Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,422)

Search Parameters:
Keywords = reaction kinetics modeling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2014 KiB  
Article
CALB Immobilized on Octyl-Agarose—An Efficient Pharmaceutical Biocatalyst for Transesterification in Organic Medium
by Joanna Siódmiak, Jacek Dulęba, Natalia Kocot, Rafał Mastalerz, Gudmundur G. Haraldsson and Tomasz Siódmiak
Int. J. Mol. Sci. 2025, 26(14), 6961; https://doi.org/10.3390/ijms26146961 - 20 Jul 2025
Abstract
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often [...] Read more.
The growing need for developing safer and more effective methods for obtaining enantiomers of chiral compounds, particularly those with pharmacological activity, highlights the potential of biocatalysis as an appropriate pharmaceutical research direction. However, low catalytic activity and stability of free enzymes are often among the substantial limitations to the wide application of biocatalysis. Therefore, to overcome these obstacles, new technological procedures are being designed. In this study, we present optimized protocols for the immobilization of Candida antarctica lipase B (CALB) on an octyl- agarose support, ensuring high enantioselectivity in an organic reaction medium. The immobilization procedures (with drying step), including buffers with different pH values and concentrations, as well as the study of the influence of temperature and immobilization time, were presented. It was found that the optimal conditions were provided by citrate buffer with a pH of 4 and a concentration of 300 mM. The immobilized CALB on the octyl-agarose support exhibited high catalytic activity in the kinetic resolution of (R,S)-1-phenylethanol via enantioselective transesterification with isopropenyl acetate in 1,2-dichloropropane (DCP), as a model reaction for lipase activity monitoring on an analytical scale. HPLC analysis demonstrated that the (R)-1-phenylethyl acetate was obtained in an enantiomeric excess of eep > 99% at a conversion of approximately 40%, and the enantiomeric ratio was E > 200. Thermal and storage stability studies performed on the immobilized CALB octyl-agarose support confirmed its excellent stability. After 7 days of thermal stability testing at 65 °C in a climatic chamber, the (R)-1-phenylethyl acetate was characterized by enantiomeric excess of eep > 99% at a conversion of around 40% (similar values of catalytic parameters to those achieved using a non-stored lipase). The documented high catalytic activity and stability of the developed CALB-octyl-agarose support allow us to consider it as a useful tool for enantioselective transesterification in organic medium. Full article
Show Figures

Figure 1

14 pages, 2172 KiB  
Article
Study on the High-Temperature Reaction Kinetics of Solid Waste-Based High Belite Sulphoaluminate Cement Containing Residual Gypsum in the Clinker
by Dunlei Su, Mingxin Yang, Yani Hao, Jiahui Wang, Xin Liu, Haojian Tang, Fengyuan Dong, Dejin Xing and Weiyi Kong
Materials 2025, 18(14), 3369; https://doi.org/10.3390/ma18143369 - 17 Jul 2025
Viewed by 220
Abstract
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical [...] Read more.
In order to elucidate the high-temperature reaction process of solid waste-based high belite sulphoaluminate cement containing residual gypsum in clinker (NHBSAC) and obtain the formation laws of each mineral in clinker, this article studied its high-temperature reaction kinetics. Through QXRD analysis and numerical fitting methods, the formation of C4A3S¯, β-C2S, and CaSO4 in clinker under different calcination systems was quantitatively characterized, the corresponding high-temperature reaction kinetics models were established, and the reaction activation energies of each mineral were obtained. The results indicate that the content of C4A3S¯ and β-C2S increases with the prolongation of holding time and the increase in calcination temperature, while CaSO4 is continuously consumed. Under the control mechanism of solid-state reaction, the formation and consumption of minerals follow the kinetic equation. C4A3S¯ and β-C2S satisfy the D4 equation under diffusion mechanism control, and CaSO4 satisfies the R3 equation under interface chemical reaction mechanism control. The activation energy required for mineral formation varies with different temperature ranges. The activation energies required to form C4A3S¯ at 1200–1225 °C, 1225–1275 °C, and 1275–1300 °C are 166.28 kJ/mol, 83.14 kJ/mol, and 36.58 kJ/mol, respectively. The activation energies required to form β-C2S at 1200–1225 °C and 1225–1300 °C are 374.13 kJ/mol and 66.51 kJ/mol, respectively. This study is beneficial for achieving flexible control of the mineral composition of NHBSAC clinker, providing a theoretical basis and practical experience for the preparation of low-carbon cement and the optimization design of its mineral composition. Full article
(This article belongs to the Special Issue Characterization and Optimization of Cement-Based Materials)
Show Figures

