Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics of the Studied Biosorbent
2.2. Pt(II) and Pt(IV) Adsorption Studies
2.3. Pt(IV) Adsorption Mechanism Study
2.4. Desorption Study
2.5. Pt(IV) Removal from Automobile Catalyst Leachate
3. Materials and Methods
3.1. Materials and Reagents
3.2. Biosorbent Preparation
3.3. Instrumentation
3.4. Pt Adsorption Studies
3.5. Pt Removal from Spent Automobile Catalyst Leachate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kritsanaviparkporn, E.; Baena-Moreno, F.M.; Reina, T.R. Catalytic converters for vehicle exhaust: Fundamental aspects and technology overview for newcomers to the field. Chemistry 2021, 3, 630–646. [Google Scholar] [CrossRef]
- Barefoot, R.R. Determination of platinum at trace levels in environmental and biological materials. Environ. Sci. Technol. 1997, 31, 309–314. [Google Scholar] [CrossRef]
- Fornalczyk, A.; Saternus, M. Removal of platinum group metals from the used auto catalytic converter. Metalurgija 2009, 48, 133–136. [Google Scholar]
- Fornalczyk, A.; Cebulski, J.; Saternus, M.; Willner, J. Possibilities of platinum recovery from metal supported spent auto catalysts. Metalurgija 2014, 53, 609–612. [Google Scholar]
- Dong, H.; Zhao, J.; Chen, J.; Wu, Y.; Li, B. Recovery of platinum group metals from spent catalysts: A review. Int. J. Miner. Process. 2015, 145, 108–113. [Google Scholar] [CrossRef]
- Rzelewska-Piekut, M.; Paukszta, D.; Regel-Rosocka, M. Hydrometallurgical recovery of platinum group metals from spent automotive converters. Physicochem. Probl. Miner. Process. 2021, 57, 83–94. [Google Scholar] [CrossRef]
- Fajar, A.T.N.; Hanada, T.; Goto, M. Recovery of platinum group metals from a spent automotive catalyst using polymer inclusion membranes containing an ionic liquid carrier. J. Memb. Sci. 2021, 629, 119296. [Google Scholar] [CrossRef]
- Karim, S.; Ting, Y.-P. Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes. Res. Conserv. Recyc. 2021, 170, 105588. [Google Scholar] [CrossRef]
- Grilli, M.L.; Slobozeanu, A.E.; Larosa, C.; Paneva, D.; Yakoumis, I.; Cherkezova-Zheleva, Z. Platinum group metals: Green recovery from spent auto-catalysts and reuse in new catalysts—A review. Crystals 2023, 13, 550. [Google Scholar] [CrossRef]
- Ge, T.; He, J.-D.; Xu, L.; Xiong, Y.-H.; Wang, L.; Zhou, X.-W.; Tian, Y.-P.; Zhao, Z. Recovery of platinum from spent automotive catalyst based on hydrometallurgy. Rare Met. 2023, 42, 1118–1137. [Google Scholar] [CrossRef]
- Trucillo, P.; Lancia, A.; Di Natale, F. Recovery of platinum from diesel catalysts by combined use of H2O2/HCl leaching and adsorption. J. Environ. Chem. Eng. 2022, 10, 107730. [Google Scholar] [CrossRef]
- Dobrzyńska, J.; Dąbrowska, M.; Olchowski, R.; Zięba, E.; Dobrowolski, R. Development of a method for removal of platinum from hospital wastewater by novel ion-imprinted mesoporous organosilica. J. Environ. Chem. Eng. 2021, 9, 105302. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Ma, S.; Wang, H.; Zhao, H.; Wang, Y.; Tong, S.; Su, Z.; Wang, W.; Bai, J. The superior adsorption capacity of boron-nitrogen co-doping walnut shell biochar powder for Au(III), Pt(IV), and Pd(II). J. Environ. Chem. Eng. 2021, 9, 106288. [Google Scholar] [CrossRef]
