Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms
Abstract
1. Introduction
2. Mechanisms of MI in Young Adults
2.1. Atherothrombotic MI
2.2. Nonatherothrombotic MI
2.2.1. Coronary Vasospasm
2.2.2. Spontaneous Coronary Artery Dissection
2.2.3. Coronary Artery Vasculitis
3. Case Series
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
4. Implications for Clinical Practice and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2CH | Apical 2-chamber view |
4CH | Apical 4-chamber view |
ACEIs | Angiotensin-converting enzyme inhibitors |
ACS | Acute coronary syndrome |
AMI | Acute myocardial infarction |
APLAX | Apical long-axis view |
ARBs | Angiotensin receptor blockers |
ART | Antiretroviral therapy |
ASCVD | Atherosclerotic cardiovascular disease |
CABG | Coronary artery bypass grafting |
CAD | Coronary artery disease |
CAV | Coronary artery vasculitis |
CCTA | Coronary computed tomography angiography |
CVD | Cardiovascular disease |
DAPT | Dual antiplatelet therapy |
FMD | Fibromuscular dysplasia |
GLS | Global longitudinal strain |
HDL-C | High-density lipoprotein cholesterol |
HF | Heart failure |
HIV | Human immunodeficiency virus |
IVUS | Intravascular ultrasound |
LAD | Left anterior descending coronary artery |
LCX | Left circumflex coronary artery |
LDL-C | Low-density lipoprotein cholesterol |
LM | Left main coronary artery |
Lp(a) | Lipoprotein(a) |
LV | Left ventricle |
LVEF | Left ventricular ejection fraction |
MACCE | Major adverse cardiac and cerebrovascular events |
MCP-1 | Monocyte chemoattractant protein-1 |
MI | Myocardial infarction |
MINOCA | Myocardial infarction with nonobstructive coronary arteries |
NNRTIs | Non-nucleoside reverse transcriptase inhibitors |
NRTIs | Nucleoside reverse transcriptase inhibitors |
NSTEMI | Non-ST-elevation myocardial infarction |
OCT | Optical coherence tomography |
P-SCAD | Pregnancy-associated spontaneous coronary artery dissection |
PCI | Percutaneous coronary intervention |
PLWH | People living with HIV |
RCA | Right coronary artery |
SCAD | Spontaneous coronary artery dissection |
SpO2 | Oxygen saturation |
STEMI | ST-elevation myocardial infarction |
T1M1 | Type 1 myocardial infarction |
T2M2 | Type 2 myocardial infarction |
TCFA | Thin-cap fibroatheromas |
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Global Burden of Cardiovascular, D.; Risks, C. Global Burden of Cardiovascular Diseases and Risks, 1990-2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Xenogiannis, I.; Brilakis, E.S.; Bhatt, D.L. Causes, Angiographic Characteristics, and Management of Premature Myocardial Infarction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 2431–2449. [Google Scholar] [CrossRef] [PubMed]
- Zeitouni, M.; Clare, R.M.; Chiswell, K.; Abdulrahim, J.; Shah, N.; Pagidipati, N.P.; Shah, S.H.; Roe, M.T.; Patel, M.R.; Jones, W.S. Risk Factor Burden and Long-Term Prognosis of Patients With Premature Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e017712. [Google Scholar] [CrossRef]
- Zasada, W.; Bobrowska, B.; Plens, K.; Dziewierz, A.; Siudak, Z.; Surdacki, A.; Dudek, D.; Bartus, S. Acute myocardial infarction in young patients. Kardiol. Pol. 2021, 79, 1093–1098. [Google Scholar] [CrossRef]
- Ambroziak, M.; Niewczas-Wieprzowska, K.; Maicka, A.; Budaj, A. Younger age of patients with myocardial infarction is associated with a higher number of relatives with a history of premature atherosclerosis. BMC Cardiovasc. Disord. 2020, 20, 410. [Google Scholar] [CrossRef]
- Zaheen, M.; Pender, P.; Dang, Q.M.; Sinha, E.; Chong, J.J.H.; Chow, C.K.; Zaman, S. Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers. J. Cardiovasc. Dev. Dis. 2025, 12, 148. [Google Scholar] [CrossRef]
- Kazi, S.N.; Von Huben, A.; Marschner, S.; Chong, J.J.H.; Denniss, A.R.; Ong, A.T.L.; Chow, C.K. Trends in Modifiable Risk Factors Amongst First Presentation ST Elevation Myocardial Infarction Patients in a Large Longitudinal Registry. Heart Lung Circ. 2023, 32, 480–486. [Google Scholar] [CrossRef]
- Krittanawong, C.; Khawaja, M.; Tamis-Holland, J.E.; Girotra, S.; Rao, S.V. Acute Myocardial Infarction: Etiologies and Mimickers in Young Patients. J. Am. Heart Assoc. 2023, 12, e029971. [Google Scholar] [CrossRef] [PubMed]
- Juan-Salvadores, P.; Jimenez Diaz, V.A.; Rodriguez Gonzalez de Araujo, A.; Iglesia Carreno, C.; Guitian Gonzalez, A.; Veiga Garcia, C.; Baz Alonso, J.A.; Caamano Isorna, F.; Iniguez Romo, A. Clinical Features and Long-Term Outcomes in Very Young Patients with Myocardial Infarction with Non-Obstructive Coronary Arteries. J. Interv. Cardiol. 2022, 2022, 9584527. [Google Scholar] [CrossRef] [PubMed]
