Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,706)

Search Parameters:
Keywords = recurrent states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1130 KiB  
Review
Beyond the Backbone: A Quantitative Review of Deep-Learning Architectures for Tropical Cyclone Track Forecasting
by He Huang, Difei Deng, Liang Hu, Yawen Chen and Nan Sun
Remote Sens. 2025, 17(15), 2675; https://doi.org/10.3390/rs17152675 (registering DOI) - 2 Aug 2025
Abstract
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In [...] Read more.
Accurate forecasting of tropical cyclone (TC) tracks is critical for disaster preparedness and risk mitigation. While traditional numerical weather prediction (NWP) systems have long served as the backbone of operational forecasting, they face limitations in computational cost and sensitivity to initial conditions. In recent years, deep learning (DL) has emerged as a promising alternative, offering data-driven modeling capabilities for capturing nonlinear spatiotemporal patterns. This paper presents a comprehensive review of DL-based approaches for TC track forecasting. We categorize all DL-based TC tracking models according to the architecture, including recurrent neural networks (RNNs), convolutional neural networks (CNNs), Transformers, graph neural networks (GNNs), generative models, and Fourier-based operators. To enable rigorous performance comparison, we introduce a Unified Geodesic Distance Error (UGDE) metric that standardizes evaluation across diverse studies and lead times. Based on this metric, we conduct a critical comparison of state-of-the-art models and identify key insights into their relative strengths, limitations, and suitable application scenarios. Building on this framework, we conduct a critical cross-model analysis that reveals key trends, performance disparities, and architectural tradeoffs. Our analysis also highlights several persistent challenges, such as long-term forecast degradation, limited physical integration, and generalization to extreme events, pointing toward future directions for developing more robust and operationally viable DL models for TC track forecasting. To support reproducibility and facilitate standardized evaluation, we release an open-source UGDE conversion tool on GitHub. Full article
(This article belongs to the Section AI Remote Sensing)
22 pages, 4480 KiB  
Article
MGMR-Net: Mamba-Guided Multimodal Reconstruction and Fusion Network for Sentiment Analysis with Incomplete Modalities
by Chengcheng Yang, Zhiyao Liang, Tonglai Liu, Zeng Hu and Dashun Yan
Electronics 2025, 14(15), 3088; https://doi.org/10.3390/electronics14153088 (registering DOI) - 1 Aug 2025
Viewed by 29
Abstract
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space [...] Read more.
Multimodal sentiment analysis (MSA) faces key challenges such as incomplete modality inputs, long-range temporal dependencies, and suboptimal fusion strategies. To address these, we propose MGMR-Net, a Mamba-guided multimodal reconstruction and fusion network that integrates modality-aware reconstruction with text-centric fusion within an efficient state-space modeling framework. MGMR-Net consists of two core components: the Mamba-collaborative fusion module, which utilizes a two-stage selective state-space mechanism for fine-grained cross-modal alignment and hierarchical temporal integration, and the Mamba-enhanced reconstruction module, which employs continuous-time recurrence and dynamic gating to accurately recover corrupted or missing modality features. The entire network is jointly optimized via a unified multi-task loss, enabling simultaneous learning of discriminative features for sentiment prediction and reconstructive features for modality recovery. Extensive experiments on CMU-MOSI, CMU-MOSEI, and CH-SIMS datasets demonstrate that MGMR-Net consistently outperforms several baseline methods under both complete and missing modality settings, achieving superior accuracy, robustness, and generalization. Full article
(This article belongs to the Special Issue Application of Data Mining in Decision Support Systems (DSSs))
26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 84
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

