Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,233)

Search Parameters:
Keywords = red dye

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1015 KiB  
Article
Investigation of Adsorption Kinetics and Isotherms of Synthetic Dyes on Biochar Derived from Post-Coagulation Sludge
by Barbara Pieczykolan
Int. J. Mol. Sci. 2025, 26(16), 7912; https://doi.org/10.3390/ijms26167912 (registering DOI) - 16 Aug 2025
Abstract
An activated biochar was produced from post-coagulation sludge (also called water treatment residuals or water treatment sludge) in the pyrolysis process at 800 °C in a nitrogen atmosphere and chemical activation using NaOH. The produced adsorption material was characterised by an SBET [...] Read more.
An activated biochar was produced from post-coagulation sludge (also called water treatment residuals or water treatment sludge) in the pyrolysis process at 800 °C in a nitrogen atmosphere and chemical activation using NaOH. The produced adsorption material was characterised by an SBET surface area of 439 m2/g, a total volume of pores of 0.301 cm3/g, and an average pore size of 1.4 nm. FTIR analysis reveals the presence of primarily C-H, C-O, N-H, C-N, and O-H groups on the activated biochar surface. The batch adsorption process was conducted for three dyes: Acid Red 18, Acid Green 16, and Reactive Blue 81. In the study, the effect of pH, contact time, adsorption kinetics, and adsorption isotherm was determined. The studies showed that, for all dyes, the highest efficiency of the process was achieved at a pH of 2. The results indicate the occurrence of a chemical adsorption process, as evidenced by the best fit to the experimental results obtained with the pseudo-second-order kinetics model and the Elovich model. In the case of the adsorption isotherm, the SIPS model best describes the adsorption for Acid Red 18 and Reactive Blue 81, and the Jovanovic model describes the adsorption of Acid Green 16. Full article
(This article belongs to the Special Issue Molecular Advances in Adsorbing Materials)
13 pages, 1179 KiB  
Article
Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile
by Lidia Domínguez-Ramos, Ismael Tejado, M. Sonia Freire, Diego Gómez-Díaz, Massimo Lazzari and Julia González-Álvarez
Molecules 2025, 30(16), 3391; https://doi.org/10.3390/molecules30163391 - 15 Aug 2025
Abstract
Wastewater containing synthetic dyes harmful to aquatic environments supposes significant challenges for treatment. This study focuses on how structural characteristics of three N-containing carbons synthesized at high temperatures from polyacrylonitrile (PAN) as a precursor, i.e., an N-doped (PAN-C), an activated carbon (PAN-C-Act), and [...] Read more.
Wastewater containing synthetic dyes harmful to aquatic environments supposes significant challenges for treatment. This study focuses on how structural characteristics of three N-containing carbons synthesized at high temperatures from polyacrylonitrile (PAN) as a precursor, i.e., an N-doped (PAN-C), an activated carbon (PAN-C-Act), and a carbon also incorporating sulfur (PAN-S-C), influence adsorption of a common dye employed for wood veneers (Red GRA 200%). The impact of pH (1.9–2.3, 6.0–6.8, and 11.8–12.6), adsorbent dosage (S/L, 0.43–0.53 and 1.73–1.91 g L−1), and amount of dye (24–28 mg L−1 and 231–285 mg L−1) on dye removal from aqueous solutions were investigated. In general, the results obtained in the present work indicate that the presence of larger pores in the materials plays an important role in dye adsorption by preventing size exclusion of the dye molecules. The activated carbon (PAN-C-Act) demonstrated the greatest adsorption performance, with an adsorption yield close to 100% achieved at a carbon dose of 0.47 g L−1 and acidic pH for the highest dye concentration and longest experiment time. The pseudo-second-order model best described the kinetics, and both external mass transfer and intra-particle diffusion were confirmed. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 2849 KiB  
Article
Synthesis, Characterization, and Properties of Polyvinyl Alcohol/Jackfruit Peel Carboxymethylcellulose/Graphene Oxide/Kaolin Composite Hydrogels
by Shumin Liu, Jing Ma, Fuqi Yang, Hailin Ye, Yu Liang, Yijia Deng, Jianrong Li and Rundong Wang
Gels 2025, 11(8), 626; https://doi.org/10.3390/gels11080626 - 9 Aug 2025
Viewed by 228
Abstract
This study presents an environmentally benign composite hydrogel system by combining polyvinyl alcohol (PVA) with carboxymethyl cellulose derived from jackfruit peel waste (JCMC), subsequently reinforced with graphene oxide (GO) and Kaolin nanoparticles for enhanced Congo red (CR) adsorption. The structural properties of the [...] Read more.
This study presents an environmentally benign composite hydrogel system by combining polyvinyl alcohol (PVA) with carboxymethyl cellulose derived from jackfruit peel waste (JCMC), subsequently reinforced with graphene oxide (GO) and Kaolin nanoparticles for enhanced Congo red (CR) adsorption. The structural properties of the synthesized hydrogels were comprehensively characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). FTIR analysis confirmed hydrogel formation through hydrogen bonding interactions, while XRD and SEM revealed the uniform dispersion of GO and Kaolin within the polymer matrix, resulting in an improved adsorption performance. Furthermore, the adsorption efficiency of the composite hydrogels was systematically evaluated under varying conditions, including solution pH, contact time, temperature, and initial CR concentration. Optimal CR removal (92.3%) was achieved at pH 8.0, with equilibrium attained within 90 min. The adsorption kinetics were best fitted by the pseudo-second-order model (R2 = 0.9998), confirming a chemisorption-dominated process. The equilibrium adsorption data were accurately described by the Langmuir isotherm model, indicating monolayer coverage with an exceptional maximum capacity of 200.80 mg/g. These findings highlight the superior adsorption performance of the PVA/JCMC/GO/Kaolin hydrogels, attributed to their tailored physicochemical properties and synergistic interactions among components. This study offers both sustainable jackfruit peel waste valorization and an effective solution for anionic dye removal in wastewater treatment. Full article
(This article belongs to the Special Issue Food Gels: Structure and Properties (2nd Edition))
Show Figures