- Sawano, M.; Lu, Y.; Caraballo, C.; Mahajan, S.; Dreyer, R.; Lichtman, J.H.; D’Onofrio, G.; Spatz, E.; Khera, R.; Onuma, O.; et al. Sex Difference in Outcomes of Acute Myocardial Infarction in Young Patients. J. Am. Coll. Cardiol. 2023, 81, 1797–1806. [Google Scholar] [CrossRef]
- Dang, Q.M.; Psaltis, P.J.; Burgess, S.; Chandrasekhar, J.; Mukherjee, S.; Kritharides, L.; Jepson, N.; Fairley, S.; Ihdayhid, A.; Layland, J.; et al. The Australian-New Zealand spontaneous coronary artery dissection cohort study: Predictors of major adverse cardiovascular events and recurrence. Eur. Heart J. 2025, 46, 2012–2023. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Stouffer, G.A.; Kucharska-Newton, A.M.; Qamar, A.; Vaduganathan, M.; Pandey, A.; Porterfield, D.; Blankstein, R.; Rosamond, W.D.; Bhatt, D.L.; et al. Twenty Year Trends and Sex Differences in Young Adults Hospitalized with Acute Myocardial Infarction. Circulation 2019, 139, 1047–1056. [Google Scholar] [CrossRef]
- Ielapi, J.; Rosa, S.D.; Deietti, G.; Critelli, C.; Panuccio, G.; Cacia, M.A.; Luca, E.D.; Strangio, A.; Sorrentino, S.; Polimeni, A.; et al. 774 Young adults with acute coronary syndrome: Still a long road ahead. Eur. Heart J. Suppl. 2021, 23, suab134.024. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Yılmaz, S.; Coşansu, K. Prognostic Factors and Outcomes in Young Patients With Presented of Different Types Acute Coronary Syndrome. Angiology 2020, 71, 894–902. [Google Scholar] [CrossRef]
- Yagel, O.; Shadafny, N.; Eliaz, R.; Dagan, G.; Leibowitz, D.; Tahiroglu, I.; Planer, D.; Amir, O.; Elbaz Greener, G.; Alcalai, R. Long-Term Prognosis in Young Patients with Acute Coronary Syndrome Treated with Percutaneous Coronary Intervention. Vasc. Health Risk Manag. 2021, 17, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kassam, N.; Ngunga, M.; Varwani, M.; Msunza, M.; Jeilan, M. Acute coronary syndrome patterns in the Young: Risk factor profile and in-hospital outcomes in a tertiary referral hospital in Kenya. BMC Cardiovasc. Disord. 2024, 24, 192. [Google Scholar] [CrossRef]
- Peerwani, G.; Hanif, B.; Rahim, K.A.; Kashif, M.; Virani, S.S.; Sheikh, S. Presentation, management, and early outcomes of young acute coronary syndrome patients- analysis of 23,560 South Asian patients from 2012 to 2021. BMC Cardiovasc. Disord. 2024, 24, 378. [Google Scholar] [CrossRef]
- Gulati, R.; Behfar, A.; Narula, J.; Kanwar, A.; Lerman, A.; Cooper, L.; Singh, M. Acute Myocardial Infarction in Young Individuals. Mayo Clin. Proc. 2020, 95, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Jortveit, J.; Pripp, A.H.; Langorgen, J.; Halvorsen, S. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart 2020, 106, 1420–1426. [Google Scholar] [CrossRef] [PubMed]
- Krittanawong, C.; Liu, Y.; Mahtta, D.; Narasimhan, B.; Wang, Z.; Jneid, H.; Tamis-Holland, J.E.; Mahboob, A.; Baber, U.; Mehran, R.; et al. Non-traditional risk factors and the risk of myocardial infarction in the young in the US population-based cohort. Int. J. Cardiol. Heart Vasc. 2020, 30, 100634. [Google Scholar] [CrossRef]
- Mahtta, D.; Ramsey, D.; Krittanawong, C.; Al Rifai, M.; Khurram, N.; Samad, Z.; Jneid, H.; Ballantyne, C.; Petersen, L.A.; Virani, S.S. Recreational substance use among patients with premature atherosclerotic cardiovascular disease. Heart 2021, 107, 650–656. [Google Scholar] [CrossRef]
- Ma, I.; Genet, T.; Clementy, N.; Bisson, A.; Herbert, J.; Semaan, C.; Bouteau, J.; Angoulvant, D.; Ivanes, F.; Fauchier, L. Outcomes in patients with acute myocardial infarction and history of illicit drug use: A French nationwide analysis. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 1027–1037. [Google Scholar] [CrossRef]
- Nou, E.; Lo, J.; Grinspoon, S.K. Inflammation, immune activation, and cardiovascular disease in HIV. AIDS 2016, 30, 1495–1509. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, Y.; Shen, A.; Chen, H.; Li, H. Acute Myocardial Infarction in Young Men Under 50 Years of Age: Clinical Characteristics, Treatment, and Long-Term Prognosis. Int. J. Gen. Med. 2021, 14, 9321–9331. [Google Scholar] [CrossRef]
- Khoury, S.; Soleman, M.; Margolis, G.; Barashi, R.; Rozenbaum, Z.; Keren, G.; Shacham, Y. Incidence, characteristics and outcomes in very young patients with ST segment elevation myocardial infarction. Coron. Artery Dis. 2020, 31, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Espinoza-Derout, J.; Shao, X.M.; Lao, C.J.; Hasan, K.M.; Rivera, J.C.; Jordan, M.C.; Echeverria, V.; Roos, K.P.; Sinha-Hikim, A.P.; Friedman, T.C. Electronic Cigarette Use and the Risk of Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 879726. [Google Scholar] [CrossRef] [PubMed]
