feedback Control for Long-Span Arch Bridges
by Xinyu Yao, Chuanxi Li, Longlin Wang, Mengsheng Yu, Xiaoli Zhuo, Tianzhi Hao and Xirui Wang
Buildings 2024, 14(7), 1995; https://doi.org/10.3390/buildings14071995 - 1 Jul 2024
Cited by 1 | Viewed by 1262
Abstract
The accurate installation of long-span arch bridges’ arch ribs remains a challenge due to the complex calculations required for cable forces and arch rib displacements, as well as the significant influence of environmental and construction loads. In this study, we propose a practical [...] Read more.
The accurate installation of long-span arch bridges’ arch ribs remains a challenge due to the complex calculations required for cable forces and arch rib displacements, as well as the significant influence of environmental and construction loads. In this study, we propose a practical approach to alignment and error feedback control for long-span arch bridges. Cable forces were optimized using multiple control objectives based on influence matrix principles. The impact of temperature on the next segment to be installed was analyzed using the metastatic GM(1, 1) model and fitting results. Several tunable parameters were employed to account for parameter errors and environmental interference. These parameters were adjusted based on the deviations between practical and theoretical alignments for different arch rib segments, achieving a model output of an offset-free-tracking arch rib structure. This technology was applied to monitor the construction of the Tian’e Longtan Grand Bridge. Compared to conventional alignment control approaches, the proposed method achieved excellent arch ring alignment after the closure of the high-accuracy arch rib and cable release, as well as effective control of cable force uniformity and tower deviation. Field measurement data indicate that the closing deviation of the arch ring is only 3 mm. This study provides a valuable reference for the construction control of long-span arch bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 7233 KiB  
Article
Simulation of Key Influencing Factors of Hydraulic Fracturing Fracture Propagation in a Shale Reservoir Based on the Displacement Discontinuity Method (DDM)
by Pengcheng Ma and Shanfa Tang
Processes 2024, 12(5), 1000; https://doi.org/10.3390/pr12051000 - 15 May 2024
Cited by 3 | Viewed by 1405
Abstract
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block [...] Read more.
In the process of the large-scale hydraulic fracturing of a shale gas field in the Weiyuan area of Sichuan province, the quantitative description and evaluation of hydraulic fracture expansion morphology and the three-dimensional distribution law are the key points of evaluation of block fracturing transformation effect. Many scholars have used the finite element method, discrete element method, grid-free method and other numerical simulation methods to quantitatively characterize hydraulic fractures, but there are often the problems that the indoor physical simulation results are much different from the actual results and the accuracy of most quantitative studies is poor. Considering rock mechanics parameters and based on the displacement discontinuity method (DDM), a single-stage multi-cluster fracture propagation model of horizontal well was established. The effects of Young’s modulus, Poisson’s ratio, the in situ stress difference, the approximation angle, the perforation cluster number and the perforation spacing on the formation of complex fracture networks and on the geometrical parameters of hydraulic fractures were simulated. The research results can provide theoretical reference and practical guidance for the optimization of large-scale fracturing parameters and the quantitative post-fracturing evaluation of horizontal wells in unconventional reservoirs such as shale gas reservoirs. Full article
(This article belongs to the Special Issue Recent Advances in Hydrocarbon Production Processes from Geoenergy)
Show Figures

Figure 1

10 pages, 2904 KiB  
Article
Comprehensive Recovery of Point Defect Displacement Field Function in Crystals by Computer X-ray Diffraction Microtomography
by Felix N. Chukhovskii, Petr V. Konarev and Vladimir V. Volkov
Crystals 2024, 14(1), 29; https://doi.org/10.3390/cryst14010029 - 26 Dec 2023
Viewed by 1693
Abstract
In the case of the point defect in a crystal, the inverse Radon’s problem in X-ray diffraction microtomography has been solved. As is known, the crystal-lattice defect displacement field function f(r) = h·u(r) determines phases [...] Read more.
In the case of the point defect in a crystal, the inverse Radon’s problem in X-ray diffraction microtomography has been solved. As is known, the crystal-lattice defect displacement field function f(r) = h·u(r) determines phases − (±h)-structure factors incorporated into the Takagi–Taupin equations and provides the 2D image patterns by diffracted and transmitted waves propagating through a crystal (h is the diffraction vector and u(r) is the displacement field crystal-lattice-defects vector). Beyond the semi-kinematical approach for obtaining the analytical problem solution, the difference-equations-scheme of the Takagi–Taupin equations that, in turn, yield numerically controlled-accuracy problem solutions has been first applied and tested. Addressing the inverse Radon’s problem solution, the χ2-target function optimization method using the Nelder–Mead algorithm has been employed and tested in an example of recovering the Coulomb-type point defect structure in a crystal Si(111). As has been shown in the cases of the 2D noise-free fractional and integrated image patterns, based on the Takagi–Taupin solutions in the semi-kinematical and difference-scheme approaches, both procedures provide the χ2-target function global minimum, even if the starting-values of the point-defect vector P1 is chosen rather far away from the reference up to 40% in relative units. In the cases of the 2D Poisson-noise image patterns with noise levels up to 5%, the figures-of-merit values of the optimization procedures by the Nelder–Mead algorithm turn out to be high enough; the lucky trials number is 85%; and in contrast, for the statistically denoised 2D image patterns, they reach 0.1%. Full article
Show Figures

