Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (948)

Search Parameters:
Keywords = reactive voltage control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1539 KB  
Article
A Model of Output Power Control Method for Fault Ride-Through in a Single-Phase NPC Inverter-Based Power Conditioning System with IPOS DAB Converter and Battery
by Reo Emoto, Hiroaki Yamada and Tomokazu Mishima
Electronics 2025, 14(21), 4291; https://doi.org/10.3390/electronics14214291 - 31 Oct 2025
Viewed by 147
Abstract
Grid-tied inverters must satisfy fault ride-through (FRT) requirements to ensure grid stability during voltage disturbances. However, most existing FRT-related studies have focused on reactive current injection or voltage support functions, with few addressing how the active power reference should be dynamically controlled during [...] Read more.
Grid-tied inverters must satisfy fault ride-through (FRT) requirements to ensure grid stability during voltage disturbances. However, most existing FRT-related studies have focused on reactive current injection or voltage support functions, with few addressing how the active power reference should be dynamically controlled during voltage dips. In addition, few systems enable bidirectional power transfer or provide comprehensive verification under deep voltage dips. To address this issue, this paper proposes an output power control method for FRT in a single-phase neutral-point-clamped (NPC) inverter-based PCS consisting of an input-parallel output-series (IPOS) dual-active-bridge (DAB) converter and a battery. The proposed PCS dynamically reduces the output power reference according to the retained voltage while maintaining the inverter current within the rated limit, thereby ensuring stable operation. Computer simulations were conducted using Altair PSIM to verify the effectiveness of the proposed method. The results confirmed that the PCS satisfied the FRT requirements for all post-fault voltage levels. The injected current returned to its pre-fault value within 20 ms and 90 ms for 20% and 0% voltage dips, respectively, complying with the required recovery times. The proposed control method enhances grid resilience and maintains power quality in single-phase low-voltage distribution systems. Full article
(This article belongs to the Special Issue DC–DC Power Converter Technologies for Energy Storage Integration)
Show Figures

Graphical abstract

19 pages, 2806 KB  
Article
The Coordinated Voltage Support Emergency Control Strategy of the Renewable Energy Plants Under Extreme Weather
by Dajiang Wang, Bixing Ren, Xinyao Zhu, Dandan Zhu, Huarui Li, Ningyu Zhang and Yongyong Jia
Electronics 2025, 14(21), 4244; https://doi.org/10.3390/electronics14214244 - 30 Oct 2025
Viewed by 147
Abstract
To address the security and stability requirements of renewable energy clusters under extreme weather conditions, this study investigates the coordinated voltage support mechanisms between grid-following and grid-forming converters. This paper proposes an emergency control strategy suitable for such scenarios. First, a reactive power-voltage [...] Read more.
To address the security and stability requirements of renewable energy clusters under extreme weather conditions, this study investigates the coordinated voltage support mechanisms between grid-following and grid-forming converters. This paper proposes an emergency control strategy suitable for such scenarios. First, a reactive power-voltage control architecture for new energy units is constructed to clarify the information interaction process. A mode-based coordinated strategy is designed: during steady-state voltage support, grid-following units adopt reactive power-voltage droop control for voltage regulation, while grid-forming units achieve autonomous support based on the virtual synchronous generator algorithm. During low-voltage ride-through, both types of units are controlled to output corresponding reactive power according to the depth of voltage drop until the voltage is restored. Hardware-in-the-loop simulation verification shows that under steady-state conditions, the strategy meets the voltage control accuracy requirements, and partial grid-forming transformation can reduce voltage overshoot and accelerate stabilization. During low-voltage ride-through, grid-forming transformation can reduce voltage fluctuations, shorten adjustment time, and mitigate reactive inrush current, effectively enhancing the voltage support capability of renewable energy plants. Full article
Show Figures

