A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation
Abstract
1. Introduction
1.1. On the Smart Grids, Renewable Energy Integration, and Demand-Side Management
1.2. Islanded Microgrid Control Strategies
1.3. Literature
1.4. Contribution of This Work
- Developing a two-layer control framework that integrates MPC with droop/PI controllers for real-time optimal operation in islanded microgrids.
- Combining the rapid local response of droop control with the predictive optimization capabilities of MPC to proactively handle constraints, enhance power sharing, and improve power quality.
- Addressing practical implementation challenges, including computational delays, system stability in dual-layer control, and the interactions between MPC actions and droop/PI dynamics.
- Demonstrating the effectiveness of the proposed controller in an islanded microgrid with PV, wind, and battery resources, achieving improved reliability and performance under high renewable penetration.
2. Modeling of the Proposed HRES in a Smart Grid
2.1. System Architecture of the Proposed Study
2.2. Modeling the PV System with Boost Converter
2.3. Modeling of Battery Storage and Buck-Boost Converter
2.4. Modeling of the Permanent Magnet Synchronous Generator
3. The Proposed Mathematical Modeling
3.1. Mathematical Description of the Distribution Feeder Operation
3.2. Mathematical Description of the PI and Droop Control Layer
3.3. Mathematical Description of the MPC Layer
3.4. Mathematical Description of the Execution Law
4. Case Study and Results
4.1. Simulation and Initial Assessment of the Energy Management System
4.2. Results of the Proposed Two-Layer Control Strategy
4.2.1. Scenario 1
4.2.2. Scenario 2
4.3. Efficiency and Energy Loss Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohd, A.; Ortjohann, E.; Schmelter, A.; Hamsic, N.; Morton, D. Challenges in Integrating Distributed Energy Storage Systems into Future Smart Grid. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 1627–1632. [Google Scholar]
- Momoh, A.J. Smart Grid Design for Efficient and Flexible Power Networks Operation and Control. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA, 15–18 March 2009; pp. 1–8. [Google Scholar]
- Bajaj, M.; Singh, K.A. Grid Integrated Renewable DG Systems: A Review of Power Quality Challenges and State-of-the-art Mitigation Techniques. Int. J. Energy Res. 2020, 44, 26–69. [Google Scholar] [CrossRef]
- Petinrin, O.J.; Shaabanb, M. Impact of Renewable Generation on Voltage Control in Distribution Systems. Renew. Sustain. Energy Rev. 2016, 65, 770–783. [Google Scholar] [CrossRef]
- Serban, I.; Teodorescu, R.; Marinescu, C. Energy Storage Systems Impact on the Short-term Frequency Stability of Distributed Autonomous Microgrids, an Analysis Using Aggregate Models. IET Renew. Power Gener. 2013, 7, 531–539. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, E.S.; Moon, S.I. Frequency and Voltage Control Strategy of Standalone Microgrids with High Penetration of Intermittent Renewable Generation Systems. IEEE Trans. Power Syst. 2015, 31, 718–728. [Google Scholar] [CrossRef]
- Aljohani, T.M. Multilayer Iterative Stochastic Dynamic Programming for Optimal Energy Management of Residential Loads with Electric Vehicles. Int. J. Energy Res. 2024, 2024, 6842580. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads. IEEE Trans. Ind. Inf. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Torriti, J. Price-Based Demand Side Management: Assessing the Impacts of Time-of-Use Tariffs on Residential Electricity Demand and Peak Shifting in Northern Italy. Energy 2012, 44, 576–583. [Google Scholar] [CrossRef]