- Mincke, S.; Asere, T.G.; Verheye, I.; Folens, K.; Bussche, F.V.; Lapeire, L.; Verbeken, K.; Van Der Voort, P.; Tessema, D.A.; Fufa, F.; et al. Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chem. 2019, 21, 2295–2306. [Google Scholar] [CrossRef]
- Limjuco, L.A.; Burnea, F.K. Evaluation of dithiadiamide-based molecular ion imprinted polymer (MIIP) for selective recovery of platinum from acid-digested spent automobile catalytic converter (ACC) solution. MRS Commun. 2022, 12, 175–182. [Google Scholar] [CrossRef]
- Liu, Y.; Biswasis, B.; Hassan, M.; Naidu, R. Green Adsorbents for Environmental Remediation: Synthesis Methods, Ecotoxicity, and Reusability Prospects. Processes 2024, 12, 1195. [Google Scholar] [CrossRef]
- Woodhead, A.L.; Church, A.T.; Rapson, T.D.; Trueman, H.E.; Church, J.S.; Sutherland, T.D. Confirmation of bioinformatics predictions of the structural domains in honeybee silk. Polymers 2018, 10, 776. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, T.D.; Weisman, S.; Walker, A.A.; Mudie, S.T. Invited review the coiled coil silk of bees, ants and hornets. Biopolymers 2011, 97, 446–454. [Google Scholar] [CrossRef]
- Zhang, K.; Si, F.W.; Duan, H.L.; Wang, J. Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater. 2010, 6, 2165–2171. [Google Scholar] [CrossRef]
- Hepburn, H.R.; Duangphakdee, O.; Pirk, C.W.W. Physical properties of honeybee silk: A review. Apidologie 2013, 44, 600–610. [Google Scholar] [CrossRef]
- Fraser, R.D.B.; Parry, D.A.D. The molecular structure of the silk fibers from Hymenoptera aculeata (bees, wasps, ants). J. Struct. Biol. 2015, 192, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Olchowski, R.; Zięba, E.; Giannakoudakis, D.A.; Anastopoulos, I.; Dobrowolski, R.; Barczak, M. Tailoring surface chemistry of sugar-derived ordered mesoporous carbons towards efficient removal of diclofenac from aquatic environments. Materials 2020, 13, 1625. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Zieliński, W.; Rajca, A. Spectroscopic Methods and Their Application for Identification of Organic Compounds, 2nd ed.; PWN: Warsaw, Poland, 2000. [Google Scholar]
- Arrigo, R.; Hävecker, M.; Wrabetz, S.; Blume, R.; Lerch, M.; McGregor, J.; Parrott, E.P.J.; Zeitler, J.A.; Gladden, L.F.; Knop-Gericke, A.; et al. Tuning the acid/base properties of nanocarbons by functionalization via amination. J. Am. Chem. Soc. 2010, 132, 9616–9630. [Google Scholar] [CrossRef] [PubMed]
- Raicopol, M.; Andronescu, C.; Atasiei, R.; Hanganu, A.; Pilan, L. Post-polymerization electrochemical functionalization of a conducting polymer: Diazonium salt electroreduction at polypyrrole electrodes. J. Electrochem. Soc. 2014, 161, G103–G113. [Google Scholar] [CrossRef]
- Gupta, N.K.; Peng, B.; Haller, G.L.; Ember, E.E.; Lercher, J.A. Nitrogen modified carbon nano-materials as stable catalysts forphosgene synthesis. ACS Catal. 2016, 6, 5843–5855. [Google Scholar] [CrossRef]