- Matta, A.; Bouisset, F.; Lhermusier, T.; Campelo-Parada, F.; Elbaz, M.; Carrie, D.; Roncalli, J. Coronary Artery Spasm: New Insights. J. Interv. Cardiol. 2020, 2020, 5894586. [Google Scholar] [CrossRef]
- Sheth, M.A.; Widmer, R.J.; Dandapantula, H.K. Pathobiology and evolving therapies of coronary artery vasospasm. Bayl. Univ. Med. Cent. Proc. 2021, 34, 352–360. [Google Scholar] [CrossRef]
- Brizido, C.; Madeira, S.; Silva, C.; Strong, C.; Tralhao, A.; Almeida, M. Spontaneous coronary artery dissection: A review for clinical and interventional cardiologists. Rev. Port. Cardiol. 2023, 42, 269–276. [Google Scholar] [CrossRef]
- Bartolucci, J.; Nazzal, N.C.; Verdugo, F.J.; Prieto, J.C.; Sepulveda, P.; Corbalan, R. Characteristics, management, and outcomes of illicit drug consumers with acute myocardial infarction. Rev. Med. Chil. 2016, 144, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Sagris, M.; Antonopoulos, A.S.; Theofilis, P.; Oikonomou, E.; Siasos, G.; Tsalamandris, S.; Antoniades, C.; Brilakis, E.S.; Kaski, J.C.; Tousoulis, D. Risk factors profile of young and older patients with myocardial infarction. Cardiovasc. Res. 2022, 118, 2281–2292. [Google Scholar] [CrossRef]
- Xie, J.; Qi, J.; Mao, H.; Wang, N.; Ye, X.; Zhou, L.; Tong, G.; Yang, J.; Pan, H.; Huang, J. Coronary plaque tissue characterization in patients with premature coronary artery disease. Int. J. Cardiovasc. Imaging 2020, 36, 1003–1011. [Google Scholar] [CrossRef]
- Barbero, U.; Scacciatella, P.; Iannaccone, M.; D’Ascenzo, F.; Niccoli, G.; Colombo, F.; Ugo, F.; Colangelo, S.; Mancone, M.; Calcagno, S.; et al. Culprit plaque characteristics in younger versus older patients with acute coronary syndromes: An optical coherence tomography study from the FORMIDABLE registry. Catheter. Cardiovasc. Interv. 2018, 92, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Girish, M.P.; Gupta, M.D.; Maehara, A.; Matsumura, M.; Bansal, A.; Kunal, S.; Batra, V.; Mohanty, A.; Qamar, A.; Mintz, G.S.; et al. OCT-based comparative evaluation of culprit lesion morphology in very young versus older adult patients with STEMI. AsiaIntervention 2024, 10, 177–185. [Google Scholar] [CrossRef]
- Wereski, R.; Kimenai, D.M.; Bularga, A.; Taggart, C.; Lowe, D.J.; Mills, N.L.; Chapman, A.R. Risk factors for type 1 and type 2 myocardial infarction. Eur. Heart J. 2022, 43, 127–135. [Google Scholar] [CrossRef]
- Mlynarska, E.; Czarnik, W.; Fularski, P.; Hajdys, J.; Majchrowicz, G.; Stabrawa, M.; Rysz, J.; Franczyk, B. From Atherosclerotic Plaque to Myocardial Infarction-The Leading Cause of Coronary Artery Occlusion. Int. J. Mol. Sci. 2024, 25, 7295. [Google Scholar] [CrossRef]
- Stone, N.J.; Smith, S.C., Jr.; Orringer, C.E.; Rigotti, N.A.; Navar, A.M.; Khan, S.S.; Jones, D.W.; Goldberg, R.; Mora, S.; Blaha, M.; et al. Managing Atherosclerotic Cardiovascular Risk in Young Adults: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 819–836. [Google Scholar] [CrossRef]
- Yang, J.; Biery, D.W.; Singh, A.; Divakaran, S.; DeFilippis, E.M.; Wu, W.Y.; Klein, J.; Hainer, J.; Ramsis, M.; Natarajan, P.; et al. Risk Factors and Outcomes of Very Young Adults Who Experience Myocardial Infarction: The Partners YOUNG-MI Registry. Am. J. Med. 2020, 133, 605–612.e1. [Google Scholar] [CrossRef]
- Ando, H.; Yamaji, K.; Kohsaka, S.; Ishii, H.; Sakakura, K.; Goto, R.; Nakano, Y.; Takashima, H.; Ikari, Y.; Amano, T. Clinical Presentation and In-Hospital Outcomes of Acute Myocardial Infarction in Young Patients: Japanese Nationwide Registry. JACC Asia 2022, 2, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Dai, J.; Zhang, S.; Wang, Y.; Wang, J.; Li, L.; Wang, Y.; Yu, H.; Wei, G.; Zhang, X.; et al. Culprit lesion morphology in young patients with ST-segment elevated myocardial infarction: A clinical, angiographic and optical coherence tomography study. Atherosclerosis 2019, 289, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Jeong, M.H.; Ahn, Y.; Sim, D.S.; Chung, J.W.; Cho, J.S.; Yoon, N.S.; Yoon, H.J.; Moon, J.Y.; Kim, K.H.; et al. Age-related differences in intravascular ultrasound findings in 1,009 coronary artery disease patients. Circ. J. 2008, 72, 1270–1275. [Google Scholar] [CrossRef]
- Yahagi, K.; Davis, H.R.; Arbustini, E.; Virmani, R. Sex differences in coronary artery disease: Pathological observations. Atherosclerosis 2015, 239, 260–267. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Collins, B.L.; Singh, A.; Biery, D.W.; Fatima, A.; Qamar, A.; Berman, A.N.; Gupta, A.; Cawley, M.; Wood, M.J.; et al. Women who experience a myocardial infarction at a young age have worse outcomes compared with men: The Mass General Brigham YOUNG-MI registry. Eur. Heart J. 2020, 41, 4127–4137. [Google Scholar] [CrossRef] [PubMed]