Figure 1

18 pages, 6084 KiB  
Article
Amphoteric Halloysite and Sepiolite Adsorbents by Amino and Carboxy Surface Modification for Effective Removal of Cationic and Anionic Dyes from Water
by Boutaina Boumhidi, Nadia Katir, Jamal El Haskouri, Khalid Draoui and Abdelkrim El Kadib
Minerals 2025, 15(8), 841; https://doi.org/10.3390/min15080841 - 8 Aug 2025
Viewed by 286
Abstract
Surface functionalization is a key enabler that imparts solid materials with excellent chemoselectivity. With this aim, halloysite and sepiolite clay particles were functionalized with carboxyethylsilanetriol sodium salt (CES) and 3-aminopropyltriethoxysilane (APTES), affording carboxy-terminated and amino-terminated clay, respectively. In the case of halloysite, the [...] Read more.
Surface functionalization is a key enabler that imparts solid materials with excellent chemoselectivity. With this aim, halloysite and sepiolite clay particles were functionalized with carboxyethylsilanetriol sodium salt (CES) and 3-aminopropyltriethoxysilane (APTES), affording carboxy-terminated and amino-terminated clay, respectively. In the case of halloysite, the grafting occurs at Al-OH groups of the lumen surface (tube inner surface) and Al-OH and Si-OH groups at the edges and external surface defects of the nanotubes. For sepiolite, silanol groups located on the edges of the structural channels were at the origin of a chemical reaction between this fibrous clay and the terminal alkoxysilane. The resulting modified clays were examined for removal of Congo red (CR) and malachite green (MG) as anionic and cationic dyes, respectively. Clay bearing only carboxylic groups display more affinity towards cationic dye (MG), recording 926 mg·g−1 and 387 mg·g−1 for HNT-CES and SEP-CES, respectively, while amino-functionalized clays show very high adsorption for anionic dye (CR), reaching 1232 and 1228 mg·g−1 for HNT-APTES and SEP-APTES, respectively. Simultaneous grafting of the two silyl coupling reagents was also attempted through one-pot and sequential grafting method, with the latter being more appropriate to access amphoteric clay featuring both carboxylic and amino groups. The behavior of the bifunctional adsorbents was investigated with respect to pristine and monofunctional clay. The obtained results provide insights to fulfill the requirement for handling complex water effluent containing both anionic and cationic pollutants, towards more sustainable development. Full article
Show Figures

