Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile
Abstract
1. Introduction
Precursor | Activation | Surface Area (m2 g−1) | Dye | Adsorption Capacity (mg g−1) | Pore Volume (cm3 g−1) | Source |
---|---|---|---|---|---|---|
Banana peel | --- | --- | Reactive Black 5 | 26.9 | --- | [20] |
Congo red | 46.7 | |||||
Macroalgae (Ulothrix zonata) | --- | 133.2 | Malachite green | 5306.2 | --- | [22] |
Crystal violet | 1222.5 | |||||
Congo red | 345.2 | |||||
Rice straws | KOH | 1973.0 | Methylene blue | 527.6 | 1.131 | [23] |
Congo red | 44.2 | |||||
H3PO4 | 392.6 | Methylene blue | 34.7 | 0.463 | ||
Congo red | 67.1 | |||||
CO2 | 214.7 | Methylene blue | 44.2 | 0.164 | ||
Congo red | 253.9 | |||||
Bamboo | KOH | 1896.0 | Methylene blue | 454.2 | 1.109 | [24] |
Sargassum fusiforme | CO2 | 1329 | Congo red | 234.0 | 1.2 | [25] |
H2SO4-modified celery residue | --- | 24.93 | Congo red | 238.09 | 0.041 | [26] |
ZnO-modified SiO2 nanospheres | --- | 34.5 | Congo red | 83.0 | 0.16 | [27] |
Zeolitic imidazolate framework-67 | --- | 1388 | Congo red | 714.3 | --- | [28] |
2. Results and Discussion
2.1. Effect of Initial PH
2.2. Effect of Carbon-Structural Properties
2.3. Effect of Initial Concentration and Adsorbent Dosage
2.4. Adsorption Kinetic Modeling
3. Materials and Methods
3.1. Carbon Synthesis
3.2. Wood Red Dye
3.3. Batch Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability. 2023, 15, 10940. [Google Scholar] [CrossRef]
- Kathi, S.; Mahmoud, A.E.D. Trends in effective removal of emerging contaminants from wastewater: A comprehensive review. Desalin. Water Treat. 2024, 317, 100258. [Google Scholar] [CrossRef]
- Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Sci. Rep. 2019, 9, 16530. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Khan, M.D.; Singh, A.; Khan, M.Z.; Tabraiz, S.; Sheikh, J. Current perspectives, recent advancements, and efficiencies of various dye-containing wastewater treatment technologies. J. Water Process Eng. 2023, 53, 103579. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pampile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Alves, R.O.; Bazo, A.P.; Fávero, D.M.; Rech, C.M.; de Palma, D.; de Aragão, G. Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat. Res. 2007, 626, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, P.A.; Umbuzeiro, G.A.; Oliveira, D.P.; Zanoni, M.V.B. Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. J. Hazard. Mater. 2010, 174, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut. 2019, 252, 352–365. [Google Scholar] [CrossRef]
- Garg, V.K.; Amita, M.; Kumar, R.; Gupta, R. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste. Dyes Pigment. 2004, 63, 243–250. [Google Scholar] [CrossRef]