- Ueki, Y.; Yamaji, K.; Losdat, S.; Karagiannis, A.; Taniwaki, M.; Roffi, M.; Otsuka, T.; Koskinas, K.C.; Holmvang, L.; Maldonado, R.; et al. Discordance in the diagnostic assessment of vulnerable plaques between radiofrequency intravascular ultrasound versus optical coherence tomography among patients with acute myocardial infarction: Insights from the IBIS-4 study. Int. J. Cardiovasc. Imaging 2021, 37, 2839–2847. [Google Scholar] [CrossRef]
- Kaul, U.; Sethi, R.; Roy, S.; Goel, P.K.; Chouhan, N.S.; Vijayvergiya, R.; Narang, M.; Priyadarshini; Baruah, D.K.; Mathew, R. Morphological characterization of coronary plaques in young indian patients with acute coronary syndrome: A multicentric study. Indian Heart J. 2024, 76, 370–375. [Google Scholar] [CrossRef]
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; Ference, B.A.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef]
- Statescu, C.; Anghel, L.; Benchea, L.C.; Tudurachi, B.S.; Leonte, A.; Zavoi, A.; Zota, I.M.; Prisacariu, C.; Radu, R.; Serban, I.L.; et al. A Systematic Review on the Risk Modulators of Myocardial Infarction in the “Young”-Implications of Lipoprotein (a). Int. J. Mol. Sci. 2023, 24, 5927. [Google Scholar] [CrossRef]
- Berman, A.N.; Biery, D.W.; Singh, A.; Wu, W.Y.; Divakaran, S.; DeFilippis, E.M.; Hainer, J.; Blaha, M.J.; Cannon, C.; Polk, D.M.; et al. Atherosclerotic cardiovascular disease risk and elevated lipoprotein(a) among young adults with myocardial infarction: The Partners YOUNG-MI Registry. Eur. J. Prev. Cardiol. 2021, 28, e12–e14. [Google Scholar] [CrossRef]
- Jubran, A.; Zetser, A.; Zafrir, B. Lipoprotein(a) screening in young and middle-aged patients presenting with acute coronary syndrome. Cardiol. J. 2019, 26, 511–518. [Google Scholar] [CrossRef]
- Buciu, I.C.; Tieranu, E.N.; Pircalabu, A.S.; Zlatian, O.M.; Donoiu, I.; Militaru, C.; Militaru, S.; Militaru, C. The Relationship between Lipoprotein A and the Prevalence of Multivessel Coronary Artery Disease in Young Patients with Acute Myocardial Infarction: An Observational Study. Biomedicines 2024, 12, 2159. [Google Scholar] [CrossRef]
- Kato, A.; Minami, Y.; Katsura, A.; Muramatsu, Y.; Sato, T.; Kakizaki, R.; Nemoto, T.; Hashimoto, T.; Fujiyoshi, K.; Meguro, K.; et al. Physical exertion as a trigger of acute coronary syndrome caused by plaque erosion. J. Thromb. Thrombolysis 2020, 49, 377–385. [Google Scholar] [CrossRef]
- Feng, X.; Xu, Y.; Zeng, M.; Qin, Y.; Weng, Z.; Sun, Y.; Gao, Z.; He, L.; Zhao, C.; Wang, N.; et al. Optical Coherence Tomography Assessment of Coronary Lesions Associated With Microvascular Dysfunction in ST-Segment Elevation Myocardial Infarction. Circ. J. 2023, 87, 1625–1632. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.; Kashima, Y.; Hachinohe, D.; Sugie, T.; Xu, S.; Guo, X.; Li, X.; Hu, X.; Sun, B.; et al. The influence between plaque rupture and non-plaque rupture on clinical outcomes in patients with ST-segment elevation myocardial infarction after primary percutaneous coronary intervention: A prospective cohort study. J. Thorac. Dis. 2024, 16, 7771–7786. [Google Scholar] [CrossRef]
- Rocha, R.V.; Elbatarny, M.; Tam, D.Y.; Fremes, S.E. Commentary: Coronary artery bypass surgery and percutaneous coronary intervention: Optimal revascularization for the younger patient. J. Thorac. Cardiovasc. Surg. 2022, 163, 657–658. [Google Scholar] [CrossRef]
- Robich, M.P.; Leavitt, B.J.; Ryan, T.J., Jr.; Westbrook, B.M.; Malenka, D.J.; Gelb, D.J.; Ross, C.S.; Wiseman, A.; Magnus, P.; Huang, Y.L.; et al. Comparative effectiveness of revascularization strategies for early coronary artery disease: A multicenter analysis. J. Thorac. Cardiovasc. Surg. 2022, 163, 645–656.e2. [Google Scholar] [CrossRef]
- Writing Committee, M.; Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Yaker, Z.S.; Lincoff, A.M.; Cho, L.; Ellis, S.G.; Ziada, K.M.; Zieminski, J.J.; Gulati, R.; Gersh, B.J.; Holmes, D., Jr.; Raphael, C.E. Coronary spasm and vasomotor dysfunction as a cause of MINOCA. EuroIntervention 2024, 20, e123–e134. [Google Scholar] [CrossRef] [PubMed]
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [CrossRef] [PubMed]
- Grigorian-Shamagian, L.; Oteo, J.F.; Gutierrez-Barrios, A.; Abdul-Jawad Altisent, O.; Amat-Santos, I.; Cisnal, A.F.; Roa, J.; Arellano Serrano, C.; Fadeuilhe, E.; Cortes, C.; et al. Endothelial dysfunction in patients with angina and non-obstructed coronary arteries is associated with an increased risk of mayor cardiovascular events. Results of the Spanish ENDOCOR registry. Int. J. Cardiol. 2023, 370, 18–25. [Google Scholar] [CrossRef]