Figure 1

14 pages, 2105 KB  
Article
A Unified Control Strategy Integrating VSG and LVRT for Current-Source PMSGs
by Yang Yang, Zaijun Wu, Xiangjun Quan, Junjie Xiong, Zijing Wan and Zetao Wei
Processes 2025, 13(11), 3432; https://doi.org/10.3390/pr13113432 - 25 Oct 2025
Viewed by 459
Abstract
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The [...] Read more.
The growing penetration of renewable energy has reduced system inertia and damping, threatening grid stability. This paper proposes a novel control strategy that seamlessly integrates virtual synchronous generator (VSG) emulation with low-voltage ride-through (LVRT) capability for direct-drive permanent magnet synchronous generators (PMSGs). The unified control framework enables simultaneous inertia support during frequency disturbances and compliant reactive current injection during voltage sags—eliminating mode switching. Furthermore, the proposed strategy has been validated through both a single-machine model and actual wind farm topology. Results demonstrate that the strategy successfully achieves VSG control functionality while simultaneously meeting LVRT requirements. Full article
Show Figures

Figure 1

19 pages, 1761 KB  
Article
Multi-Objective Optimization Method for Flexible Distribution Networks with F-SOP Based on Fuzzy Chance Constraints
by Zheng Lan, Renyu Tan, Chunzhi Yang, Xi Peng and Ke Zhao
Sustainability 2025, 17(21), 9510; https://doi.org/10.3390/su17219510 - 25 Oct 2025
Viewed by 331
Abstract
With the large-scale integration of single-phase distributed photovoltaic systems into distribution grids, issues such as mismatched generation and load, overvoltage, and three-phase imbalance may arise in the distribution network. A multi-objective optimization method for flexible distribution networks incorporating a four-leg soft open point [...] Read more.
With the large-scale integration of single-phase distributed photovoltaic systems into distribution grids, issues such as mismatched generation and load, overvoltage, and three-phase imbalance may arise in the distribution network. A multi-objective optimization method for flexible distribution networks incorporating a four-leg soft open point (F-SOP) is proposed based on fuzzy chance constraints. First, a mathematical model for the F-SOP’s loss characteristics and power control was established based on the three-phase four-arm topology. Considering the impact of source load uncertainty on voltage regulation, a multi-objective complementary voltage regulation architecture is proposed based on fuzzy chance constraint programming. This architecture integrates F-SOP with conventional reactive power compensation devices. Next, a multi-objective collaborative optimization model for distribution networks is constructed, with network losses, overall voltage deviation, and three-phase imbalance as objective functions. The proposed model is linearized using second-order cone programming. Finally, using an improved IEEE 33-node distribution network as a case study, the effectiveness of the proposed method was analyzed and validated. The results indicate that this method can reduce network losses by 30.17%, decrease voltage deviation by 46.32%, and lower three-phase imbalance by 57.86%. This method holds significant importance for the sustainable development of distribution networks. Full article
Show Figures

Figure 1

16 pages, 1882 KB  
Article
A Hybrid GA–Digital Twin Strategy for Real-Time Nighttime Reactive Power Compensation in Utility-Scale PV Plants
by Yu-Ming Liu, Cheng-Chien Kuo and Hung-Cheng Chen
Appl. Sci. 2025, 15(20), 11282; https://doi.org/10.3390/app152011282 - 21 Oct 2025
Viewed by 442
Abstract
This study proposes a hybrid method that combines a Genetic Algorithm (GA) with Digital Twin (DT) technology to address nighttime reactive power backfeed in large-scale photovoltaic (PV) power plants. First, the GA is employed to optimize the location and number of multitask inverters [...] Read more.
This study proposes a hybrid method that combines a Genetic Algorithm (GA) with Digital Twin (DT) technology to address nighttime reactive power backfeed in large-scale photovoltaic (PV) power plants. First, the GA is employed to optimize the location and number of multitask inverters to minimize line losses and eliminate the reactive power backfeed. Subsequently, the DT continuously monitored the grid conditions and performed rolling dispatch to mitigate the residual reactive power caused by nighttime voltage fluctuations. Simulation results show that GA-based optimization reduces line losses from 0.346 to 0.2818 kW (18.6% reduction) and helps alleviate inverter thermal stress. When integrated with DTs, the method further improves voltage stability and demonstrates a strong adaptive control capability. The proposed GA–DT strategy can also be regarded as a potential AIoT application in PV plants, with the potential to reduce operational and maintenance costs and enhance the system reliability in the future. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data, 2nd Volume)
Show Figures