- Hosseini, E.; Alavi, M.R.; Hashemi, S.H. Investigation of decolorization kinetics and biodegradation of azo dye Acid Red 18 using sequential process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor. Int. Biodeterior. Biodegrad. 2012, 71, 43–49. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N.; Walker, G.M. Competitive adsorption of reactive dyes from solution: Equilibrium isotherm studies in single and multisolute systems. Chem. Eng. J. 2007, 128, 163–167. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y.; Hu, H.; Dong, H.; Zheng, M.; Xiao, Y.; Liu, Y. KNO3-mediated synthesis of high-surface-area polyacrylonitrile-based carbon material for exceptional supercapacitors. Carbon 2019, 152, 120–127. [Google Scholar] [CrossRef]
- Kim, B.H.; Yang, K.S.; Woo, H.G. Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem. Commun. 2011, 13, 1042–1046. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Polymer-derived heteroatom-doped porous carbon materials. Chem. Rev. 2020, 120, 9363–9419. [Google Scholar] [CrossRef]
- Yuan, R.; Wang, H.; Sun, M.; Damodaran, K.; Gottlieb, E.; Kopeć, M.; Eckhart, K.; Li, S.; Whitacre, J.; Matyjaszewski, K.; et al. Well-defined N/S co-doped nanocarbons from sulfurized PAN- b-PBA block copolymers: Structure and supercapacitor performance. ACS Appl. Nano Mater. 2019, 2, 2467–2474. [Google Scholar] [CrossRef]
- Manoukian, M.; Tavakol, H.; Fashandi, H. Synthesis of highly uniform sulfur-doped carbon sphere using CVD method and its application for cationic dye removal in comparison with undoped product. J. Environ. Chem. Eng. 2018, 6, 6904–6915. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Highly porous S-doped carbons. Microporous Mesoporous Mat. 2012, 158, 318–323. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.S. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using banana peel powder as an adsorbent. Ecotox. Environ. Safe. 2018, 148, 601–607. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Díaz-Fernández, L.; Gómez-Díaz, D.; Freire, M.S.; González-Álvarez, J. Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. J. Environ. Chem. Eng. 2023, 11, 111378. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Lin, Y.-C.; Ho, S.-H.; Zhou, Y.; Ren, N.-Q. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresour. Technol. 2018, 259, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Sangon, S.; Hunt, A.J.; Attard, T.M.; Mengchang, P.; Ngernyen, Y.; Supanchaiyamat, N. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J. Clean Prod. 2018, 172, 1128–1139. [Google Scholar] [CrossRef]
- Hameed, B.H.; Din, A.T.M.; Ahmad, A.L. Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825. [Google Scholar] [CrossRef]
- Mingjie, M.; Ying, H.; Cao, F.; Wang, Q.; Ai, N. Adsorption of Congo red on mesoporous activated carbon prepared by CO2 physical activation. Chin. J. Chem. Eng. 2020, 28, 1069–1076. [Google Scholar] [CrossRef]