Figure 1

15 pages, 4431 KiB  
Article
Application of Hybrid Platelet Technology for Platelet Count Improves Accuracy of PLT Measurement in Samples from Patients with Different Types of Anemia
by Małgorzata Wituska and Olga Ciepiela
J. Clin. Med. 2025, 14(15), 5401; https://doi.org/10.3390/jcm14155401 - 31 Jul 2025
Viewed by 257
Abstract
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from [...] Read more.
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from small red blood cells and schistocytes. In contrast, fluorescent assessment offers higher specificity but is more expensive, as it requires additional dyes and detectors. Hybrid platelet counting (PLT-H) combines impedance with measurements from the leukocyte differentiation channel and is available without additional cost. Aim: The aim of this study was to evaluate the accuracy of hybrid PLT counting in anemic samples. Methods: In this retrospective study, PLT counts from 583 unselected anemic samples were analyzed using two different analyzers: the Sysmex XN3500, equipped with fluorescent PLT-F technology, and the Mindray BC6200, which uses both impedance (PLT-I) and hybrid (PLT-H) technologies. Agreement between PLT-I and PLT-F, as well as between PLT-H and PLT-F, was assessed using Bland–Altman plots. Correlation between the methods was evaluated using the Pearson correlation coefficient. Results: The hybrid method demonstrated better accuracy in PLT counting compared to the impedance method. Correlation between PLT-H and PLT-F was excellent, ranging from 0.991 to 0.999. In thrombocytopenic samples (PLT < 50 G/L), the hybrid method also provided more reliable PLT counts than the impedance method, reducing the number of falsely elevated PLT results by nearly fivefold. Conclusions: Hybrid platelet counting yields more accurate results than the impedance method in anemic samples and shows excellent correlation with the fluorescence method. Full article
(This article belongs to the Special Issue Clinical Trends and Prospects in Laboratory Hematology)
Show Figures

Figure 1

15 pages, 2095 KiB  
Article
T-Lymphocyte Phenotypic and Mitochondrial Parameters as Markers of Incomplete Immune Restoration in People Living with HIV+ on Long-Term cART
by Damian Vangelov, Radoslava Emilova, Yana Todorova, Nina Yancheva, Reneta Dimitrova, Lyubomira Grigorova, Ivailo Alexiev and Maria Nikolova
Biomedicines 2025, 13(8), 1839; https://doi.org/10.3390/biomedicines13081839 - 28 Jul 2025
Viewed by 482
Abstract
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of [...] Read more.
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of people living with HIV (PLHIV). To delineate biomarkers of incomplete immune restoration in PLHIV on successful ART, we evaluated T-lymphocyte mitochondrial parameters in relation to phenotypic markers of immune exhaustion and senescence. Methods: PLHIV with sustained viral suppression, CD4AC > 500 and CD4/CD8 ratio >0.9 on ART (n = 39) were compared to age-matched ART-naïve donors (n = 27) and HIV(–) healthy controls (HC, n = 35). CD4 and CD8 differentiation and effector subsets (CCR7/CD45RA and CD27/CD28), activation, exhaustion, and senescence markers (CD38, CD39 Treg, CD57, TIGIT, and PD-1) were determined by flow cytometry. Mitochondrial mass (MM) and membrane potential (MMP) of CD8 and CD4 T cells were evaluated with MitoTracker Green and Red flow cytometry dyes. Results: ART+PLHIV differed from HC by increased CD4 TEMRA (5.3 (2.1–8.8) vs. 3.2 (1.6–4.4), p < 0.05), persistent TIGIT+CD57–CD27+CD28– CD8+ subset (53.9 (45.5–68.9) vs. 40.1 (26.7–58.5), p < 0.05), and expanding preapoptotic TIGIT–CD57+CD8+ effectors (9.2 (4.3–21.8) vs. 3.0 (1.5–7.3), p < 0.01) in correlation with increased CD8+ MMP (2527 (1675–4080) vs.1477 (1280–1691), p < 0.01). These aberrations were independent of age, time to ART, or ART duration, and were combined with increasing CD4 T cell MMP and MM. Conclusions: In spite of recovered CD4AC and CD4/CD8 ratio, the increased CD8+ MMP, combined with elevated markers of exhaustion and senescence in ART+PLHIV, signals a malfunction of the CD8 effector pool that may compromise viral reservoir latency. Full article
(This article belongs to the Special Issue Emerging Insights into HIV)
Show Figures