Figure 1

23 pages, 1784 KB  
Article
Active and Reactive Power Coordinated Optimization of Distribution Network–Microgrid Clusters Considering Three-Phase Imbalance Mitigation
by Zhenhui Ouyang, Hao Zhong, Yongjia Wang, Xun Li and Tao Du
Energies 2025, 18(20), 5514; https://doi.org/10.3390/en18205514 - 19 Oct 2025
Viewed by 416
Abstract
With the continuous increase in the penetration of single-phase microgrids in low-voltage distribution networks (LVDNs), the phase asymmetry of source–load distribution has made the problem of three-phase imbalance increasingly prominent. To address this issue, this paper proposes an active–reactive power coordinated optimization model [...] Read more.
With the continuous increase in the penetration of single-phase microgrids in low-voltage distribution networks (LVDNs), the phase asymmetry of source–load distribution has made the problem of three-phase imbalance increasingly prominent. To address this issue, this paper proposes an active–reactive power coordinated optimization model for distribution network–microgrid clusters considering three-phase imbalance mitigation. The model is formulated within a master–slave game framework: in the upper level, the distribution network acts as the leader, formulating time-of-use prices for active and reactive power based on day-ahead forecast data with the objective of minimizing operating costs. These price signals guide the flexible loads and photovoltaic (PV) inverters of the lower-level microgrids to participate in mitigating three-phase imbalance. In the lower level, each microgrid responds as the follower, minimizing its own operating cost by determining internal scheduling strategies and power exchange schemes with the distribution network. Finally, the resulting leader–follower game problem is transformed into a unified constrained model through strong duality theory and formulated as a mixed-integer second-order cone programming (MISOCP) problem, which is efficiently solved using the commercial solver Gurobi. Simulation results demonstrate that the proposed model fully exploits the reactive power compensation potential of PV inverters, significantly reducing the degree of three-phase imbalance. The maximum three-phase voltage unbalance factor decreases from 3.98% to 1.43%, corresponding to an overall reduction of 25.87%. The proposed coordinated optimization model achieves three-phase imbalance mitigation by leveraging existing resources without the need for additional control equipment, thereby enhancing power quality in the distribution network while ensuring economic efficiency of system operation. Full article
Show Figures

Figure 1

18 pages, 1386 KB  
Article
Coordinated Control Strategy for Active–Reactive Power in High-Proportion Renewable Energy Distribution Networks with the Participation of Grid-Forming Energy Storage
by Yiqun Kang, Zhe Li, Li You, Xuan Cai, Bingyang Feng, Yuxuan Hu and Hongbo Zou
Processes 2025, 13(10), 3271; https://doi.org/10.3390/pr13103271 - 14 Oct 2025
Viewed by 280
Abstract
The high proportion of renewable energy connected to the grid has resulted in insufficient consumption capacity in distribution networks, while the construction of new-type power distribution systems has imposed higher reliability requirements. With its flexible power synchronization control capabilities, grid-forming energy storage systems [...] Read more.
The high proportion of renewable energy connected to the grid has resulted in insufficient consumption capacity in distribution networks, while the construction of new-type power distribution systems has imposed higher reliability requirements. With its flexible power synchronization control capabilities, grid-forming energy storage systems possess the ability to both promote the consumption of distributed energy resources in new-type distribution networks and enhance their reliability. However, current control methods are still hindered by drawbacks such as high computational complexity and a singular optimization objective. To address this, this paper proposes an optimized strategy for unified active–reactive power coordinated control in high-proportion renewable energy distribution networks with the participation of multiple grid-forming energy storage systems. Firstly, to optimize the parameters of grid-forming energy storage systems more accurately, this paper employs an improved iterative self-organizing data analysis technique algorithm to generate typical scenarios consistent with the scheduling time scale. Quantile regression (QR) and Gaussian mixture model (GMM) clustering are utilized to generate typical scenarios for renewable energy output. Subsequently, considering operational constraints and equipment state constraints, a unified active–reactive power coordinated control model for the distribution network is established. Meanwhile, to ensure the optimality of the results, this paper adopts an improved northern goshawk optimization (NGO) algorithm to solve the model. Finally, the effectiveness and feasibility of the proposed method are validated and illustrated through an improved IEEE-33 bus test system tested on MATLAB 2024B. Through analysis, the proposed method can reduce the average voltage fluctuation by 6.72% and increase the renewable energy accommodation rate by up to 8.64%. Full article
Show Figures