Figure 1

17 pages, 2219 KiB  
Article
Oil Spill Recovery of Petroleum-Derived Fuels Using a Bio-Based Flexible Polyurethane Foam
by Fabrizio Olivito, Zul Ilham, Wan Abd Al Qadr Imad Wan-Mohtar, Goldie Oza, Antonio Procopio and Monica Nardi
Polymers 2025, 17(14), 1959; https://doi.org/10.3390/polym17141959 - 17 Jul 2025
Viewed by 178
Abstract
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), [...] Read more.
In this study, we tested a flexible polyurethane (PU) foam, synthesized from bio-based components, for the removal of petroleum-derived fuels from water samples. The PU was synthesized via the prepolymer method through the reaction of PEG 400 with L-lysine ethyl ester diisocyanate (L-LDI), followed by chain extension with 2,5-bis(hydroxymethyl)furan (BHMF), a renewable platform molecule derived from carbohydrates. Freshwater and seawater samples were artificially contaminated with commercial diesel, gasoline, and kerosene. Batch adsorption experiments revealed that the total sorption capacity (S, g/g) of the PU was slightly higher for diesel in both water types, with values of 67 g/g in freshwater and 70 g/g in seawater. Sorption kinetic analysis indicated that the process follows a pseudo-second-order kinetic model, suggesting strong chemical interactions. Equilibrium data were fitted using Langmuir and Freundlich isotherm models, with the best fit achieved by the Langmuir model, supporting a monolayer adsorption mechanism on homogeneous surfaces. The PU foam can be regenerated up to 50 times by centrifugation, maintaining excellent performance. This study demonstrates a promising application of this sustainable and bio-based polyurethane foam for environmental remediation. Full article
Show Figures

Figure 1

22 pages, 1835 KiB  
Article
Homogeneous and Heterogeneous Photo-Fenton-Based Photocatalytic Techniques for the Degradation of Nile Blue Dye
by Georgia Papadopoulou, Eleni Evgenidou and Dimitra Lambropoulou
Appl. Sci. 2025, 15(14), 7917; https://doi.org/10.3390/app15147917 - 16 Jul 2025
Viewed by 157
Abstract
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S [...] Read more.
In this study, the degradation of Nile Blue dye was investigated using homogeneous and heterogeneous photocatalytic methods based on the photo-Fenton reaction. More specifically, for homogeneous photocatalysis, the classical photo-Fenton (UV/Fe2+/H2O2) and modified photo-Fenton-like (UV/Fe2+/S2O82−) systems were studied, while for heterogeneous photocatalysis, a commercial MOF catalyst, Basolite F300, and a natural ferrous mineral, geothite, were employed. Various parameters—including the concentrations of the oxidant and catalyst, UV radiation, and pH—were investigated to determine their influence on the reaction rate. In homogeneous systems, an increase in iron concentration led to an enhanced degradation rate of the target compound. Similarly, increasing the oxidant concentration accelerated the reaction rate up to an optimal level, beyond which radical scavenging effects were observed, reducing the overall efficiency. In contrast, heterogeneous systems exhibited negligible degradation in the absence of an oxidant; however, the addition of oxidants significantly improved the process efficiency. Among the tested processes, homogeneous techniques demonstrated a superior efficiency, with the conventional photo-Fenton process achieving complete mineralization within three hours. Kinetic analysis revealed pseudo-first-order behavior, with rate constants ranging from 0.012 to 0.688 min−1 and correlation coefficients (R2) consistently above 0.90, confirming the reliability of the applied model under various experimental conditions. Nevertheless, heterogeneous techniques, despite their lower degradation rates, also achieved high removal efficiencies while offering the advantage of operating at a neutral pH without the need for acidification. Full article
Show Figures