Figure 1

15 pages, 2927 KiB  
Article
Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
by Xiaoyu Du, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma and Boyu Du
Nanomaterials 2025, 15(15), 1157; https://doi.org/10.3390/nano15151157 - 26 Jul 2025
Viewed by 356
Abstract
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red [...] Read more.
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red dye removal capabilities remains a substantial challenge. In this study, a stable linear polymer network structure was constructed on the surface of melamine sponges via an in situ polymerization strategy based on the Schiff base reaction mechanism. Characterization analyses reveal that the modified sponge not only retained the original porous skeleton structure but also significantly enhanced the density of surface active sites. Experimental data demonstrate that the modified sponge exhibited excellent adsorption performance for Congo red dye, with the adsorption process conforming to the pseudo-second-order kinetic model and achieving a practical maximum adsorption capacity of 380.4 mg/g. Notably, the material also displayed favorable cyclic stability. This study provides an efficient adsorbent for Congo red dye-contaminated wastewater treatment through the development of a novel surface-functionalized sponge material while also offering new solutions for advancing the practical applications of melamine-based porous materials and environmental remediation technologies. Full article
Show Figures

Figure 1

18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 278
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 418
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

25 pages, 5867 KiB  
Article
Color-Sensitive Sensor Array Combined with Machine Learning for Non-Destructive Detection of AFB1 in Corn Silage
by Daqian Wan, Haiqing Tian, Lina Guo, Kai Zhao, Yang Yu, Xinglu Zheng, Haijun Li and Jianying Sun
Agriculture 2025, 15(14), 1507; https://doi.org/10.3390/agriculture15141507 - 13 Jul 2025
Viewed by 322
Abstract
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance [...] Read more.
Aflatoxin B1 (AFB1) contamination in corn silage poses significant risks to livestock and human health. This study developed a non-destructive detection method for AFB1 using color-sensitive arrays (CSAs). Twenty self-developed CSAs were employed to react with samples, with reflectance spectra collected using a portable spectrometer. Spectral data were optimized through seven preprocessing methods, including Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), first-order derivative (1st D), second-order derivative (2nd D), wavelet denoising, and their combinations. Key variables were selected using five feature selection algorithms: Competitive Adaptive Reweighted Sampling (CARS), Principal Component Analysis (PCA), Random Forest (RF), Uninformative Variable Elimination (UVE), and eXtreme Gradient Boosting (XGBoost). Five machine learning models were constructed: Light Gradient Boosting Machine (LightGBM), XGBoost, Support Vector Regression (SVR), RF, and K-Nearest Neighbor (KNN). The results demonstrated significant AFB1-responsive characteristics in three dyes: (2,3,7,8,12,13,17,18-octaethylporphynato)chloromanganese(III) (Mn(OEP)Cl), Bromocresol Green, and Cresol Red. The combined 1st D-PCA-KNN model showed optimal prediction performance, with determination coefficient (Rp2 = 0.87), root mean square error (RMSEP = 0.057), and relative prediction deviation (RPD = 2.773). This method provides an efficient solution for silage AFB1 monitoring. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