- Shimokawa, H. 2014 Williams Harvey Lecture: Importance of coronary vasomotion abnormalities-from bench to bedside. Eur. Heart J. 2014, 35, 3180–3193. [Google Scholar] [CrossRef]
- Godo, S.; Suda, A.; Takahashi, J.; Yasuda, S.; Shimokawa, H. Coronary Microvascular Dysfunction. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1625–1637. [Google Scholar] [CrossRef]
- Slavich, M.; Patel, R.S. Coronary artery spasm: Current knowledge and residual uncertainties. Int. J. Cardiol. Heart Vasc. 2016, 10, 47–53. [Google Scholar] [CrossRef]
- Gresnigt, F.M.J.; Hulshof, M.; Franssen, E.J.F.; Vanhommerig, J.W.; de Lange, D.W.; Riezebos, R.K. Recreational drug use among young, hospitalized patients with acute coronary syndrome: A retrospective study. Toxicol. Rep. 2022, 9, 1993–1999. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Singh, A.; Divakaran, S.; Gupta, A.; Collins, B.L.; Biery, D.; Qamar, A.; Fatima, A.; Ramsis, M.; Pipilas, D.; et al. Cocaine and Marijuana Use Among Young Adults With Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 71, 2540–2551. [Google Scholar] [CrossRef] [PubMed]
- Clement, A.; Pezel, T.; Lequipar, A.; Guiraud-Chaumeil, P.; Singh, M.; Poinsignon, H.; El Beze, N.; Gall, E.; Goncalves, T.; Lafont, A.; et al. Recreative drug use and cardiovascular disease. Ann. Cardiol. Angeiol. 2023, 72, 101638. [Google Scholar] [CrossRef]
- Roule, V.; Singh, M.; Trimaille, A.; Delmas, C.; Schurtz, G.; Gerbaud, E.; Goncalves, T.; Ramonatxo, A.; Henry, P.; Dillinger, J.G.; et al. Prevalence of recreational drug use in myocardial infarction patients without standard modifiable risk factors: Insights from a multicenter prospective cohort study. Int. J. Cardiol. 2025, 429, 133146. [Google Scholar] [CrossRef]
- Clement, A.; Dillinger, J.G.; Ramonatxo, A.; Roule, V.; Picard, F.; Thevenet, E.; Swedzky, F.; Hauguel-Moreau, M.; Sulman, D.; Stevenard, M.; et al. In-hospital prognosis of acute ST-elevation myocardial infarction in patients with recent recreational drug use. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Demina, A.; Cottin, Y.; Chague, F.; Bentounes, S.A.; Bichat, F.; Genet, T.; Vigny, P.; Zeller, M.; Fauchier, L. History of illicit drug use in adults with acute myocardial infarction: Temporal trends from the French national hospital discharge database. Arch. Cardiovasc. Dis. 2023, 116, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Roset-Altadill, A.; Wat, D.; Radike, M. Cardiovascular and pulmonary complications of recreational drugs: A pictorial review. Eur. J. Radiol. 2024, 178, 111648. [Google Scholar] [CrossRef]
- Jouanjus, E.; Lapeyre-Mestre, M.; Micallef, J.; French Association of the Regional, A.; Dependence Monitoring Centres Working Group on Cannabis, C. Cannabis use: Signal of increasing risk of serious cardiovascular disorders. J. Am. Heart Assoc. 2014, 3, e000638. [Google Scholar] [CrossRef]
- Gagnon, L.R.; Sadasivan, C.; Perera, K.; Oudit, G.Y. Cardiac Complications of Common Drugs of Abuse: Pharmacology, Toxicology, and Management. Can. J. Cardiol. 2022, 38, 1331–1341. [Google Scholar] [CrossRef]
- Ladha, K.S.; Mistry, N.; Wijeysundera, D.N.; Clarke, H.; Verma, S.; Hare, G.M.T.; Mazer, C.D. Recent cannabis use and myocardial infarction in young adults: A cross-sectional study. CMAJ 2021, 193, E1377–E1384. [Google Scholar] [CrossRef]
- Akasaki, Y.; Ohishi, M. Cerebrovascular and cardiovascular diseases caused by drugs of abuse. Hypertens. Res. 2020, 43, 363–371. [Google Scholar] [CrossRef]
- Desai, R.; Patel, U.; Sharma, S.; Amin, P.; Bhuva, R.; Patel, M.S.; Sharma, N.; Shah, M.; Patel, S.; Savani, S.; et al. Recreational Marijuana Use and Acute Myocardial Infarction: Insights from Nationwide Inpatient Sample in the United States. Cureus 2017, 9, e1816. [Google Scholar] [CrossRef]
- O’Keefe, E.L.; Dhore-Patil, A.; Lavie, C.J. Early-Onset Cardiovascular Disease From Cocaine, Amphetamines, Alcohol, and Marijuana. Can. J. Cardiol. 2022, 38, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Bar, S.; Praz, F.; Raber, L. Plaque erosion causing ST-elevation myocardial infarction after consumption of cannabis and N2O in a 27-year old man: A case report. BMC Cardiovasc. Disord. 2021, 21, 147. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Singh, A.; Gadkari, C. Myocardial Infarction in Young Individuals: A Review Article. Cureus 2023, 15, e37102. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Agarwal, R.; Mudgal, S.K.; Bhattacharya, S.; Kumar, B. Young hearts at risk: Unveiling novel factors in myocardial infarction susceptibility and prevention. J. Family Med. Prim. Care 2024, 13, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Khiatah, B.; Jazayeri, S.; Yamamoto, N.; Burt, T.; Frugoli, A.; Brooks, D.L. Cardiovascular disease in women: A review of spontaneous coronary artery dissection. Medicine 2022, 101, e30433. [Google Scholar] [CrossRef]