- Mohebali, S.; Bastani, D.; Shayesteh, H. Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens). J. Mol. Struct. 2019, 1176, 181–193. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, X.; Hu, M.; Hu, X.; Zhou, M. Adsorption of Congo red from aqueous solution using ZnO-modified SiO2 nanospheres with rough surfaces. J. Mol. Liq. 2018, 249, 772–778. [Google Scholar] [CrossRef]
- Thanh Tu, N.T.; Thien, T.V.; Du, P.D.; Thi, T.V.; Mau, T.X.; Khieu, D.Q. Adsorptive removal of Congo red from aqueous solution using zeolitic imidazolate framework–67. J. Environ. Chem. Eng. 2018, 6, 2269–2280. [Google Scholar] [CrossRef]
- Domínguez-Ramos, L.; Prieto-Estalrich, A.; Malucelli, G.; Gómez-Díaz, D.; Freire, M.S.; Lazzari, M.; González-Álvarez, J. N- and S-doped carbons derived from polyacrylonitrile for gases separation. Sustainability 2022, 14, 3760. [Google Scholar] [CrossRef]
- Carlos, A.; Leon y Leon, D.; Radovic, L.R. Interfacial chemistry and electrochemistry of carbon surfaces. Chem. Phys. Carb. 1994, 24, 213–310. [Google Scholar]
- Wu, Z.; Ye, X.; Liu, H.; Zhang, H. Interactions between adsorbents and adsorbates in aqueous solutions. Pure Appl. Chem. 2020. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Freire, M.S.; Gómez-Díaz, D.; González-Álvarez, J. Removal of wood dyes from aqueous solutions by sorption on untreated pine (Pinus pinaster) sawdust. Cellulose 2023, 30, 4587–4608. [Google Scholar] [CrossRef]
- Al-Degs, Y.; Khraisheh, M.A.M.; Allen, S.J.; Ahmad, M.N. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000, 34, 927–935. [Google Scholar] [CrossRef]
- Kim, K.C.; Yoon, T.-U.; Bae, Y.-S. Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous Mesoporous Mater. 2016, 224, 294–301. [Google Scholar] [CrossRef]
- Pimentel, C.H.; Freire, M.S.; Gómez-Díaz, D.; González-Álvarez, J. Preparation of activated carbon from pine (Pinus radiata) sawdust by chemical activation with zinc chloride for wood dye adsorption. Biomass Conv. Bioref. 2023, 13, 16537–16555. [Google Scholar] [CrossRef]
- Cardoso, N.F.; Lima, E.C.; Royer, B.; Bach, M.V.; Dotto, G.L.; Pinto, L.A.A.; Calvete, T. Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents. J. Hazard. Mater. 2012, 241-242, 146–153. [Google Scholar] [CrossRef]
- Ribas, M.C.; Adebayo, M.A.; Prola, L.D.T.; Lima, E.C.; Cataluña, R.; Feris, L.A.; Puchana-Rosero, M.J.; Machado, F.M.; Pavan, F.A.; Calvete, T. Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions. Chem. Eng. J. 2014, 248, 315–326. [Google Scholar] [CrossRef]
- Martins, A.; Nunes, N. Adsorption of a textile dye on commercial activated carbon: A simple experiment to explore the role of surface chemistry and ionic strength. J. Chem. Educ. 2015, 92, 143–147. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Kyzas, G.Z.; Avranas, A.; Lazaridis, N.K. Multi-parametric adsorption effects of the reactive dye removal with commercial activated carbons. J. Mol. Liq. 2016, 213, 381–389. [Google Scholar] [CrossRef]