14 pages, 1813 KiB  
Article
Elevated Antigen-Presenting-Cell Signature Genes Predict Stemness and Metabolic Reprogramming States in Glioblastoma
by Ji-Yong Sung and Kihwan Hwang
Int. J. Mol. Sci. 2025, 26(15), 7411; https://doi.org/10.3390/ijms26157411 (registering DOI) - 1 Aug 2025
Viewed by 148
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on [...] Read more.
Glioblastoma (GBM) is a highly aggressive and heterogeneous brain tumor. Glioma stem-like cells (GSCs) play a central role in tumor progression, therapeutic resistance, and recurrence. Although immune cells are known to shape the GBM microenvironment, the impact of antigen-presenting-cell (APC) signature genes on tumor-intrinsic phenotypes remains underexplored. We analyzed both bulk- and single-cell RNA sequencing datasets of GBM to investigate the association between APC gene expression and tumor-cell states, including stemness and metabolic reprogramming. Signature scores were computed using curated gene sets related to APC activity, KEGG metabolic pathways, and cancer hallmark pathways. Protein–protein interaction (PPI) networks were constructed to examine the links between immune regulators and metabolic programs. The high expression of APC-related genes, such as HLA-DRA, CD74, CD80, CD86, and CIITA, was associated with lower stemness signatures and enhanced inflammatory signaling. These APC-high states (mean difference = –0.43, adjusted p < 0.001) also showed a shift in metabolic activity, with decreased oxidative phosphorylation and increased lipid and steroid metabolism. This pattern suggests coordinated changes in immune activity and metabolic status. Furthermore, TNF-α and other inflammatory markers were more highly expressed in the less stem-like tumor cells, indicating a possible role of inflammation in promoting differentiation. Our findings revealed that elevated APC gene signatures are associated with more differentiated and metabolically specialized GBM cell states. These transcriptional features may also reflect greater immunogenicity and inflammation sensitivity. The APC metabolic signature may serve as a useful biomarker to identify GBM subpopulations with reduced stemness and increased immune engagement, offering potential therapeutic implications. Full article
(This article belongs to the Special Issue Advanced Research on Cancer Stem Cells)
Show Figures

Figure 1

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

21 pages, 4147 KiB  
Article
OLTEM: Lumped Thermal and Deep Neural Model for PMSM Temperature
by Yuzhong Sheng, Xin Liu, Qi Chen, Zhenghao Zhu, Chuangxin Huang and Qiuliang Wang
AI 2025, 6(8), 173; https://doi.org/10.3390/ai6080173 - 31 Jul 2025
Viewed by 161
Abstract
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines [...] Read more.
Background and Objective: Temperature management is key for reliable operation of permanent magnet synchronous motors (PMSMs). The lumped-parameter thermal network (LPTN) is fast and interpretable but struggles with nonlinear behavior under high power density. We propose OLTEM, a physics-informed deep model that combines LPTN with a thermal neural network (TNN) to improve prediction accuracy while keeping physical meaning. Methods: OLTEM embeds LPTN into a recurrent state-space formulation and learns three parameter sets: thermal conductance, inverse thermal capacitance, and power loss. Two additions are introduced: (i) a state-conditioned squeeze-and-excitation (SC-SE) attention that adapts feature weights using the current temperature state, and (ii) an enhanced power-loss sub-network that uses a deep MLP with SC-SE and non-negativity constraints. The model is trained and evaluated on the public Electric Motor Temperature dataset (Paderborn University/Kaggle). Performance is measured by mean squared error (MSE) and maximum absolute error across permanent-magnet, stator-yoke, stator-tooth, and stator-winding temperatures. Results: OLTEM tracks fast thermal transients and yields lower MSE than both the baseline TNN and a CNN–RNN model for all four components. On a held-out generalization set, MSE remains below 4.0 °C2 and the maximum absolute error is about 4.3–8.2 °C. Ablation shows that removing either SC-SE or the enhanced power-loss module degrades accuracy, confirming their complementary roles. Conclusions: By combining physics with learned attention and loss modeling, OLTEM improves PMSM temperature prediction while preserving interpretability. This approach can support motor thermal design and control; future work will study transfer to other machines and further reduce short-term errors during abrupt operating changes. Full article
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 248
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