- Werminski, S.; Jarnut, M.; Benysek, G.; Bojarski, J. Demand Side Management Using DADR Automation in the Peak Load Reduction. Renew. Sustain. Energy Rev. 2017, 67, 998–1007. [Google Scholar] [CrossRef]
- Shewale, A.; Mokhade, A.; Funde, N.; Bokde, N.D. A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes. Energies 2022, 15, 2863. [Google Scholar] [CrossRef]
- Said, D. A Survey on Information Communication Technologies in Modern Demand-Side Management for Smart Grids: Challenges, Solutions, and Opportunities. IEEE Eng. Manag. Rev. 2022, 51, 76–107. [Google Scholar] [CrossRef]
- De Vizia, C.; Patti, E.; Macii, E.; Bottaccioli, L. A User-Centric View of a Demand Side Management Program: From Surveys to Simulation and Analysis. IEEE Syst. J. 2022, 16, 1885–1896. [Google Scholar] [CrossRef]
- Martinez, S.; Vellei, M.; Le Dréau, J. Demand-Side Flexibility in a Residential District: What Are the Main Sources of Uncertainty? Energy Build. 2022, 255, 111595. [Google Scholar] [CrossRef]
- Kanakadhurga, D.; Prabaharan, N. Demand Side Management in Microgrid: A Critical Review of Key Issues and Recent Trends. Renew. Sustain. Energy Rev. 2022, 156, 111915. [Google Scholar] [CrossRef]
- Aljohani, T.M.; Ebrahim, A.F.; Mohammed, O. Hybrid Microgrid Energy Management and Control Based on Metaheuristic-Driven Vector-Decoupled Algorithm Considering Intermittent Renewable Sources and Electric Vehicles Charging Lot. Energies 2020, 13, 3423. [Google Scholar] [CrossRef]
- Tayab, U.B.; Roslan, M.A.; Hwai, L.J.; Kashif, M. A Review of Droop Control Techniques for Microgrid. Renew. Sustain. Energy Rev. 2017, 76, 717–727. [Google Scholar] [CrossRef]
- Firmansyah, R.; Ramli, M.A. A New Adaptive Droop Control Strategy for Improved Power Sharing Accuracy and Voltage Restoration in a DC Microgrid. Ain Shams Eng. J. 2024, 15, 102899. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, F.; Lin, Z.; Fleming, J.; Shi, T.; Guo, H.; Xu, H. Impedance Shaping Method for System-Level Stabilization of Droop-Controlled DC Microgrids. IEEE Trans. Energy Convers. 2024, 40, 409–421. [Google Scholar] [CrossRef]
- Khan, M.H.; Zulkifli, S.A.; Tutkun, N.; Ekmekci, I.; Burgio, A. Decentralized Virtual Impedance Control for Power Sharing and Voltage Regulation in Islanded Mode with Minimized Circulating Current. Electronics 2024, 13, 2142. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, F.; Chen, K.; Lu, Q. Research on Adaptive Droop Control Strategy for a Solar-Storage Dc Microgrid. Energies 2024, 17, 1454. [Google Scholar] [CrossRef]
- Aljohani, T.; Mohammed, A.M.; Mohammed, O. Tri-Level Hierarchical Coordinated Control of Large-Scale EVs Charging Based on Multi-Layer Optimization Framework. Electr. Power Syst. Res. 2024, 226, 109923. [Google Scholar] [CrossRef]
- Hu, J.; Shan, Y.; Guerrero, J.M.; Ioinovici, A.; Chan, K.W.; Rodriguez, J. Model Predictive Control of Microgrids—An Overview. Renew. Sustain. Energy Rev. 2021, 136, 110422. [Google Scholar] [CrossRef]
- Babayomi, O.; Madonski, R.; Zhang, Z.; Rodriguez, J.; Davidson, I.; Kim, D.S. Robust Model Predictive Control of Converter-Based Microgrids. IEEE Trans. Power Electron. 2025, 40, 17124–17146. [Google Scholar] [CrossRef]
- Nassereddine, K.; Turzynski, M.; Bielokha, H.; Strzelecki, R. Simulation of Energy Management System Using Model Predictive Control in AC/DC Microgrid. Sci. Rep. 2025, 15, 5388. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Su, C.L.; Ali, Z.; Rouhani, S.H.; Straka, M.; Buzna, L.; Micallef, A.; Parise, G. Decentralized Model Predictive Control for Offshore Wind-Powered Seaport DC Microgrids with Electric Vehicle Stations. IEEE Trans. Ind. Appl. 2025, 61, 2258–2270. [Google Scholar] [CrossRef]