Figure 1

22 pages, 1687 KB  
Article
Research on Distribution Network Harmonic Mitigation and Optimization Control Strategy Oriented by Source Tracing
by Xin Zhou, Zun Ma, Hongwei Zhao and Hongbo Zou
Processes 2025, 13(10), 3268; https://doi.org/10.3390/pr13103268 - 13 Oct 2025
Viewed by 474
Abstract
Against the backdrop of a high proportion of distributed renewable energy sources being integrated into the power grid, distribution networks are confronted with issues of grid-wide and decentralized harmonic pollution and voltage deviation, rendering traditional point-to-point governance methods inadequate for meeting collaborative governance [...] Read more.
Against the backdrop of a high proportion of distributed renewable energy sources being integrated into the power grid, distribution networks are confronted with issues of grid-wide and decentralized harmonic pollution and voltage deviation, rendering traditional point-to-point governance methods inadequate for meeting collaborative governance requirements. To address this problem, this paper proposes a source-tracing-oriented harmonic mitigation and optimization control strategy for distribution networks. Firstly, it identifies regional dominant harmonic source mitigation nodes based on harmonic and reactive power sensitivity indices as well as comprehensive voltage sensitivity indices. Subsequently, with the optimization objectives of reducing harmonic power loss and suppressing voltage fluctuation in the distribution network, it configures the quantity and capacity of voltage-detection-based active power filters (VDAPFs) and Static Var Generators (SVGs) and solves the model using an improved Spider Jump algorithm (SJA). Finally, the effectiveness and feasibility of the proposed method are validated through testing on an improved IEEE-33 standard node test system. Through analysis, the proposed method can reduce the voltage fluctuation rate and total harmonic distortion (THD) by 2.3% and 2.6%, respectively, achieving nearly 90% equipment utilization efficiency with the minimum investment cost. Full article
Show Figures

Figure 1

47 pages, 9806 KB  
Article
Optimal Control for On-Load Tap-Changers and Inverters in Photovoltaic Plants Applying Teaching Learning Based Optimization
by Rolando A. Silva-Quiñonez, Higinio Sánchez-Sainz, Pablo Garcia-Triviño, Raúl Sarrias-Mena, David Carrasco-González and Luis M. Fernández-Ramírez
Electronics 2025, 14(20), 3989; https://doi.org/10.3390/electronics14203989 - 12 Oct 2025
Viewed by 375
Abstract
This research presents an optimized control strategy for the coordinated operation of parallel grid connected photovoltaic (PV) plants and an On Load Tap Changer (OLTC) transformer. The proposed framework integrates inverter-level active and reactive power dispatch with OLTC tap control through an Energy [...] Read more.
This research presents an optimized control strategy for the coordinated operation of parallel grid connected photovoltaic (PV) plants and an On Load Tap Changer (OLTC) transformer. The proposed framework integrates inverter-level active and reactive power dispatch with OLTC tap control through an Energy Management System (EMS) based on an improved Teaching Learning Based Optimization (TLBO) algorithm. The EMS minimizes operational costs while maintaining voltage stability and respecting electrical and mechanical constraints. Comparative analyses with Monte Carlo, fmincon, and conventional TLBO methods demonstrate that the optimized TLBO achieves up to two orders of magnitude faster convergence and higher robustness, enabling more reliable performance under variable irradiance and load conditions. Simulation and Hardware-in-the-Loop (HIL) results confirm that the coordinated OLTC inverter control significantly enhances reactive power capability and voltage regulation. The proposed optimized TLBO based EMS offers an effective and computationally efficient solution for dynamic energy management in medium scale PV systems, supporting grid reliability and maximizing renewable energy utilization. Full article
Show Figures

Figure 1

16 pages, 1122 KB  
Article
Optimal Power Flow of Unbalanced Distribution Networks Using a Novel Shrinking Net Algorithm
by Xun Xu, Liangli Xiong, Menghan Xiao, Haoming Liu and Jian Wang
Processes 2025, 13(10), 3226; https://doi.org/10.3390/pr13103226 - 10 Oct 2025
Viewed by 427
Abstract
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap [...] Read more.
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap changers (OLTCs), reactive power compensators, and controllable electric vehicles (EVs). To solve this complex and non-convex optimization problem, we developed the Shrinking Net Algorithm (SNA), a novel metaheuristic with mathematically proven convergence. The proposed framework was validated using the standard IEEE 123-bus test system. The results demonstrate significant operational improvements: total active power loss was reduced by 32.1%, from 96.103 kW to 65.208 kW. Furthermore, all node voltage violations were eliminated, with the minimum system voltage improving from 0.937 p.u. to a compliant 0.973 p.u. The findings confirm that the proposed SNA is an effective and robust tool for this application, highlighting the substantial economic and technical benefits of coordinated asset control for modern distribution system operators. Full article
Show Figures