- Choy, K.K.; Porter, J.F.; McKay, G. Langmuir isotherm models applied to the multicomponent sorption of acid dyes from effluent onto activated carbon. J. Chem. Eng. Data. 2000, 45, 575–584. [Google Scholar] [CrossRef]
- Aksu, Z.; Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005, 40, 1347–1361. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Chandrasekhar Rao, N.; Karthikeyan, J. Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: A kinetic and mechanistic study. J. Hazard. Mater. 2002, 90, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Lagergren, S. Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakademiens 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
Sample | Experimental Conditions | Adsorbed Dye Percentage (%) | aqmax (mg g−1) | Pseudo-second-order Model | ||||
---|---|---|---|---|---|---|---|---|
pH | S/L (g L−1) | Ci (mg L−1) | k2 (g mg−1 h−1) | bqe (mg g−1) | R2 | |||
CAC | 2.0 | 0.53 | 24 | 97.4 | 43.7 | 1.733 | 43.9 | 1 |
2.0 | 0.44 | 250 | 97.5 | 556.1 | 0.032 | 555.6 | 0.99 | |
2.0 | 1.76 | 24 | 97.4 | 13.3 | 11.772 | 13.0 | 0.99 | |
2.0 | 1.91 | 250 | 99.8 | 130.3 | 0.593 | 129.87 | 1 | |
6.1 | 0.5 | 25 | 99.2 | 55.2 | 0.550 | 54.9 | 0.99 | |
6.5 | 0.46 | 234 | 99.1 | 506.6 | 0.01 | 500 | 0.99 | |
6.0 | 1.75 | 24 | 98.6 | 13.5 | 1.663 | 13.5 | 0.99 | |
6.5 | 1.74 | 236 | 98.2 | 133.2 | 1.186 | 129.9 | 1 | |
12.6 | 0.43 | 25 | 86.4 | 49.9 | 0.260 | 49.5 | 0.99 | |
12.1 | 0.45 | 259 | 93.9 | 545.8 | 0.012 | 526.3 | 0.99 | |
12.6 | 1.74 | 26 | 92.1 | 13.8 | 15.093 | 12.9 | 0.99 | |
12.1 | 1.78 | 260 | 92.6 | 135.0 | 0.047 | 133.3 | 0.99 | |
PAN-C | 2.0 | 0.44 | 24 | 9.9 | 5.4 | 0.351 | 5.4 | 0.99 |
2.3 | 0.45 | 256 | 12.5 | 70.5 | 0.008 | 67.1 | 0.96 | |
2.0 | 1.70 | 24 | 36.2 | 5.1 | 0.254 | 4.9 | 0.98 | |
2.0 | 1.87 | 256 | 35.8 | 49.0 | 0.029 | 47.8 | 0.99 | |
6.0 | 0.44 | 24 | 5.5 | 0.3 | 0.307 | 2.3 | 0.99 | |
6.5 | 0.48 | 231 | 2.0 | 9.6 | — | — | — | |
6.1 * | 1.87 | 24 | 32.8 | 4.2 | 0.06 * k1 0.06 (h−1) | 3.6 * 20.7 | 0.73 * 0.93 | |
6.5 | 1.80 | 231 | 0 | 0 | — | — | — | |
11.9 | 0.40 | 28 | 0 | 0 | — | — | — | |
11.8 | 0.40 | 278 | 0 | 0 | — | — | — | |
11.8 | 1.80 | 28 | 0 | 0 | — | — | — | |
11.8 | 1.80 | 259 | 0 | 0 | — | — | — | |
PAN-S-C | 2.0 | 0.46 | 24 | 32.3 | 16.7 | 0.314 | 16.8 | 0.99 |
2.0 | 0.46 | 247 | 47.1 | 252.7 | 0.8 | 250.0 | 1 | |
2.0 | 1.86 | 24 | 92.0 | 11.9 | 0.923 | 11.9 | 0.99 | |
2.0 | 1.84 | 256 | 80.9 | 112.7 | 0.792 | 112.6 | 1 | |
6.0 | 0.47 | 25 | 22.3 | 11.9 | 0.472 | 12.2 | 0.97 | |
6.8 | 0.40 | 252 | 42.0 | 57.4 | 0.303 | 57.5 | 1 | |
6.1 | 1.90 | 25 | 40.2 | 5.3 | 4.163 | 5.3 | 1 | |
6.8 | 1.84 | 252 | 47.2 | 64.5 | 0.343 | 64.5 | 1 | |
12.0 | 0.40 | 25 | 0 | 0 | — | — | — | |
12.1 | 0.40 | 258 | 0 | 0 | — | — | — | |