Figure 1

18 pages, 4067 KiB  
Article
Oxidative Degradation of Anthocyanins in Red Wine: Kinetic Characterization Under Accelerated Aging Conditions
by Khulood Fahad Saud Alabbosh, Violeta Jevtovic, Jelena Mitić, Zoran Pržić, Vesna Stankov Jovanović, Reem Ali Alyami, Maha Raghyan Alshammari, Badriah Alshammari and Milan Mitić
Processes 2025, 13(7), 2245; https://doi.org/10.3390/pr13072245 - 14 Jul 2025
Viewed by 169
Abstract
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide [...] Read more.
The oxidative degradation of anthocyanins in red wine was investigated under controlled conditions using hydroxyl radicals generated in the presence of Cu (II) as a catalyst. A full factorial experimental design with 23 replicates was used to evaluate the effects of hydrogen peroxide concentration, catalyst dosage, and reaction temperature on anthocyanin degradation over a fixed time. Statistical analysis (ANOVA and multiple regression) showed that all three variables and the main interactions significantly affected anthocyanin loss, with temperature identified as the most influential factor. The combined effects were described by a first-order polynomial model. The activation energies for degradation ranged from 56.62 kJ/mol (cyanidin-3-O-glucoside) to 40.58 kJ/mol (peonidin-3-O-glucoside acetate). Increasing the temperature from 30 °C to 40 °C accelerated the degradation kinetics, almost doubled the rate constants and shortened the half-life of the pigments. At 40 °C, the half-lives ranged from 62.3 min to 154.0 min, depending on the anthocyanin structure. These results contribute to a deeper understanding of the stability of anthocyanins in red wine under oxidative stress and provide insights into the chemical behavior of derived pigments. The results are of practical importance for both oenology and viticulture and support efforts to improve the color stability of wine and extend the shelf life of grape-based products. Full article
(This article belongs to the Special Issue Processes in Agri-Food Technology)
Show Figures

Figure 1

27 pages, 7203 KiB  
Article
The Combined Role of Coronal and Toe Joint Compliance in Transtibial Prosthetic Gait: A Study in Non-Amputated Individuals
by Sergio Galindo-Leon, Hideki Kadone, Modar Hassan and Kenji Suzuki
Prosthesis 2025, 7(4), 82; https://doi.org/10.3390/prosthesis7040082 - 14 Jul 2025
Viewed by 233
Abstract
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, [...] Read more.
Background/Objectives: The projected rise in limb amputations highlights the need for advancements in prosthetic technology. Current transtibial prosthetic designs primarily focus on sagittal plane kinematics but often neglect both the ankle kinematics and kinetics in the coronal plane, and the metatarsophalangeal joint, which play critical roles in gait stability and efficiency. This study aims to evaluate the combined effects of compliance in the coronal plane and a flexible toe joint on prosthetic gait using non-amputated participants as a model. Methods: We conducted gait trials on ten non-amputated individuals in the presence and absence of compliance in the coronal plane and toe compliance, using a previously developed three-degree-of-freedom (DOF) prosthetic foot with a prosthetic simulator. We recorded and analyzed sagittal and coronal kinematic data, ground reaction forces, and electromyographic signals from muscles involved in the control of gait. Results: The addition of compliance in the coronal plane and toe compliance had significant kinematic and muscular effects. Notably, this compliance combination reduced peak pelvis obliquity by 27%, preserved the swing stance/ratio, and decreased gluteus medius’ activation by 34% on the non-prosthetic side, compared to the laterally rigid version of the prosthesis without toe compliance. Conclusions: The results underscore the importance of integrating compliance in the coronal plane and toe compliance in prosthetic feet designs as they show potential in improving gait metrics related to mediolateral movements and balance, while also decreasing muscle activation. Still, these findings remain to be validated in people with transtibial amputations. Full article
(This article belongs to the Section Orthopedics and Rehabilitation)
Show Figures