19 pages, 5198 KiB  
Article
Research on a Fault Diagnosis Method for Rolling Bearings Based on the Fusion of PSR-CRP and DenseNet
by Beining Cui, Zhaobin Tan, Yuhang Gao, Xinyu Wang and Lv Xiao
Processes 2025, 13(8), 2372; https://doi.org/10.3390/pr13082372 - 25 Jul 2025
Viewed by 370
Abstract
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms [...] Read more.
To address the challenges of unstable vibration signals, indistinct fault features, and difficulties in feature extraction during rolling bearing operation, this paper presents a novel fault diagnosis method based on the fusion of PSR-CRP and DenseNet. The Phase Space Reconstruction (PSR) method transforms one-dimensional bearing vibration data into a three-dimensional space. Euclidean distances between phase points are calculated and mapped into a Color Recurrence Plot (CRP) to represent the bearings’ operational state. This approach effectively reduces feature extraction ambiguity compared to RP, GAF, and MTF methods. Fault features are extracted and classified using DenseNet’s densely connected topology. Compared with CNN and ViT models, DenseNet improves diagnostic accuracy by reusing limited features across multiple dimensions. The training set accuracy was 99.82% and 99.90%, while the test set accuracy is 97.03% and 95.08% for the CWRU and JNU datasets under five-fold cross-validation; F1 scores were 0.9739 and 0.9537, respectively. This method achieves highly accurate diagnosis under conditions of non-smooth signals and inconspicuous fault characteristics and is applicable to fault diagnosis scenarios for precision components in aerospace, military systems, robotics, and related fields. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

20 pages, 4049 KiB  
Article
ADMET-Guided Docking and GROMACS Molecular Dynamics of Ziziphus lotus Phytochemicals Uncover Mutation-Agnostic Allosteric Stabilisers of the KRAS Switch-I/II Groove
by Abdessadek Rahimi, Oussama Khibech, Abdessamad Benabbou, Mohammed Merzouki, Mohamed Bouhrim, Mohammed Al-Zharani, Fahd A. Nasr, Ashraf Ahmed Qurtam, Said Abadi, Allal Challioui, Mostafa Mimouni and Maarouf Elbekay
Pharmaceuticals 2025, 18(8), 1110; https://doi.org/10.3390/ph18081110 - 25 Jul 2025
Viewed by 378
Abstract
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying [...] Read more.
Background/Objectives: Oncogenic KRAS drives ~30% of solid tumours, yet the only approved G12C-specific drugs benefit ≈ 13% of KRAS-mutant patients, leaving a major clinical gap. We sought mutation-agnostic natural ligands from Ziziphus lotus, whose stereochemically rich phenolics may overcome this limitation by occupying the SI/II (Switch I/Switch II) groove and locking KRAS in its inactive state. Methods: Phytochemical mining yielded five recurrent phenolics, such as (+)-catechin, hyperin, astragalin, eriodictyol, and the prenylated benzoate amorfrutin A, benchmarked against the covalent inhibitor sotorasib. An in silico cascade combined SI/II docking, multi-parameter ADME/T (Absorption, Distribution, Metabolism, Excretion, and Toxicity) filtering, and 100 ns explicit solvent molecular dynamics simulations. Pharmacokinetic modelling predicted oral absorption, Lipinski compliance, mutagenicity, and acute-toxicity class. Results: Hyperin and astragalin showed the strongest non-covalent affinities (−8.6 kcal mol−1) by forging quadridentate hydrogen-bond networks that bridge the P-loop (Asp30/Glu31) to the α3-loop cleft (Asp119/Ala146). Catechin (−8.5 kcal mol−1) balanced polar anchoring with entropic economy. ADME ranked amorfrutin A the highest for predicted oral absorption (93%) but highlighted lipophilic solubility limits; glycosylated flavonols breached Lipinski rules yet remained non-mutagenic with class-5 acute-toxicity liability. Molecular dynamics trajectories confirmed that hyperin clamps the SI/II groove, suppressing loop RMSF below 0.20 nm and maintaining backbone RMSD stability, whereas astragalin retains pocket residence with transient re-orientation. Conclusions: Hyperin emerges as a low-toxicity, mutation-agnostic scaffold that rigidifies inactive KRAS. Deglycosylation, nano-encapsulation, or soft fluorination could reconcile permeability with durable target engagement, advancing Z. lotus phenolics toward broad-spectrum KRAS therapeutics. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