12.0 | 1.85 | 28 | 25.7 | 3.9 | 94.413 | 3.4 | 0.99 | |
12.1 | 1.80 | 244 | 0 | 0 | — | — | — | |
PAN-C-Act | 1.9 | 0.45 | 24 | 100.0 | 52.8 | 0.226 | 52.6 | 0.99 |
1.9 | 0.47 | 285 | 99.9 | 602.3 | 0.026 | 625.0 | 1 | |
1.9 | 1.86 | 24 | 100.0 | 12.9 | 29.954 | 12.9 | 1 | |
1.9 | 1.89 | 285 | 99.0 | 149.1 | 0.748 | 149.3 | 1 | |
6.1 | 0.46 | 25 | 99.6 | 53.6 | 0.161 | 53.2 | 0.99 | |
6.7 | 0.49 | 246 | 100.0 | 505.0 | 0.800 | 500.0 | 1 | |
6.1 | 1.86 | 25 | 99.8 | 13.4 | 6.300 | 13.3 | 1 | |
6.7 | 1.88 | 246 | 100.0 | 130.7 | 0.593 | 129.9 | 1 | |
11.9 | 0.47 | 25 | 99.1 | 52.8 | 1.191 | 52.9 | 1 | |
12.0 | 0.48 | 265 | 100.0 | 549.5 | 0.324 | 555.6 | 1 | |
11.9 | 1.85 | 25 | 99.8 | 13.5 | 0.898 | 13.4 | 1 | |
12.0 | 1.90 | 265 | 100.0 | 139.4 | 5.184 | 138.9 | 1 |
Sample | Experimental Conditions | Intra-particle-diffusion Model | |||||||
---|---|---|---|---|---|---|---|---|---|
pH | S/L (g L−1) | Ci (mg L−1) | First Stage | Second Stage | |||||
K1d (mg g−1 h−0.5) | I1 (mg g−1) | R2 | K2d (mg g−1 h−0.5) | I2 (mg g−1) | R2 | ||||
CAC | 2.0 | 0.53 | 24 | 61.35 | 18.24 | 0.50 | 0.06 | 44.78 | 0.03 |
2.0 | 0.44 | 250 | 503.67 | 190.16 | 0.55 | 6.02 | 516.29 | 0.79 | |
2.0 | 1.76 | 24 | 16.53 | 5.63 | 0.44 | 0.11 | 12.45 | 0.41 | |
2.0 | 1.91 | 250 | 176.73 | 59.34 | 0.44 | 0.12 | 128.92 | 0.02 | |
6.1 | 0.5 | 25 | 80.07 | 20.36 | 0.58 | 0.06 | 54.34 | 0.14 | |
6.5 | 0.46 | 234 | 553.11 | 66.56 | 0.85 | 25.43 | 362.05 | 0.67 | |
6.0 | 1.75 | 24 | 19.001 | 5.47 | 0.47 | 0.04 | 13.23 | 0.59 | |
6.5 | 1.74 | 236 | 175.85 | 59.12 | 0.44 | 0.05 | 130.55 | 0.01 | |
12.6 | 0.43 | 25 | 79.60 | 16.14 | 0.54 | 0.67 | 45.06 | 0.19 | |
12.1 | 0.45 | 259 | 317.18 | 114.40 | 0.76 | 24.67 | 371.74 | 0.77 | |
12.6 | 1.74 | 26 | 71.14 | 16.97 | 0.61 | 0.86 | 44.12 | 0.29 | |
12.1 | 1.78 | 260 | 378.18 | 98.76 | 0.80 | 24.70 | 371.14 | 0.77 | |
PAN-C | 2.0 | 0.44 | 24 | 5.51 | 1.23 | 0.57 | 0.51 | 2.15 | 0.93 |
2.3 | 0.45 | 256 | 89.38 | 10.25 | 0.84 | 6.49 | 21.47 | 0.90 | |
2.0 | 1.70 | 24 | 47.13 | 8.62 | 0.67 | 3.06 | 26.87 | 0.99 | |
2.0 | 1.87 | 256 | 20.32 | 2.94 | 0.95 | 0.10 | 20.62 | 0.03 | |
6.0 | 0.44 | 24 | 0.28 | 0.01 | 0.96 | 0.02 | 0.35 | 0.92 | |
6.5 | 0.48 | 231 | — | — | — | — | — | — | |
6.1 | 1.87 | 24 | 0.47 | 0.27 | 0.85 | — | — | — | |
6.5 | 1.8 | 231 | — | — | — | — | — | — | |
11.9 | 0.4 | 28 | — | — | — | — | — | — | |
11.8 | 0.4 | 278 | — | — | — | — | — | — | |
11.8 | 1.8 | 28 | — | — | — | — | — | ||
11.8 | 1.8 | 259 | — | — | — | — | — | ||
PAN-S-C | 2.0 | 0.46 | 24 | 11.68 | 3.77 | 0.62 | 1.28 | 10.35 | 0.93 |
2.0 | 0.46 | 247 | 355.72 | 93.88 | 0.52 | 0.72 | 249.18 | 0.99 | |
2.0 | 1.86 | 24 | 13.22 | 1.05 | 0.96 | 0.47 | 10.80 | 0.72 | |
2.0 | 1.84 | 256 | 258.27 | 41.39 | 0.42 | 1.08 | 107.45 | 0.94 | |
6.0 | 0.47 | 25 | 8.04 | 1.62 | 0.91 | — | — | — | |
6.8 | 0.4 | 252 | 89.38 | 0.76 | 0.99 | 11.15 | 43.40 | 0.56 | |