- Carnielutti, F.; Busarello, T.D.; Resende, Ê.C.; Ullah, Q.; Simões, M.G. Fixed Switching Frequency Model Predictive Control for Grid-Forming Inverters. IEEE Trans. Power Electron. 2025, 40, 9080–9089. [Google Scholar] [CrossRef]
- Nori, A.; Abdulabbas, A.; Aljohani, T.M. Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines. Energies 2025, 18, 4017. [Google Scholar] [CrossRef]
- Li, P.; Huo, X. Simplified Finite Control Set Model Predictive Control for Single-Phase Grid-Tied Inverters with Twisted Parameters. Electr. Power Syst. Res. 2025, 238, 111063. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, X.; Zhong, C. Model Predictive Secondary Frequency Control for Islanded Microgrid under Wind and Solar Stochastics. Electronics 2023, 12, 3972. [Google Scholar] [CrossRef]
- Ma, S.; Ding, J. Multi-Model Based MPC to Improve the Ramp Rate for Renewable Energy Consumption. Neurocomputing 2025, 611, 128619. [Google Scholar] [CrossRef]
- Kumar, K.; Bae, S. Coordinated Dynamic Power Management for Renewable Energy-Based Grid-Connected Microgrids Using Model Predictive Control. IEEE Trans. Ind. Inf. 2022, 19, 9596–9608. [Google Scholar] [CrossRef]
- Hu, S.; He, L.; Zhao, H.; Liu, H.; Liu, X.; Qiu, J. Distributed Secondary Control of Microgrids with Unknown Disturbances and Non-Linear Dynamics. Front. Energy Res. 2023, 10, 1113110. [Google Scholar] [CrossRef]
- Marín, L.G.; Sumner, M.; Muñoz-Carpintero, D.; Köbrich, D.; Pholboon, S.; Sáez, D.; Núñez, A. Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control. Energies 2019, 12, 4453. [Google Scholar] [CrossRef]
- Beus, M.; Banis, F.; Pandžić, H.; Poulsen, N.K. Three-Level Hierarchical Microgrid Control—Model Development and Laboratory Implementation. Electr. Power Syst. Res. 2020, 189, 106758. [Google Scholar] [CrossRef]
- Hans, C.A.; Braun, P.; Raisch, J.; Grune, L.; Reincke-Collon, C. Hierarchical Distributed Model Predictive Control of Interconnected Microgrids. IEEE Trans. Sustain. Energy 2019, 10, 407–416. [Google Scholar] [CrossRef]
- Dao, L.A.; Dehghani-Pilehvarani, A.; Markou, A.; Ferrarini, L. A Hierarchical Distributed Predictive Control Approach for Microgrids Energy Management. Sustain. Cities Soc. 2019, 48, 101536. [Google Scholar] [CrossRef]
- Hu, J.; Shan, Y.; Yang, Y.; Parisio, A.; Li, Y.; Amjady, N.; Islam, S.; Cheng, K.W.; Guerrero, J.M.; Rodríguez, J. Economic Model Predictive Control for Microgrid Optimization: A Review. IEEE Trans. Smart Grid 2023, 15, 472–484. [Google Scholar] [CrossRef]
- Shirsat, A.; Tang, W. Data-Driven Stochastic Model Predictive Control for DC-Coupled Residential PV-Storage Systems. IEEE Trans. Energy Convers. 2021, 36, 1435–1448. [Google Scholar] [CrossRef]
- He, P.; Zhang, Y.; Jiao, J.; Ren, W.; Zhang, J.; Long, Z. A Photovoltaic–Storage System Configuration and Operation Optimization Model Based on Model Predictive Control. Clean Energy 2025, 9, 84–98. [Google Scholar] [CrossRef]
- Wang, K.; Ye, L.; Yang, S.; Deng, Z.; Song, J.; Li, Z.; Zhao, Y. A Hierarchical Dispatch Strategy of Hybrid Energy Storage System in Internet Data Center with Model Predictive Control. Appl. Energy 2023, 331, 120414. [Google Scholar] [CrossRef]
- Garcia-Torres, F.; Zafra-Cabeza, A.; Silva, C.; Grieu, S.; Darure, T.; Estanqueiro, A. Model Predictive Control for Microgrid Functionalities: Review and Future Challenges. Energies 2021, 14, 1296. [Google Scholar] [CrossRef]