Figure 1

24 pages, 4002 KiB  
Article
CFD Simulation-Based Development of a Multi-Platform SCR Aftertreatment System for Heavy-Duty Compression Ignition Engines
by Łukasz Jan Kapusta, Bartosz Kaźmierski, Rohit Thokala, Łukasz Boruc, Jakub Bachanek, Rafał Rogóż, Łukasz Szabłowski, Krzysztof Badyda, Andrzej Teodorczyk and Sebastian Jarosiński
Energies 2025, 18(14), 3697; https://doi.org/10.3390/en18143697 - 13 Jul 2025
Viewed by 260
Abstract
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe [...] Read more.
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe emissions. Among them, the SCR (selective catalytic reduction) aftertreatment-related processes, such as urea–water solution injection, urea decomposition, mixing, NOx catalytic reduction, and deposits’ formation, are the most challenging, and require as much attention as the processes taking place inside the cylinder. Over the last decade, the urea-SCR aftertreatment systems have evolved from underfloor designs to close-coupled (to the engine) architecture, characterised by the short mixing length. Therefore, they need to be tailor-made for each application. This study presents the CFD-based development of a multi-platform SCR system with a short mixing length for mobile non-road applications, compliant with Stage V NRE-v/c-5 emission standard. It combines multiphase dispersed flow, including wall wetting and urea decomposition kinetic reaction modelling to account for the critical aspects of the SCR system operation. The baseline system’s design was characterised by the severe deposit formation near the mixer’s outlet, which was attributed to the intensive cooling in the mounting area. Moreover, as the simulations suggested, the spray was not appropriately mixed with the surrounding gas in its primary zone. The proposed measures to reduce the wall film formation needed to account for the multi-platform application (ranging from 56 to 130 kW) and large-scale production capability. The performed simulations led to the system design, providing excellent UWS–exhaust gas mixing without a solid deposit formation. The developed system was designed to be manufactured and implemented in large-scale series production. Full article
Show Figures

Figure 1

26 pages, 9003 KiB  
Article
A Pilot-Scale Gasifier Freeboard Equipped with Catalytic Filter Candles for Particulate Abatement and Tar Conversion: 3D-CFD Simulations and Experimental Tests
by Alessandra Tacconi, Pier Ugo Foscolo, Sergio Rapagnà, Andrea Di Carlo and Alessandro Antonio Papa
Processes 2025, 13(7), 2233; https://doi.org/10.3390/pr13072233 - 12 Jul 2025
Viewed by 356
Abstract
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a [...] Read more.
This work deals with the catalytic steam reforming of raw syngas to increase the efficiency of coupling gasification with downstream processes (such as fuel cells and catalytic chemical syntheses) by producing high-temperature, ready-to-use syngas without cooling it for cleaning and conditioning. Such a combination is considered a key point for the future exploitation of syngas produced by steam gasification of biogenic solid fuel. The design and construction of an integrated gasification and gas conditioning system were proposed approximately 20 years ago; however, they still require further in-depth study for practical applications. A 3D model of the freeboard of a pilot-scale, fluidized bed gasification plant equipped with catalytic ceramic candles was used to investigate the optimal operating conditions for in situ syngas upgrading. The global kinetic parameters for methane and tar reforming reactions were determined experimentally. A fluidized bed gasification reactor (~5 kWth) equipped with a 45 cm long segment of a fully commercial filter candle in its freeboard was used for a series of tests at different temperatures. Using a computational fluid dynamics (CFD) description, the relevant parameters for apparent kinetic equations were obtained in the frame of a first-order reaction model to describe the steam reforming of key tar species. As a further step, a CFD model of the freeboard of a 100 kWth gasification plant, equipped with six catalytic ceramic candles, was developed in ANSYS FLUENT®. The composition of the syngas input into the gasifier freeboard was obtained from experimental results based on the pilot-scale plant. Simulations showed tar catalytic conversions of 80% for toluene and 41% for naphthalene, still insufficient compared to the threshold limits required for operating solid oxide fuel cells (SOFCs). An overly low freeboard temperature level was identified as the bottleneck for enhancing gas catalytic conversions, so further simulations were performed by injecting an auxiliary stream of O2/steam (50/50 wt.%) through a series of nozzles at different heights. The best simulation results were obtained when the O2/steam stream was fed entirely at the bottom of the freeboard, achieving temperatures high enough to achieve a tar content below the safe operating conditions for SOFCs, with minimal loss of hydrogen content or LHV in the fuel gas. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 2590 KiB  
Article
Application of Fused Filament Fabrication in Preparation of Ceramic Monolithic Catalysts for Oxidation of Gaseous Mixture of Volatile Aromatic Compounds
by Filip Car, Dominik Horvatić, Vesna Tomašić, Domagoj Vrsaljko and Zoran Gomzi
Catalysts 2025, 15(7), 677; https://doi.org/10.3390/catal15070677 - 11 Jul 2025
Viewed by 316
Abstract
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed [...] Read more.
The aim of this work was the preparation of ceramic monolithic catalysts for the catalytic oxidation of gaseous mixture of benzene, toluene, ethylbenzene and o-xylene BTEX. The possibility of using zirconium dioxide (ZrO2) as a filament for the fabrication of 3D-printed ceramic monolithic carriers was investigated using fused filament fabrication. A mixed manganese and iron oxide, MnFeOx, was used as the catalytically active layer, which was applied to the monolithic substrate by wet impregnation. The approximate geometric surface area of the obtained carrier was determined to be 53.4 cm2, while the mass of the applied catalytically active layer was 50.3 mg. The activity of the prepared monolithic catalysts for the oxidation of BTEX was tested at different temperatures and space times. The results obtained were compared with those obtained with commercial monolithic catalysts made of ceramic cordierite with different channel dimensions, and with monolithic catalysts prepared by stereolithography. In the last part of the work, a kinetic analysis and the modeling of the monolithic reactor were carried out, comparing the experimental results with the theoretical results obtained with the 1D pseudo-homogeneous and 1D heterogeneous models. Although both models could describe the investigated experimental system very well, the 1D heterogeneous model is preferable, as it takes into account the heterogeneity of the reaction system and therefore provides a more realistic description. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