- Kim, E.S.H. Spontaneous Coronary-Artery Dissection. N. Engl. J. Med. 2020, 383, 2358–2370. [Google Scholar] [CrossRef]
- Franke, K.B.; Nerlekar, N.; Marshall, H.; Psaltis, P.J. Systematic review and meta-analysis of the clinical characteristics and outcomes of spontanous coronary artery dissection. Int. J. Cardiol. 2021, 322, 34–39. [Google Scholar] [CrossRef]
- Martinez, S.; Gimenez-Mila, M.; Cepas, P.; Anduaga, I.; Masotti, M.; Matute, P.; Castella, M.; Sabate, M. Spontaneous Coronary Artery Dissection: Rediscovering an Old Cause of Myocardial Infarction. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3303–3311. [Google Scholar] [CrossRef]
- Kaddoura, R.; Cader, F.A.; Ahmed, A.; Alasnag, M. Spontaneous coronary artery dissection: An overview. Postgrad. Med. J. 2023, 99, 1226–1236. [Google Scholar] [CrossRef]
- Saw, J.; Starovoytov, A.; Aymong, E.; Inohara, T.; Alfadhel, M.; McAlister, C.; Samuel, R.; Grewal, T.; Parolis, J.A.; Sheth, T.; et al. Canadian Spontaneous Coronary Artery Dissection Cohort Study: 3-Year Outcomes. J. Am. Coll. Cardiol. 2022, 80, 1585–1597. [Google Scholar] [CrossRef]
- McAlister, C.; Alfadhel, M.; Samuel, R.; Starovoytov, A.; Parolis, J.A.; Grewal, T.; Aymong, E.; Sedlak, T.; Ganesh, S.K.; Saw, J. Differences in Demographics and Outcomes Between Men and Women With Spontaneous Coronary Artery Dissection. JACC Cardiovasc. Interv. 2022, 15, 2052–2061. [Google Scholar] [CrossRef]
- Yang, C.; Offen, S.; Saw, J. What Is New in Spontaneous Coronary Artery Dissection? CJC Open 2024, 6, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Offen, S.; Yang, C.; Saw, J. Spontaneous coronary artery dissection (SCAD): A contemporary review. Clin. Cardiol. 2024, 47, e24236. [Google Scholar] [CrossRef]
- Motreff, P.; Souteyrand, G.; Dauphin, C.; Eschalier, R.; Cassagnes, J.; Lusson, J.R. Management of spontaneous coronary artery dissection: Review of the literature and discussion based on a series of 12 young women with acute coronary syndrome. Cardiology 2010, 115, 10–18. [Google Scholar] [CrossRef]
- Morena, A.; Giacobbe, F.; De Filippo, O.; Angelini, F.; Bruno, F.; Siliano, S.; Giannino, G.; Dusi, V.; Bianco, M.; Biole, C.; et al. Advances in the Management of Spontaneous Coronary Artery Dissection (SCAD): A Comprehensive Review. Rev. Cardiovasc. Med. 2024, 25, 345. [Google Scholar] [CrossRef]
- Katz, A.E.; Gupte, T.; Ganesh, S.K. From Atherosclerosis to Spontaneous Coronary Artery Dissection: Defining a Clinical and Genetic Risk Spectrum for Myocardial Infarction. Curr. Atheroscler. Rep. 2024, 26, 331–340. [Google Scholar] [CrossRef]
- Bollati, M.; Ercolano, V.; Mazzarotto, P. Spontaneous Coronary Dissection Review: A Complex Picture. Rev. Cardiovasc. Med. 2024, 25, 448. [Google Scholar] [CrossRef]
- Lewey, J.; El Hajj, S.C.; Hayes, S.N. Spontaneous Coronary Artery Dissection: New Insights into This Not-So-Rare Condition. Annu. Rev. Med. 2022, 73, 339–354. [Google Scholar] [CrossRef]
- Le, A.; Peng, H.; Golinsky, D.; Di Scipio, M.; Lali, R.; Pare, G. What Causes Premature Coronary Artery Disease? Curr. Atheroscler. Rep. 2024, 26, 189–203. [Google Scholar] [CrossRef]
- Pergola, V.; Continisio, S.; Mantovani, F.; Motta, R.; Mattesi, G.; Marrazzo, G.; Dellino, C.M.; Montonati, C.; De Conti, G.; Galzerano, D.; et al. Spontaneous coronary artery dissection: The emerging role of coronary computed tomography. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 839–850. [Google Scholar] [CrossRef]
- Azaiez, F.; Jaoued, F.; Tlili, R.; Ben Romdhane, R.; Elyes, L.; Drissa, M.; Ben Ameur, Y. Young Women and Myocardial Infarction: Unveiling Clinical Patterns and Prognostic Outcomes. Cureus 2024, 16, e71865. [Google Scholar] [CrossRef]
- Teruzzi, G.; Santagostino Baldi, G.; Gili, S.; Guarnieri, G.; Montorsi, P.; Trabattoni, D. Spontaneous Coronary Artery Dissections: A Systematic Review. J. Clin. Med. 2021, 10, 5925. [Google Scholar] [CrossRef]
- Hayes, S.N.; Kim, E.S.H.; Saw, J.; Adlam, D.; Arslanian-Engoren, C.; Economy, K.E.; Ganesh, S.K.; Gulati, R.; Lindsay, M.E.; Mieres, J.H.; et al. Spontaneous Coronary Artery Dissection: Current State of the Science: A Scientific Statement from the American Heart Association. Circulation 2018, 137, e523–e557. [Google Scholar] [CrossRef]