- Chalal, L.; Saadane, A.; Rachid, A. Unified Environment for Real Time Control of Hybrid Energy System Using Digital Twin and IoT Approach. Sensors 2023, 23, 5646. [Google Scholar] [CrossRef] [PubMed]
- Elmahallawy, M.; Elfouly, T.; Alouani, A.; Massoud, A.M. A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction. IEEE Access 2022, 10, 119040–119070. [Google Scholar] [CrossRef]
- Krim, Y.; Abbes, D.; Krim, S.; Mimouni, M.F. Intelligent Droop Control and Power Management of Active Generator for Ancillary Services under Grid Instability Using Fuzzy Logic Technology. Control Eng. Pract. 2018, 81, 215–230. [Google Scholar] [CrossRef]
References | Primary Control | Secondary Control | Droop/PI Controllers | Multi Layers Control | MPC | Fast Dynamic Behavior | A High Penetration Level of Renewable Energy | Battery Resources | |
---|---|---|---|---|---|---|---|---|---|
PV | Wind | ||||||||
[26] | ✓ | × | × | × | ✓ | × | × | ✓ | ✓ |
[27,28,29] | ✓ | × | ✓ | × | ✓ | ✓ | × | × | × |
[30] | ✓ | ✓ | × | × | ✓ | ✓ | ✓ | ✓ | ✓ |
[32] | × | ✓ | × | × | ✓ | ✓ | × | × | ✓ |
[33] | ✓ | ✓ | ✓ | × | ✓ | ✓ | × | × | × |
[34] | ✓ | ✓ | × | ✓ | × | × | ✓ | × | ✓ |
[36] | × | × | × | ✓ | ✓ | × | ✓ | ✓ | ✓ |
[37] | ✓ | ✓ | × | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
[35] | ✓ | ✓ | × | ✓ | × | ✓ | ✓ | ✓ | ✓ |
Proposed research | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Scenarios | Load Condition | Time |
---|---|---|
1 | A sudden load disturbance | At t = 0.4 s |
2 | Balanced load | Between 0 and 5 s |
Non-linear load | Between 5 and 8.5 s | |
Unbalanced load | Between 8.5 and 12 s |
Load Type | Time Interval (s) | Voltage THD (%) | Current THD (%) | Notes |
---|---|---|---|---|
Balanced Linear | 0–5 | 2.05 | 2.02 | Good quality, within IEEE-519 limits |
Non-Linear (Diode-Bridge RL) | 5–8.5 | 2.56 | 30.95 | Voltage remains acceptable, but current distortion is very high |
Unbalanced RL | 8.5–12 | 1.76 | 1.76 | Both voltage and current THD remain low and well-controlled |
Stage | Loss Type | Loss (kW) | Efficiency (%) |
---|---|---|---|
Two Inverters (6 IGBTs each) | Conduction (both) | 0.005 | 99.96 |
LC Filters | Damping (both) | 0.0013 | 99.99 |
Feeder/Line (2 feeders) | Resistive (at 21 A) | 1.699 | 90.40 |
Element | Number | Per Unit Loss (kW) | Total Loss (kW) |
---|---|---|---|
Three-phase Inverter | 2 | 1.260 kW/inverter | 2.520 |
PV Boost Converter | 2 | 0.333 kW/converter | 0.667 |
Wind Boost Converter | 1 | 0.300 kW/converter | 0.300 |
Battery Buck–Boost Converter | 2 | 0.267 kW/converter | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meziane, S.; Ryad, T.; Assolami, Y.O.; Aljohani, T.M. A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation. Sustainability 2025, 17, 8729. https://doi.org/10.3390/su17198729
Meziane S, Ryad T, Assolami YO, Aljohani TM. A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation. Sustainability. 2025; 17(19):8729. https://doi.org/10.3390/su17198729
Chicago/Turabian StyleMeziane, Salima, Toufouti Ryad, Yasser O. Assolami, and Tawfiq M. Aljohani. 2025. "A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation" Sustainability 17, no. 19: 8729. https://doi.org/10.3390/su17198729
APA StyleMeziane, S., Ryad, T., Assolami, Y. O., & Aljohani, T. M. (2025). A Hierarchical Two-Layer MPC-Supervised Strategy for Efficient Inverter-Based Small Microgrid Operation. Sustainability, 17(19), 8729. https://doi.org/10.3390/su17198729