25 pages, 2616 KiB  
Article
Bio-Fabricated Aluminum Oxide Nanoparticles Derived from Waste Pharmaceutical Packages: Insight into Characterization and Applications
by Jamilah M. Al-Ahmari, Reem M. Alghanmi and Ragaa A. Hamouda
Biomolecules 2025, 15(7), 984; https://doi.org/10.3390/biom15070984 - 10 Jul 2025
Viewed by 434
Abstract
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica [...] Read more.
This study examines the environmental challenges posed by azo-dye pollutants and aluminum industrial waste. Aluminum oxide nanoparticles (P/Al2O3-NPs) were produced using a green method that utilized pharmaceutical packaging waste as an aluminum source and marine algae extract (Padina pavonica) as reducing and stabilizing agents and that was characterized by XRD, EDX, SEM, TEM, and zeta potential. Batch biosorption studies were performed to assess the effectiveness of P/Al2O3-NPs in removing CR dye from aqueous solutions. The results demonstrate that the particle sizes range from 58.63 to 86.70 nm and morphologies vary from spherical to elliptical. FTIR analysis revealed Al–O lattice vibrations at 988 and 570 cm−1. The nanoparticles displayed a negative surface charge (−13 mV) and a pHzpc of 4.8. Adsorption experiments optimized parameters for CR dye removal, achieving 97.81% efficiency under native pH (6.95), with a dye concentration of 30 mg/L, an adsorbent dosage of 0.1 g/L, and a contact time of 30 min. Thermodynamic studies confirmed that the process is exothermic and spontaneous. Kinetic data fit well with the pseudo-second-order model, while equilibrium data aligned with the Langmuir isotherm. The adsorption mechanism involved van der Waals forces, hydrogen bonding, and π–π interactions, as supported by the influence of pH, isotherm data, and FTIR spectra. Overall, the study demonstrates the potential of eco-friendly P/Al2O3-NPs to efficiently remove CR dye from aqueous solutions. Full article
(This article belongs to the Section Bio-Engineered Materials)
Show Figures

Figure 1

13 pages, 2944 KiB  
Article
Milking the Orchil: How the Presence of Goat Milk in the Orchil Dyebath May Affect the Color of Dyed Wool
by Isabella Whitworth, Victor J. Chen and Gregory D. Smith
Heritage 2025, 8(7), 272; https://doi.org/10.3390/heritage8070272 - 9 Jul 2025
Viewed by 358
Abstract
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and [...] Read more.
Among the craft recipes for artisans collected in the 4th-century Egyptian documents the Leyden and Stockholm papyri, there is one calling for adding animal milk to orchil for wool dyeing. To understand the rationale for this practice, wool yarns were dyed with and without goat milk added to orchil dyebaths, each made using lichens from three different sources. The results showed orchil containing milk dyed yarns a noticeably deeper red hue. The colorants extracted from the dyed yarns were analyzed by liquid chromatography-diode-array-detector-mass spectrometry to assess the relative amounts of nine identifiable orceins. The data showed that the yarns dyed with milk gave extracts exhibiting several fold more α-aminoorcein and α-hydroxyorcein, with only small differences in the other seven. Scanning electron microscopic analysis of a representative pair of dyed yarns showed that milk promoted surface changes in the fiber that may indicate increased cutaneous damage. Hypotheses for the milk’s effects on orchil dyeing were proposed that included the formation of milk–protein complexes with the two enriched orceins that possibly enhanced wool binding and/or better wool uptake of free and/or complexed orceins due to biodegradation of the wool’s surface cuticle caused by microbial growth promoted by the addition of milk. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

12 pages, 485 KiB  
Article
Experimental Study on the Treatment of Printing and Dyeing Wastewater by Iron–Carbon Micro-Electrolysis and Combined Processes
by Xiaoxu Sun, Jin Xu, Xiaorong Kang, Bing Li and Yuanyan Zhang
Processes 2025, 13(7), 2147; https://doi.org/10.3390/pr13072147 - 6 Jul 2025
Viewed by 326
Abstract
Iron–carbon micro-electrolysis and combined processes were used to treat simulated dyeing wastewater containing direct Big Red 4BE dye (concentration of 1500 mg/L, chromaticity of 80,000 times, and salt content of 20 g/L). Through single-factor experiments, the optimal reaction conditions were determined as follows: [...] Read more.
Iron–carbon micro-electrolysis and combined processes were used to treat simulated dyeing wastewater containing direct Big Red 4BE dye (concentration of 1500 mg/L, chromaticity of 80,000 times, and salt content of 20 g/L). Through single-factor experiments, the optimal reaction conditions were determined as follows: reaction time of 110 min, initial pH of 5, and iron and carbon mass ratio of 1:2. Under the optimal conditions, the concentration was reduced to 14.51 mg/L, the chromaticity was reduced to 3000 times, and the decolorization rate reached 99.03%. In order to further decrease the wastewater chromaticity, coagulation and Fenton oxidation were respectively employed for in-depth treatment after iron–carbon micro-electrolysis. The total decolorization rate of the dye wastewater exceeded 99.7%, with the treated effluent meeting the specified chromaticity discharge standard (80-fold). The integrated processes of iron–carbon micro-electrolysis combined with either coagulation sedimentation or Fenton oxidation demonstrated superior performance in treating direct Big Red 4BE dye wastewater. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