- Liang, J.J.; Prasad, M.; Tweet, M.S.; Hayes, S.N.; Gulati, R.; Breen, J.F.; Leng, S.; Vrtiska, T.J. A novel application of CT angiography to detect extracoronary vascular abnormalities in patients with spontaneous coronary artery dissection. J. Cardiovasc. Comput. Tomogr. 2014, 8, 189–197. [Google Scholar] [CrossRef]
- Inohara, T.; Saw, J.; Kohsaka, S.; Fukuda, K.; Fushimi, K. Treatment pattern and outcome of spontaneous coronary artery dissection in Japan. Int. J. Cardiol. 2020, 316, 13–18. [Google Scholar] [CrossRef]
- Agwuegbo, C.C.; Ahmed, E.N.; Olumuyide, E.; Moideen Sheriff, S.; Waduge, S.A. Spontaneous Coronary Artery Dissection: An Updated Comprehensive Review. Cureus 2024, 16, e55106. [Google Scholar] [CrossRef]
- Feldbaum, E.; Thompson, E.W.; Cook, T.S.; Sanghavi, M.; Wilensky, R.L.; Fiorilli, P.N.; Lewey, J. Management of spontaneous coronary artery dissection: Trends over time. Vasc. Med. 2023, 28, 131–138. [Google Scholar] [CrossRef]
- Chi, G.; Najafi, H.; Montazerin, S.M.; Lee, J.J. Factors associated with recurrent spontaneous coronary artery dissection: A systematic review and meta-analysis. Coron. Artery Dis. 2022, 33, 566–573. [Google Scholar] [CrossRef]
- Saw, J.; Humphries, K.; Aymong, E.; Sedlak, T.; Prakash, R.; Starovoytov, A.; Mancini, G.B.J. Spontaneous Coronary Artery Dissection: Clinical Outcomes and Risk of Recurrence. J. Am. Coll. Cardiol. 2017, 70, 1148–1158. [Google Scholar] [CrossRef]
- Khanna, S.; Garikapati, K.; Goh, D.S.L.; Cho, K.; Lo, P.; Bhojaraja, M.V.; Tarafdar, S. Coronary artery vasculitis: A review of current literature. BMC Cardiovasc. Disord. 2021, 21, 7. [Google Scholar] [CrossRef]
- Setty, H.S.N.; Natesh, B.H.; Yeriswamy, M.C.; Sathwik Raj, V.A.; Patil, R.S.; Chetan Kumar, H.B.; Shastry, L.S.; Srinivas, B.C.; Reddy, B.; Kharge, J.; et al. Feasibility and outcomes of PCI with novel tapered coronary stent in people living with HIV: A prospective, single-center study with literature review. Indian Heart J. 2025, 77, 117–121. [Google Scholar] [CrossRef]
- Jachymek, M.; Wojcik, L.; Peregud-Pogorzelska, M.; Parczewski, M.; Dembowska, A.; Aksak-Was, B.J. Cardiovascular Risk in People Living with Human Immunodeficiency (HIV) Viremia Suppression in a Young, Mid-Eastern European Population-Preliminary Study. Vasc. Health Risk Manag. 2024, 20, 435–445. [Google Scholar] [CrossRef]
- Avgousti, H.; Feinstein, M.J. Prevention and treatment of cardiovascular disease in HIV: Practical insights in an evolving field. Top. Antivir. Med. 2023, 31, 559–565. [Google Scholar]
- Henning, R.J.; Greene, J.N. The epidemiology, mechanisms, diagnosis and treatment of cardiovascular disease in adult patients with HIV. Am. J. Cardiovasc. Dis. 2023, 13, 101–121. [Google Scholar]
- Fitch, K.V.; Srinivasa, S.; Abbara, S.; Burdo, T.H.; Williams, K.C.; Eneh, P.; Lo, J.; Grinspoon, S.K. Noncalcified coronary atherosclerotic plaque and immune activation in HIV-infected women. J. Infect. Dis. 2013, 208, 1737–1746. [Google Scholar] [CrossRef]
- Lang, S.; Mary-Krause, M.; Cotte, L.; Gilquin, J.; Partisani, M.; Simon, A.; Boccara, F.; Bingham, A.; Costagliola, D. Increased risk of myocardial infarction in HIV-infected patients in France, relative to the general population. AIDS 2010, 24, 1228–1230. [Google Scholar] [CrossRef]
- Nazari, I.; Feinstein, M.J. Evolving mechanisms and presentations of cardiovascular disease in people with HIV: Implications for management. Clin. Microbiol. Rev. 2024, 37, e0009822. [Google Scholar] [CrossRef]
- Alzubaidee, M.J., Sr.; Dwarampudi, R.S.; Mathew, S.; Bichenapally, S.; Khachatryan, V.; Muazzam, A.; Hamal, C.; Velugoti, L.; Tabowei, G.; Gaddipati, G.N.; et al. A Systematic Review Exploring the Effect of Human Immunodeficiency Virus on Cardiac Diseases. Cureus 2022, 14, e28960. [Google Scholar] [CrossRef]
- Feinstein, M.J.; Lloyd-Jones, D.M. Macrophage Inflammation and Cardiovascular Disease in HIV: Mechanistic Insights and Future Directions. J. Infect. Dis. 2017, 215, 1343–1345. [Google Scholar] [CrossRef]
- Post, W.S.; Budoff, M.; Kingsley, L.; Palella, F.J., Jr.; Witt, M.D.; Li, X.; George, R.T.; Brown, T.T.; Jacobson, L.P. Associations between HIV infection and subclinical coronary atherosclerosis. Ann. Intern. Med. 2014, 160, 458–467. [Google Scholar] [CrossRef]
- Lo, J.; Abbara, S.; Shturman, L.; Soni, A.; Wei, J.; Rocha-Filho, J.A.; Nasir, K.; Grinspoon, S.K. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men. AIDS 2010, 24, 243–253. [Google Scholar] [CrossRef]