Figure 1

23 pages, 3682 KB  
Article
Multiple Stakeholder Partition-Based Interactive-Game Voltage Control for Distribution Networks
by Wenchuan Sun, Zhongtang Zhou, Ming Du, Jiawei Huang, Rui Wang and Chuanliang Xiao
Processes 2025, 13(10), 3222; https://doi.org/10.3390/pr13103222 - 10 Oct 2025
Viewed by 442
Abstract
To address the overvoltage problem in distribution networks with large-scale photovoltaic (PV) integration, this paper proposes an interactive game-based voltage optimization control strategy based on microgrid cluster partitioning. A multi-agent control architecture is constructed, including a dynamic partitioning layer, a parallel independent optimization [...] Read more.
To address the overvoltage problem in distribution networks with large-scale photovoltaic (PV) integration, this paper proposes an interactive game-based voltage optimization control strategy based on microgrid cluster partitioning. A multi-agent control architecture is constructed, including a dynamic partitioning layer, a parallel independent optimization layer, and an interactive game optimization layer. In the dynamic partitioning layer, microgrid clusters are formed considering coupling degree, voltage regulation capability, and cluster scale. In the parallel optimization layer, a network reconfiguration-based control model is established for utility-owned microgrids, and a PV active/reactive power regulation model is developed for PV microgrids, enabling independent cluster-level control. In the game optimization layer, a non-cooperative game model is formulated to coordinate voltage regulation among clusters. The effectiveness of the proposed method is demonstrated on an actual 10 kV feeder system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 8941 KB  
Article
Transient Stability Enhancement of a PMSG-Based System by Saturated Current Angle Control
by Huan Li, Tongpeng Mu, Yufei Zhang, Duhai Wu, Yujun Li and Zhengchun Du
Appl. Sci. 2025, 15(20), 10861; https://doi.org/10.3390/app152010861 - 10 Oct 2025
Viewed by 338
Abstract
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both [...] Read more.
This paper investigates the transient stability of Grid-Forming (GFM) Permanent Magnet Synchronous Generator (PMSG) systems during grid faults. An analysis demonstrates how a fixed saturated current angle can trap the system in undesirable operating points, while reactive power coupling can degrade performance. Both factors pose a risk of turbine overspeed and instability. To overcome these vulnerabilities, a dual-mechanism control strategy is proposed, featuring an adaptive saturated current angle control that, unlike conventional fixed-angle methods, which risk creating Current Limiting Control (CLC) equilibrium points, dynamically aligns the current vector with the grid voltage to guarantee a stable post-fault trajectory. The effectiveness of the proposed strategy is validated through time-domain simulations in MATLAB/Simulink. The results show that the proposed control not only prevents overspeed trip failures seen in conventional methods but also reduces post-fault recovery time by over 60% and significantly improves system damping, ensuring robust fault ride-through and enhancing overall system stability. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