26 pages, 60202 KiB  
Article
Use of Alkali in Traditional Dyeing Technologies with Plants
by Anete Karlsone and Jorens Kviesis
Heritage 2025, 8(7), 264; https://doi.org/10.3390/heritage8070264 - 4 Jul 2025
Viewed by 526
Abstract
Ethnographic sources provide information about several dye plants that produced reddish colors; however, there is no information on how this process is accomplished. Combining information from written sources with the results of dyeing experiments enables a deeper understanding of the dyeing methods employed [...] Read more.
Ethnographic sources provide information about several dye plants that produced reddish colors; however, there is no information on how this process is accomplished. Combining information from written sources with the results of dyeing experiments enables a deeper understanding of the dyeing methods employed in the past. This paper gives insight into the effect of using alkali on obtaining reddish tones in dyeing with Potentilla erecta and Rumex sp. In dyeing experiments, wool yarn was dyed with plant extracts, and the chemical compositions were studied both in plant extracts and in extracts obtained from wool after dyeing. As a result, the red/red-brown color is obtained only under the influence of alkali. Analytical studies of procyanidin (PC) extracts from rhizomes and yarns were performed using infrared spectroscopy (FTIR-ATR) and liquid chromatography coupled with mass spectrometric detection (LC-DAD-MS). Procyanidin extracts of P. erecta and R. acetosa contained monomers identified as (+)-catechin and (-)-epicatechin, as well as dimeric procyanidins of type-A (m/z 575 [M−H]) and type-B (m/z 577 [M−H]), along with various types of trimers (m/z 865 [M−H]; m/z 863 [M−H]), which were also isolated from dyed wool yarns with a similar composition. The conducted research on the use of alkali with tannin-containing plants contributes to deepening our understanding of the perception of color that existed in the ancient rural environment. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

32 pages, 29621 KiB  
Article
A Comparison of the Fading of Dyestuffs as Textile Colourants and Lake Pigments
by Jo Kirby and David Saunders
Heritage 2025, 8(7), 260; https://doi.org/10.3390/heritage8070260 - 3 Jul 2025
Cited by 1 | Viewed by 773
Abstract
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and [...] Read more.
Dyed wool samples and lake pigments prepared from the same dyestuffs were exposed to light over the course of 14 months. Brazilwood or sappanwood, cochineal, madder, and weld were used for both wools and pigments, with the addition of dyer’s broom, indigo, and tannin-containing black dyes for the wools and eosin for the pigments. The wools were dyed within the MODHT European project on historic tapestries (2002–2005), using recipes derived from fifteenth- to seventeenth-century sources. The pigments were prepared according to European recipes of the same period, or using late nineteenth-century French or English recipes. Colour measurements made throughout the experiment allowed for overall colour difference (ΔE00) to be tracked and half-lives to be calculated for some of the colour changes. Alterations in the samples’ hue and chroma were also monitored, and spectral information was collected. The results showed that, for both textiles and pigments, madder is the most stable red dye, followed by cochineal, and then brazilwood. Eosin was the most fugitive sample examined. Comparisons of textile and lake samples derived from the same dyestuff, whether red or yellow, indicate that the colourants are more stable when used as textile dyes than in analogous lake pigments. Full article
(This article belongs to the Special Issue Dyes in History and Archaeology 43)
Show Figures

Figure 1

Back to TopTop