13 pages, 2924 KiB  
Case Report
Stereotactic Ablative Radiotherapy for Delayed Retrobulbar Metastasis of Renal Cell Carcinoma: Therapeutic Outcomes and Practical Insights
by Sang Jun Byun, Byung Hoon Kim, Seung Gyu Park and Euncheol Choi
Life 2025, 15(8), 1176; https://doi.org/10.3390/life15081176 - 24 Jul 2025
Viewed by 304
Abstract
We present a rare case of delayed retrobulbar and adrenal metastases from renal cell carcinoma (RCC), diagnosed 5.5 years after radical nephrectomy. The patient exhibited symptomatic orbital involvement, with imaging revealing a hypervascular retrobulbar mass and an incidental right adrenal lesion, indicative of [...] Read more.
We present a rare case of delayed retrobulbar and adrenal metastases from renal cell carcinoma (RCC), diagnosed 5.5 years after radical nephrectomy. The patient exhibited symptomatic orbital involvement, with imaging revealing a hypervascular retrobulbar mass and an incidental right adrenal lesion, indicative of an oligometastatic state. Owing to the patient’s refusal of surgical resection, stereotactic ablative radiotherapy (SABR) was delivered to the retrobulbar lesion at a total dose of 40 Gy in five fractions, concurrently with immune checkpoint inhibitor therapy. Treatment planning prioritized sparing adjacent critical structures, including the optic chiasm and brainstem. Follow-up over 4 years demonstrated sustained radiologic stability and volume reduction in both metastatic lesions without evidence of progression. This case underscores the potential efficacy of SABR in achieving durable local control of RCC metastases, particularly in anatomically constrained regions where surgery is unfeasible. Moreover, it highlights the value of a multidisciplinary, multimodal treatment approach incorporating advanced radiotherapy techniques and systemic immunotherapy. Lastly, it reinforces the importance of prolonged surveillance in RCC survivors due to the potential for late metastatic recurrence at uncommon sites. Full article
(This article belongs to the Special Issue Research Progress in Kidney Diseases)
Show Figures

Figure 1

26 pages, 5306 KiB  
Review
Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms
by Bogdan-Sorin Tudurachi, Larisa Anghel, Andreea Tudurachi, Răzvan-Liviu Zanfirescu, Silviu-Gabriel Bîrgoan, Radu Andy Sascău and Cristian Stătescu
Biomolecules 2025, 15(8), 1065; https://doi.org/10.3390/biom15081065 - 23 Jul 2025
Viewed by 263
Abstract
Acute myocardial infarction (AMI) in young adults, though less common than in older populations, is an emerging clinical concern with increasing incidence and diverse etiologies. Unlike classic atherosclerotic presentations, a significant proportion of AMI cases in individuals under 45 years are due to [...] Read more.
Acute myocardial infarction (AMI) in young adults, though less common than in older populations, is an emerging clinical concern with increasing incidence and diverse etiologies. Unlike classic atherosclerotic presentations, a significant proportion of AMI cases in individuals under 45 years are due to nonatherothrombotic mechanisms such as coronary vasospasm, spontaneous coronary artery dissection (SCAD), vasculitis, hypercoagulable states, and drug-induced coronary injury. This manuscript aims to explore the multifactorial nature of AMI in young adults through a focused review of current evidence and a series of illustrative clinical cases. We present and analyze four distinct cases of young patients with AMI, each demonstrating different pathophysiological mechanisms and risk profiles—including premature atherosclerosis, substance use, human immunodeficiency virus (HIV)-related coronary disease, and SCAD. Despite the heterogeneity of underlying causes, early diagnosis, individualized management, and aggressive secondary prevention were key to favorable outcomes. Advanced imaging, lipid profiling, and risk factor modification played a central role in guiding therapy. AMI in young adults requires heightened clinical suspicion and a comprehensive, multidisciplinary approach. Early intervention and recognition of nontraditional risk factors are essential to improving outcomes and preventing recurrent events in this vulnerable population. Full article
(This article belongs to the Special Issue Cardiometabolic Disease: Molecular Basis and Therapeutic Approaches)
Show Figures