26 pages, 4387 KB  
Article
Modeling, Analysis, and Classification of Asymmetrical DC Faults in a Bipolar Hybrid Cascaded Multi-Terminal HVDC System
by Muhammad Asim Mond, Zhou Li and Wenwen Mei
Symmetry 2025, 17(10), 1671; https://doi.org/10.3390/sym17101671 - 7 Oct 2025
Viewed by 333
Abstract
Hybrid cascaded multi-terminal HVDC systems represent a significant advancement in HVDC transmission technology. A notable real-world implementation of this concept is the bipolar hybrid cascaded multi-terminal high voltage direct current (MTDC) project in China, which successfully transmits hydropower from Baihetan to Jiangsu. This [...] Read more.
Hybrid cascaded multi-terminal HVDC systems represent a significant advancement in HVDC transmission technology. A notable real-world implementation of this concept is the bipolar hybrid cascaded multi-terminal high voltage direct current (MTDC) project in China, which successfully transmits hydropower from Baihetan to Jiangsu. This system combines MMCs for system support with LCCs for high-power transmission, offering both flexibility and efficiency in long-distance power delivery. This research explores the characteristics of main DC fault types in such systems, classifying faults based on sections and modes while analyzing their unique outcomes depending on DC fault locations. By focusing on the DC-side terminal behavior of the MMCs and LCCs, the main response processes to asymmetrical DC faults are investigated in detail. This study offers a detailed analysis of asymmetrical DC faults in bipolar HVDC systems, proposing a new classification based on fault characteristics such as current, voltage, active power, and reactive power. A supporting theoretical analysis is also presented. It identifies specific control demands needed for effective fault mitigation. PSCAD/EMTDC simulation results demonstrate that DC faults with similar characteristics can be consistently grouped into distinct categories by this new classification method. Each category is further linked to specific control demands, providing a strong basis for developing advanced protection strategies and practical solutions that enhance the stability and reliability of hybrid cascaded HVDC systems. Full article
Show Figures

Figure 1

16 pages, 1426 KB  
Article
Nighttime Reactive Power Optimization for Large-Scale PV Plants: Minimizing Compensation Equipment Investment
by Yu-Ming Liu, Cheng-Chien Kuo and Hung-Cheng Chen
Appl. Sci. 2025, 15(19), 10748; https://doi.org/10.3390/app151910748 - 6 Oct 2025
Viewed by 417
Abstract
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, [...] Read more.
The increasing integration of photovoltaic (PV) power systems poses challenges for nighttime voltage regulation because long high-voltage (HV) and ultra-high-voltage (UHV) underground cables generate capacitive reactive power that elevates the grid voltage. Conventional compensators based on passive inductors and capacitors are bulky, costly, and inflexible, rendering them unsuitable for substation use. This study proposes an optimization-based strategy that leverages the existing inverter infrastructure of PV plants to provide nighttime reactive power compensation without additional hardware. A genetic algorithm (GA) determines the optimal number and spatial deployment of inverters to minimize line losses. Field validation at a 120 MW PV plant with 1292 inverters shows that the strategy reduces reverse reactive power from 0.84 MVAr to 0.00214 MVAr and line losses from 1.8235 kW to 0.386 kW using only 55 inverters, achieving near-zero additional capital expenditure (CAPEX). This method enhances the voltage stability and system efficiency while reducing the investment and maintenance costs. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

36 pages, 6811 KB  
Article
A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation
by Salima Meziane, Toufouti Ryad, Yasser O. Assolami and Tawfiq M. Aljohani
Sustainability 2025, 17(19), 8729; https://doi.org/10.3390/su17198729 - 28 Sep 2025
Viewed by 695
Abstract
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability [...] Read more.
This study proposes a hierarchical two-layer control framework aimed at advancing the sustainability of renewable-integrated microgrids. The framework combines droop-based primary control, PI-based voltage and current regulation, and a supervisory Model Predictive Control (MPC) layer to enhance dynamic power sharing and system stability in renewable-integrated microgrids. The proposed method addresses the limitations of conventional control techniques by coordinating real and reactive power flow through an adaptive droop formulation and refining voltage/current regulation with inner-loop PI controllers. A discrete-time MPC algorithm is introduced to optimize power setpoints under future disturbance forecasts, accounting for state-of-charge limits, DC-link voltage constraints, and renewable generation variability. The effectiveness of the proposed strategy is demonstrated on a small hybrid microgrid system that serve a small community of buildings with a solar PV, wind generation, and a battery storage system under variable load and environmental profiles. Initial uncontrolled scenarios reveal significant imbalances in resource coordination and voltage deviation. Upon applying the proposed control, active and reactive power are equitably shared among DG units, while voltage and frequency remain tightly regulated, even during abrupt load transitions. The proposed control approach enhances renewable energy integration, leading to reduced reliance on fossil-fuel-based resources. This contributes to environmental sustainability by lowering greenhouse gas emissions and supporting the transition to a cleaner energy future. Simulation results confirm the superiority of the proposed control strategy in maintaining grid stability, minimizing overcharging/overdischarging of batteries, and ensuring waveform quality. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

Back to TopTop