- Worm, S.W.; Sabin, C.; Weber, R.; Reiss, P.; El-Sadr, W.; Dabis, F.; De Wit, S.; Law, M.; Monforte, A.D.; Friis-Moller, N.; et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: The data collection on adverse events of anti-HIV drugs (D:A:D) study. J. Infect. Dis. 2010, 201, 318–330. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, W.; He, J.; Duan, W.; Ma, X.; Guan, H.; Wu, Y.; Li, S.; Li, Y.; Tian, T.; et al. Higher cardiovascular disease risks in people living with HIV: A systematic review and meta-analysis. J. Glob. Health 2024, 14, 04078. [Google Scholar] [CrossRef]
- Deeks, S.G.; Lewin, S.R.; Havlir, D.V. The end of AIDS: HIV infection as a chronic disease. Lancet 2013, 382, 1525–1533. [Google Scholar] [CrossRef]
- Vallabhajosyula, S.; Subramaniam, A.V.; Sundaragiri, P.R.; Cheungpasitporn, W.; Temesgen, Z.; O’Horo, J.C.; Jaffe, A.S.; Barsness, G.W. Influence of Human Immunodeficiency Virus Infection on the Management and Outcomes of Acute Myocardial Infarction With Cardiogenic Shock. J. Acquir. Immune Defic. Syndr. 2020, 85, 331–339. [Google Scholar] [CrossRef]
- Feinstein, M.J.; Hsue, P.Y.; Benjamin, L.A.; Bloomfield, G.S.; Currier, J.S.; Freiberg, M.S.; Grinspoon, S.K.; Levin, J.; Longenecker, C.T.; Post, W.S. Characteristics, Prevention, and Management of Cardiovascular Disease in People Living with HIV: A Scientific Statement From the American Heart Association. Circulation 2019, 140, e98–e124. [Google Scholar] [CrossRef]
- Jung, H.; Lee, E.; Ro, J.S.; Lee, J.Y.; Bang, J. Mortality After Acute Coronary Syndrome in Human Immunodeficiency Virus Infection with Optimal Adherence: A Nationwide Study. Infect. Chemother. 2023, 55, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Williams-Nguyen, J.; Hawes, S.E.; Nance, R.M.; Lindstrom, S.; Heckbert, S.R.; Kim, H.N.; Mathews, W.C.; Cachay, E.R.; Budoff, M.; Hurt, C.B.; et al. Association Between Chronic Hepatitis C Virus Infection and Myocardial Infarction Among People Living with HIV in the United States. Am. J. Epidemiol. 2020, 189, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Crane, H.M.; Nance, R.M.; Whitney, B.M.; Heckbert, S.R.; Budoff, M.; High, K.; Landay, A.; Feinstein, M.; Moore, R.D.; Mathews, W.C.; et al. Brief Report: Differences in Types of Myocardial Infarctions Among People Aging with HIV. J. Acquir. Immune Defic. Syndr. 2021, 86, 208–212. [Google Scholar] [CrossRef] [PubMed]
Etiology | Typical Patient | Mechanism | Key Diagnostic Test | Treatment |
---|---|---|---|---|
Premature atherosclerosis | FH, smoker | Plaque rupture or erosion | Lipid profile, genetic testing (FH), coronary angiography | Lifestyle changes, lipid-lowering medication, antiplatelet therapy |
Coronary vasospasm | Young males, often with substance use (e.g., cocaine) or smoking history | Vasospasm, thrombosis | Toxicology, coronary angiography ± provocative testing (ergonovine, acetylcholine) | Smoking/substance cessation, calcium channel blockers, nitrates |
Spontaneous coronary artery dissection | Young women, often peripartum or under emotional/physical stress | Intimal tear or intramural hematoma | Coronary angiography with IVUS or OCT for confirmation | Conservative management preferred; PCI if ongoing ischemia or instability |
Coronary artery vasculitis | Patients with systemic autoimmune or inflammatory disease | Immune-mediated inflammation | Inflammatory markers, autoantibodies, coronary angiography | Treatment of underlying condition, immunosuppressive therapy, lipid-lowering medication |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudurachi, B.-S.; Anghel, L.; Tudurachi, A.; Zanfirescu, R.-L.; Bîrgoan, S.-G.; Sascău, R.A.; Stătescu, C. Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms. Biomolecules 2025, 15, 1065. https://doi.org/10.3390/biom15081065
Tudurachi B-S, Anghel L, Tudurachi A, Zanfirescu R-L, Bîrgoan S-G, Sascău RA, Stătescu C. Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms. Biomolecules. 2025; 15(8):1065. https://doi.org/10.3390/biom15081065
Chicago/Turabian StyleTudurachi, Bogdan-Sorin, Larisa Anghel, Andreea Tudurachi, Răzvan-Liviu Zanfirescu, Silviu-Gabriel Bîrgoan, Radu Andy Sascău, and Cristian Stătescu. 2025. "Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms" Biomolecules 15, no. 8: 1065. https://doi.org/10.3390/biom15081065
APA StyleTudurachi, B.-S., Anghel, L., Tudurachi, A., Zanfirescu, R.-L., Bîrgoan, S.-G., Sascău, R. A., & Stătescu, C. (2025). Myocardial Infarction in Young Adults: A Case Series and Comprehensive Review of Molecular and Clinical Mechanisms. Biomolecules, 15(8), 1065. https://doi.org/10.3390/biom15081065