31 pages, 5892 KiB  
Article
RANS Simulation of Turbulent Flames Under Different Operating Conditions Using Artificial Neural Networks for Accelerating Chemistry Modeling
by Tobias Reiter, Jonas Volgger, Manuel Früh, Christoph Hochenauer and Rene Prieler
Processes 2025, 13(7), 2220; https://doi.org/10.3390/pr13072220 - 11 Jul 2025
Viewed by 429
Abstract
Combustion modeling using computational fluid dynamics (CFD) offers detailed insights into the flame structure and thermo-chemical processes. Furthermore, it has been extensively used in the past to optimize industrial furnaces. Despite the increasing computational power, the prediction of the reaction kinetics in flames [...] Read more.
Combustion modeling using computational fluid dynamics (CFD) offers detailed insights into the flame structure and thermo-chemical processes. Furthermore, it has been extensively used in the past to optimize industrial furnaces. Despite the increasing computational power, the prediction of the reaction kinetics in flames is still related to high calculation times, which is a major drawback for large-scale combustion systems. To speed-up the simulation, artificial neural networks (ANNs) were applied in this study to calculate the chemical source terms in the flame instead of using a chemistry solver. Since one ANN may lack accuracy for the entire input feature space (temperature, species concentrations), the space is sub-divided into four regions/ANNs. The ANNs were tested for different fuel mixtures, degrees of turbulence, and air-fuel/oxy-fuel combustion. It was found that the shape of the flame and its position were well predicted in all cases with regard to the temperature and CO. However, at low temperature levels (<800 K), in some cases, the ANNs under-predicted the source terms. Additionally, in oxy-fuel combustion, the temperature was too high. Nevertheless, an overall high accuracy and a speed-up factor for all simulations of 12 was observed, which makes the approach suitable for large-scale furnaces. Full article
Show Figures