Figure 1

27 pages, 3019 KiB  
Article
New Deep Learning-Based Approach for Source Code Generation: Application to Computer Vision Systems
by Wafa Alshehri, Salma Kammoun Jarraya and Arwa Allinjawi
AI 2025, 6(7), 162; https://doi.org/10.3390/ai6070162 - 21 Jul 2025
Viewed by 473
Abstract
Deep learning has enabled significant progress in source code generation, aiming to reduce the manual, error-prone, and time-consuming aspects of software development. While many existing models rely on recurrent neural networks (RNNs) with sequence-to-sequence architectures, these approaches struggle with the long and complex [...] Read more.
Deep learning has enabled significant progress in source code generation, aiming to reduce the manual, error-prone, and time-consuming aspects of software development. While many existing models rely on recurrent neural networks (RNNs) with sequence-to-sequence architectures, these approaches struggle with the long and complex token sequences typical in source code. To address this, we propose a grammar-based convolutional neural network (CNN) combined with a tree-based representation to enhance accuracy and efficiency. Our model achieves state-of-the-art results on the benchmark HEARTHSTONE dataset, with a BLEU score of 81.4 and an Acc+ of 62.1%. We further evaluate the model on our proposed dataset, AST2CVCode, designed for computer vision applications, achieving 86.2 BLEU and 51.9% EM. Additionally, we introduce BLEU+, an enhanced evaluation metric tailored for functional correctness in code generation, which achieves a BLEU+ score of 92.0% on the AST2CVCode dataset. These results demonstrate the effectiveness of our approach in both model architecture and evaluation methodology. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

32 pages, 8923 KiB  
Article
A Comparative Study of Unsupervised Deep Learning Methods for Anomaly Detection in Flight Data
by Sameer Kumar Jasra, Gianluca Valentino, Alan Muscat and Robert Camilleri
Aerospace 2025, 12(7), 645; https://doi.org/10.3390/aerospace12070645 - 21 Jul 2025
Viewed by 257
Abstract
This paper provides a comparative study of unsupervised Deep Learning (DL) methods for anomaly detection in Flight Data Monitoring (FDM). The paper applies Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Convolutional Neural Network (CNN), classic Transformer architecture, and LSTM combined with a [...] Read more.
This paper provides a comparative study of unsupervised Deep Learning (DL) methods for anomaly detection in Flight Data Monitoring (FDM). The paper applies Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Convolutional Neural Network (CNN), classic Transformer architecture, and LSTM combined with a self-attention mechanism to real-world flight data and compares the results to the current state-of-the-art flight data analysis techniques applied in the industry. The paper finds that LSTM, when integrated with a self-attention mechanism, offers notable benefits over other deep learning methods as it effectively handles lengthy time series like those present in flight data, establishes a generalized model applicable across various airports and facilitates the detection of trends across the entire fleet. The results were validated by industrial experts. The paper additionally investigates a range of methods for feeding flight data (lengthy time series) to a neural network. The innovation of this paper involves utilizing Transformer architecture and LSTM with self-attention mechanism for the first time in the realm of aviation data, exploring the optimal method for inputting flight data into a model and evaluating all deep learning techniques for anomaly detection against the ground truth determined by human experts. The paper puts forth a compelling case for shifting from the existing method, which relies on examining events through threshold exceedances, to a deep learning-based approach that offers a more proactive style of data analysis. This not only enhances the generalization of the FDM process but also has the potential to improve air transport safety and optimize aviation operations. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