Figure 1

19 pages, 6535 KiB  
Article
Microgravity Decoupling in Torsion Pendulum for Enhanced Micro-Newton Thrust Measurement
by Linxiao Cong, Jiabin Wang, Jianfei Long, Jianchao Mu, Haoye Deng and Congfeng Qiao
Appl. Sci. 2024, 14(1), 91; https://doi.org/10.3390/app14010091 - 21 Dec 2023
Cited by 1 | Viewed by 2069
Abstract
To enhance the accuracy of micro-Newton thrust measurements via a torsion pendulum, addressing microgravity coupling effects caused by platform tilt and pendulum mass eccentricity is crucial. This study focuses on analyzing and minimizing these effects by alleviating reference surface tilt and calibrating the [...] Read more.
To enhance the accuracy of micro-Newton thrust measurements via a torsion pendulum, addressing microgravity coupling effects caused by platform tilt and pendulum mass eccentricity is crucial. This study focuses on analyzing and minimizing these effects by alleviating reference surface tilt and calibrating the center of mass during thrust measurements. The study introduced analysis techniques and compensation measures. It first examined the impact of reference tilt and center of mass eccentricity on the stiffness and compliance of the torsion pendulum by reconstructing its dynamic model. Simscape Multibody was initially employed for numerical analysis to assess the dynamic coupling effects of the tilted pendulum. The results showed the influence of reference tilt on the stiffness and compliance of the torsion pendulum through simulation. An inverted pendulum was developed to amplify the platform’s tilt angle for microgravity drag-free control. Center of mass calibration can identify the gravity coupling caused by the center of mass position. Based on the displacement signal from the capacitive sensor located at the end of the inverted pendulum, which represents the platform’s tilt angle, the pendulum’s vibration at 0.1 mHz was reduced from 5.7 μm/Hz1/2 to 0.28 μm/Hz1/2 by adjusting the voltage of piezoelectric actuator. Finally, a new two-stage torsion pendulum structure was proposed to decouple the tilt coupling buried in both pitch and roll angle. The study utilized theoretical models, numerical analysis, and experimental testing to validate the analysis methods and compensation measures for microgravity coupling effects in torsion pendulums. This led to a reduction in low-frequency noise caused by ground vibrations and thermal strains, ultimately improving the micro-Newton thrust measurement accuracy of the torsion pendulum through the platform’s drag-free control. Full article
Show Figures

Figure 1

16 pages, 6198 KiB  
Article
Preparation and Performance Evaluation of Amphiphilic Polymers for Enhanced Heavy Oil Recovery
by Dongtao Fei, Jixiang Guo, Ruiying Xiong, Xiaojun Zhang, Chuanhong Kang and Wyclif Kiyingi
Polymers 2023, 15(23), 4606; https://doi.org/10.3390/polym15234606 - 2 Dec 2023
Cited by 6 | Viewed by 2696
Abstract
The continuous growth in global energy and chemical raw material demand has drawn significant attention to the development of heavy oil resources. A primary challenge in heavy oil extraction lies in reducing crude oil viscosity. Alkali–surfactant–polymer (ASP) flooding technology has emerged as an [...] Read more.
The continuous growth in global energy and chemical raw material demand has drawn significant attention to the development of heavy oil resources. A primary challenge in heavy oil extraction lies in reducing crude oil viscosity. Alkali–surfactant–polymer (ASP) flooding technology has emerged as an effective method for enhancing heavy oil recovery. However, the chromatographic separation of chemical agents presents a formidable obstacle in heavy oil extraction. To address this challenge, we utilized a free radical polymerization method, employing acrylamide, 2-acrylamido-2-methylpropane sulfonic acid, lauryl acrylate, and benzyl acrylate as raw materials. This approach led to the synthesis of a multifunctional amphiphilic polymer known as PAALB, which we applied to the extraction of heavy oil. The structure of PAALB was meticulously characterized using techniques such as infrared spectroscopy and Nuclear Magnetic Resonance Spectroscopy. To assess the effectiveness of PAALB in reducing heavy oil viscosity and enhancing oil recovery, we conducted a series of tests, including contact angle measurements, interfacial tension assessments, self-emulsification experiments, critical association concentration tests, and sand-packed tube flooding experiments. The research findings indicate that PAALB can reduce oil–water displacement, reduce heavy oil viscosity, and improve swept volume upon injection into the formation. A solution of 5000 mg/L PAALB reduced the contact angle of water droplets on the core surface from 106.55° to 34.95°, shifting the core surface from oil-wet to water-wet, thereby enabling oil–water displacement. Moreover, A solution of 10,000 mg/L PAALB reduced the oil–water interfacial tension to 3.32 × 10−4 mN/m, reaching an ultra-low interfacial tension level, thereby inducing spontaneous emulsification of heavy oil within the formation. Under the condition of an oil–water ratio of 7:3, a solution of 10,000 mg/L PAALB can reduce the viscosity of heavy oil from 14,315 mPa·s to 201 mPa·s via the glass bottle inversion method, with a viscosity reduction rate of 98.60%. In sand-packed tube flooding experiments, under the injection volume of 1.5 PV, PAALB increased the recovery rate by 25.63% compared to traditional hydrolyzed polyacrylamide (HPAM) polymer. The insights derived from this research on amphiphilic polymers hold significant reference value for the development and optimization of chemical flooding strategies aimed at enhancing heavy oil recovery. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces)
Show Figures

Figure 1

Back to TopTop