Figure 1

19 pages, 5351 KiB  
Article
Early Hydration Kinetics of Shell Ash-Based Cementitious Materials: A Low-Field Nuclear Magnetic Resonance Study
by Chuan Tong, Liyuan Wang, Kun Wang and Jianxin Fu
Materials 2025, 18(14), 3253; https://doi.org/10.3390/ma18143253 - 10 Jul 2025
Viewed by 212
Abstract
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture [...] Read more.
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture phase distribution. Low contents (≤8%) consume free water through rapid CaO hydration, promoting C-S-H gel densification. However, 10% SA causes reduced moisture in 0.16–0.4 μm gel micropores (due to hindered ion diffusion) and abrupt increases in 0.63–2.5 μm pores. (2) Porosity first decreases then increases with SA content, reaching minimum values at 3–5% and 8%, respectively. The 10% content induces abnormal porosity growth from localized over-densification following polynomial fitting (R2 = 0.966). (3) Krstulovic–Dabic model analysis reveals three consecutive hydration stages: nucleation–growth (NG), phase boundary reaction (I), and diffusion control (D). The NG stage shows the most intense reactions, while the D stage dominates (>60% contribution), with high model fitting accuracy (R2 > 0.9). (4) SA delays nucleation/crystal growth, inducing needle-like crystals at 3% content. Mechanical properties exhibit quadratic relationships with SA content, achieving peak compressive strength (18.6% increase vs. control) at 5% SA. This research elucidates SA content thresholds governing hydration kinetics and microstructure evolution, providing theoretical support for low-carbon cementitious material design. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

21 pages, 3111 KiB  
Article
Iron Sludge-Derived Photo-Fenton Reaction for Laundry Wastewater Effluent Oxidation and Process Optimization into Industrial Ecology Symbiosis
by Amira Ben Gouider Trabelsi, Fatemah H. Alkallas, Shehab A. Mansour, Abdullah F. Al Naim, Adil Alshoaibi, Najeh Rekik, Manasik M. Nour and Maha A. Tony
Catalysts 2025, 15(7), 669; https://doi.org/10.3390/catal15070669 - 10 Jul 2025
Viewed by 363
Abstract
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed [...] Read more.
Controlled iron extraction from iron-based sludge (Fe-Sludge) drainage and its use as a Fenton’s reagent is investigated in the current study for eliminating organics from launderette discharge stream. The influences of the iron dosage, hydrogen peroxide concentration, and pH are assessed as treatment factors for their direct impact on the oxidation of organic compounds. Additionally, optimal oxidation conditions are determined using the response surface methodology (RSM) technique, and the ranges of treatment variables are analyzed. The optimum values of a pH of 2.0, Fe sludge concentration of 99 mg/L, and H2O2 content of 402 mg/L resulted in optimal organics removal of up to 98%, expressed as Chemical Oxygen Demand (COD) removal. The oxidation efficacy attained from the design is confirmed and the model validation is assessed, and the suggestive model is accepted since it possesses a correlation coefficient of 97.7%. The thermodynamic and kinetic models are also investigated, and the reaction showed that the temperature increases resulted in the oxidation efficiency being reduced. The oxidation efficiency expressed as COD reduction is clearly characterized by first-order reaction kinetics. The thermodynamic characteristics indicated that the oxidation reaction was exothermic and not spontaneous. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

19 pages, 2490 KiB  
Article
Linker-Free Hyaluronic Acid-Dexamethasone Conjugates: pH-Responsive Nanocarriers for Targeted Anti-Inflammatory Therapy
by Anton N. Bokatyi, Natallia V. Dubashynskaya, Igor V. Kudryavtsev, Andrey S. Trulioff, Artem A. Rubinstein, Elena N. Vlasova and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(14), 6608; https://doi.org/10.3390/ijms26146608 - 10 Jul 2025
Viewed by 464
Abstract
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we [...] Read more.
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we engineered a polymeric platform for glucocorticoid delivery with precisely controlled parameters including particle size, surface charge, targeting capability, and release kinetics. This study reports a linker-free synthesis of hyaluronic acid-dexamethasone (HA-DEX) conjugates through Steglich esterification, catalyzed by 4-dimethylaminopyridine (DMAP), which facilitates the acylation of sterically hindered alcohols. The reaction specifically couples carboxyl groups of hyaluronic acid with the C21 hydroxyl group of dexamethasone. Incorporation of hydrophobic dexamethasone moieties induced self-assembly into nanoparticles featuring a hydrophobic core and negatively charged hydrophilic shell (−20 to −25 mV ζ-potential). In vitro characterization revealed pH-dependent release profiles, with 80–90% dexamethasone liberated in mildly acidic phosphate buffer (pH 5.2) versus 50–60% in phosphate-buffered saline (pH 7.4) over 35 days, demonstrating both sustained release and inflammation-responsive behavior. The conjugates exhibited potent anti-inflammatory activity in a human tumor necrosis factor-α (TNFα)-induced inflammation model. These findings position HA-DEX conjugates as promising candidates for targeted glucocorticoid delivery to specific anatomical sites including ocular, articular, and tympanic tissues, where their combination of CD44-targeting capability, enhanced permeability and retention effects, and stimulus-responsive release can optimize therapeutic outcomes while minimizing off-target effects. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