12 pages, 2081 KiB  
Article
Targeting Bcl-xL with Navitoclax Effectively Eliminates Senescent Tumor Cells That Appear Following CEP-1347-Induced Differentiation of Glioma Stem Cells
by Senri Takenouchi, Yasufumi Ito, Kazuki Nakamura, Yurika Nakagawa-Saito, Yuta Mitobe, Keita Togashi, Shuhei Suzuki, Asuka Sugai, Yukihiko Sonoda, Chifumi Kitanaka and Masashi Okada
Int. J. Mol. Sci. 2025, 26(14), 6984; https://doi.org/10.3390/ijms26146984 - 20 Jul 2025
Viewed by 485
Abstract
Cellular senescence is a state of the durable cell cycle arrest of dysfunctional cells, which has been associated with the promotion of tumor cell reprogramming into a stem cell state. We previously reported that the mixed lineage kinase (MLK) inhibitor CEP-1347 promotes the [...] Read more.
Cellular senescence is a state of the durable cell cycle arrest of dysfunctional cells, which has been associated with the promotion of tumor cell reprogramming into a stem cell state. We previously reported that the mixed lineage kinase (MLK) inhibitor CEP-1347 promotes the differentiation of glioma stem cells (GSCs)—key contributors to glioblastoma recurrence and therapy resistance—into non-stem tumor cells. However, we also noted that CEP-1347–treated GSCs exhibited a morphological change suggestive of senescence. Therefore, we herein investigated whether CEP-1347 induces senescence in GSCs and, consequently, if senescent GSCs may be eliminated using senolytics. Cell death induced by CEP-1347 in combination with senolytic agents or with the knockdown of anti-apoptotic BCL2 family genes, as well as the effects of CEP-1347 on the expression of senescence markers and anti-apoptotic Bcl-2 family proteins, were examined. The results obtained showed that CEP-1347 induced senescence in GSCs accompanied by the increased expression of Bcl-xL. Among the panel of senolytic agents tested, navitoclax, a BH3 mimetic, efficiently induced cell death in GSCs when combined with CEP-1347 at concentrations clinically achievable in the brain. The knockdown of Bcl-xL resulted in more pronounced GSC death in combination with CEP-1347 than that of Bcl-2. These results suggest that combining CEP-1347 with the targeting of Bcl-xL, the expression of which increases with CEP-1347-induced senescence, is a rational approach to ensure the elimination of GSCs, thereby improving the outcomes of glioblastoma treatment. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Brain Tumors)
Show Figures

Figure 1

17 pages, 2719 KiB  
Article
State of Health Prediction for Lithium-Ion Batteries Based on Gated Temporal Network Assisted by Improved Grasshopper Optimization
by Xiankun Wei, Silun Peng and Mingli Mo
Energies 2025, 18(14), 3856; https://doi.org/10.3390/en18143856 - 20 Jul 2025
Viewed by 299
Abstract
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel [...] Read more.
Accurate SOH prediction provides a reliable reference for lithium-ion battery maintenance. However, novel algorithms are still needed because few studies have considered the correlations between monitored parameters in Euclidean space and non-Euclidean space at different time points. To address this challenge, a novel gated-temporal network assisted by improved grasshopper optimization (IGOA-GGNN-TCN) is developed. In this model, features obtained from lithium-ion batteries are used to construct graph data based on cosine similarity. On this basis, the GGNN-TCN is employed to obtain the potential correlations between monitored parameters in Euclidean and non-Euclidean spaces. Furthermore, IGOA is introduced to overcome the issue of hyperparameter optimization for GGNN-TCN, improving the convergence speed and the local optimal problem. Competitive results on the Oxford dataset indicate that the SOH prediction performance of proposed IGOA-GGNN-TCN surpasses conventional methods, such as convolutional neural networks (CNNs) and gate recurrent unit (GRUs), achieving an R2 value greater than 0.99. The experimental results demonstrate that the proposed IGOA-GGNN-TCN framework offers a novel and effective approach for state-of-health (SOH) estimation in lithium-ion batteries. By integrating improved grasshopper optimization (IGOA) with hybrid graph-temporal modeling, the method achieves superior prediction accuracy compared to conventional techniques, providing a promising tool for battery management systems in real-world applications. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

Back to TopTop