6.1 | 1.90 | 25 | 9.04 | 0.31 | 0.93 | 0.73 | 4.25 | 0.73 | |
6.8 | 1.84 | 252 | 102.09 | 4.50 | 0.88 | 1.07 | 58.28 | 0.63 | |
12.0 | 0.4 | 25 | — | — | — | — | — | — | |
12.1 | 0.4 | 258 | — | — | — | — | — | — | |
12.0 | 1.85 | 28 | 3.49 | 1.01 | 0.67 | 0.02 | 3.54 | 0.04 | |
12.1 | 1.8 | 244 | 68.53 | 14.13 | 0.63 | 0.03 | 44.08 | 0.09 | |
PAN-C-Act | 1.9 | 0.45 | 24 | 44.81 | 23.55 | 0.38 | 0.41 | 49.65 | 0.89 |
1.9 | 0.47 | 285 | 736.27 | 168.26 | 0.56 | 12.85 | 529.11 | 0.60 | |
1.9 | 1.86 | 24 | 11.39 | 6.01 | 0.38 | 0.02 | 12.83 | 0.84 | |
1.9 | 1.89 | 285 | 181.03 | 60.86 | 0.37 | 0.59 | 145.57 | 0.65 | |
6.1 | 0.46 | 25 | 48.72 | 23.48 | 0.42 | 0.15 | 51.4 | 0.12 | |
6.7 | 0.49 | 246 | 351.37 | 223.0 | 0.48 | 1.93 | 515.53 | 0.27 | |
6.1 | 1.86 | 25 | 16.28 | 5.8 | 0.34 | 0.01 | 13.28 | 0.04 | |
6.7 | 1.88 | 246 | 115.07 | 58.85 | 0.39 | 0.20 | 129.25 | 0.49 | |
11.9 | 0.47 | 25 | 65.86 | 23.11 | 0.35 | 0.09 | 52.48 | 0.32 | |
12.0 | 0.48 | 265 | 552.79 | 274.65 | 0.25 | 0.28 | 560.43 | 0.30 | |
11.9 | 1.85 | 25 | 16.12 | 5.83 | 0.34 | 0.09 | 12.92 | 0.34 | |
12.0 | 1.90 | 265 | 140.21 | 69.01 | 0.25 | 0.01 | 139.09 | 0.47 |
Supplier | Dye | qmax (mg g−1) | Source |
---|---|---|---|
PAN-C | Red GRA 200% | 70.5 | This study |
PAN-S-C | 252.7 | ||
PAN-C-Act | 602.3 | ||
CAC | 556.1 | ||
Chemviron F-400 | Remazol Golden Yellow | 714 | [36] |
Remazol Red | 278 | ||
Remazol Black B | 213 | ||
Merck | Reactive Red 120 (RR-120) | 267 | [36] |
Reactive Violet f | 517 | [37] | |
Panreac | Mordant Blue 9 | 213 | [38] |
Fagron | 221 | ||
Norit Darco | Reactive Black 5 | 564 | [39] |
Norit R008 | 796 | ||
Norit PK | 474 | ||
Filtrasorb Corp E-400 | Acid Yellow 117 | 156 | [40] |
Reactive Red | 112 | [41] | |
Calgon Corp F-400 | Direct Brown 1 | 8 | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Ramos, L.; Tejado, I.; Freire, M.S.; Gómez-Díaz, D.; Lazzari, M.; González-Álvarez, J. Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile. Molecules 2025, 30, 3391. https://doi.org/10.3390/molecules30163391
Domínguez-Ramos L, Tejado I, Freire MS, Gómez-Díaz D, Lazzari M, González-Álvarez J. Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile. Molecules. 2025; 30(16):3391. https://doi.org/10.3390/molecules30163391
Chicago/Turabian StyleDomínguez-Ramos, Lidia, Ismael Tejado, M. Sonia Freire, Diego Gómez-Díaz, Massimo Lazzari, and Julia González-Álvarez. 2025. "Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile" Molecules 30, no. 16: 3391. https://doi.org/10.3390/molecules30163391
APA StyleDomínguez-Ramos, L., Tejado, I., Freire, M. S., Gómez-Díaz, D., Lazzari, M., & González-Álvarez, J. (2025). Industrial Wood Dyes Removal from Aqueous Solutions by Multifunctional Carbons Derived from Polyacrylonitrile. Molecules, 30(16), 3391. https://doi.org/10.3390/molecules30163391