13 pages, 1631 KiB  
Article
Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste
by Rafał Olchowski, Patryk Szymczak and Ryszard Dobrowolski
Molecules 2025, 30(14), 2910; https://doi.org/10.3390/molecules30142910 - 10 Jul 2025
Viewed by 226
Abstract
Spent automobile catalysts can be an important source of platinum for industry applications. Low-cost and simple technologies for platinum recovery from this source are sought, especially involving the application of green adsorbents. Honeycomb biowaste can be an excellent candidate for this purpose; n-hexane-treated [...] Read more.
Spent automobile catalysts can be an important source of platinum for industry applications. Low-cost and simple technologies for platinum recovery from this source are sought, especially involving the application of green adsorbents. Honeycomb biowaste can be an excellent candidate for this purpose; n-hexane-treated honeycomb biowaste is therefore obtained for the first time. This material is characterized using several instrumental techniques, confirming the presence of O, N, and P heteroatoms on its surface and the complex morphology of its particles. The maximum static Pt(II)/Pt(IV) adsorption (46 mg/g and 60 mg/g, respectively) onto the n-hexane-extracted honeycomb biomass is reached at pH = 1.55 and a contact time of 50 h. The adsorption kinetics are best fitted to the pseudo-second-order model in both cases. The Langmuir model best described the Pt(II)/Pt(IV) adsorption isotherms on the studied material. Quantitative desorption of the Pt from the studied material is reached for 1 mol/L thiourea dissolved in HCl. The adsorption mechanism of Pt(IV) ions onto the obtained material is based mainly on the surface complexation reactions. The studied material is successfully applied for the first time for Pt(IV) removal from a spent automobile catalyst leachate. Full article
(This article belongs to the Special Issue Novel Adsorbents for Environmental Pollutants' Removal)
Show Figures

Graphical abstract

24 pages, 5097 KiB  
Article
Non-Monotonic Effect of Substrate Inhibition in Conjunction with Diffusion Limitation on the Response of Amperometric Biosensors
by Romas Baronas
Biosensors 2025, 15(7), 441; https://doi.org/10.3390/bios15070441 - 9 Jul 2025
Viewed by 183
Abstract
The non-monotonic behavior of amperometric enzyme-based biosensors under uncompetitive and noncompetitive (mixed) substrate inhibition is investigated computationally using a two-compartment model consisting of an enzyme layer and an outer diffusion layer. The model is based on a system of reaction–diffusion equations that includes [...] Read more.
The non-monotonic behavior of amperometric enzyme-based biosensors under uncompetitive and noncompetitive (mixed) substrate inhibition is investigated computationally using a two-compartment model consisting of an enzyme layer and an outer diffusion layer. The model is based on a system of reaction–diffusion equations that includes a nonlinear term associated with non-Michaelis–Menten kinetics of the enzymatic reaction and accounts for the partitioning between layers. In addition to the known effect of substrate inhibition, where the maximum biosensor current differs from the steady-state output, it has been determined that external diffusion limitations can also cause the appearance of a local minimum in the current. At substrate concentrations greater than both the Michaelis–Menten constant and the uncompetitive substrate inhibition constant, and in the presence of external diffusion limitation, the transient response of the biosensor, after immersion in the substrate solution, may follow a five-phase pattern depending on the model parameter values: it starts from zero, reaches a global or local maximum, decreases to a local minimum, increases again, and finally decreases to a steady intermediate value. The biosensor performance is analyzed numerically using the finite difference method. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

Back to TopTop