- Gammons, C.H. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: V. Equilibria between platinum metal, Pt(II), and Pt(IV) chloride complexes at 25 to 300 °C. Geochim. Cosmochim. Acta 1996, 60, 1683–1694. [Google Scholar] [CrossRef]
- Khan, I.A.; Wang, G.; Dong, H.; Lu, M.; Zeng, Y.; Zeng, R.; Liang, X.; Kang, X.; Feng, N.; Wu, H.; et al. Sustainable Pt(IV) removal using polyethyleneimine-functionalized jute powder: Adsorption mechanism and performance optimization. Appl. Surf. Sci. 2025, 700, 163179. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Shree, B.; Kumari, S.; Singh, S.; Rani, I.; Dhanda, A.; Chauhan, R. Exploring various types of biomass as adsorbents for heavy metal remediation: A review. Environ. Monit. Assess. 2025, 197, 406. [Google Scholar] [CrossRef]
- Dobrzyńska, J.; Dąbrowska, M.; Dobrowolski, R.; Morlo, K. Pt(IV)-ion imprinted ordered mesoporous organosilica for platinum preconcentration prior to electrothermal atomic absorption spectrometry determination in geological samples. Spectrochim. Acta Part B Atom. Spectr. 2023, 205, 106706. [Google Scholar] [CrossRef]
- Mosai, A.K.; Chimuka, L.; Cukrowska, E.M.; Kotzé, I.A.; Tutu, H. Recovery of Pt(IV) from aqueous solutions by spent brewer’s yeast-functionalized zeolite (SBYFZ): A batch and column study. Environ. Prog. Sustain. Energy 2021, 40, e13481. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Szot, A.; Hessel, V.; Fitzner, K. The kinetics of the redox reaction of platinum(IV) ions with ascorbic acid in the presence of oxygen. Materials 2023, 16, 4630. [Google Scholar] [CrossRef] [PubMed]
- Park, H.N.; Choi, H.A.; Won, S.W. Fibrous polyethylenimine/polyvinyl chloride crosslinked adsorbent for the recovery of Pt(IV) from acidic solution: Adsorption, desorption and reuse performances. J. Clean. Prod. 2018, 176, 360–369. [Google Scholar] [CrossRef]
- Chęć, M.; Olszewski, K.; Dziechciarz, P.; Skowronek, P.; Pietrow, M.; Borsuk, G.; Bednarczyk, M.; Jasina, G.; Jasina, J.; Gagoś, M. Effect of stearin and paraffin adulteration of beeswax on brood survival. Apidologie 2021, 52, 432–446. [Google Scholar] [CrossRef]
Porosity Data | CHN | XPS | EDS $ | pHEHB & | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBET [m2/g] | VT [cm3/g] 10−3 | dBJH,des. [nm] | C [wt. %] | N [wt. %] | H [wt. %] | C [wt. %] | O [wt. %] | N [wt. %] | P [wt. %] | C [wt. %] | O [wt. %] | N [wt. %] | 5.8 * ± 0.3 # |
1.5 * ± 0.3 # | 5 * ± 1 # | 80 * ± 16 # | 47.8 * ± 0.15 # | 6.27 * ± 0.13 # | 8.8 * ± 0.1 # | 71.9 * ± 3.6 # | 21.4 * ± 1.1 # | 5.31 * ± 0.27 # | 1.43 * ± 0.07 # | 51.2 * ± 2.5 # | 34.3 * ± 1.7 # | 13.3 * ± 0.6 # |
Pt Species | PFO | PSO | aeq,exp. [mg/g] | ||||
---|---|---|---|---|---|---|---|
aeq,theor. [mg/g] | kPFO [1/min]10−3 | R2 | aeq,theor. [mg/g] | kPSO [g/(mg min)]10−3 | R2 | ||
Pt(II) | 7.98 * ± 0.11 # | 55 * ± 2.17 # | 0.429 | 8.34 * ± 0.35 # | 9.0 * ± 0.1 # | 0.677 | 8.98 * ± 0.17 # |
Pt(IV) | 14.8 * ± 1.3 # | 65 * ± 2.56 # | 0.428 | 15.5 * ± 1.6 # | 5.0 * ± 0.1 # | 0.691 | 16.8 * ± 0.3 # |
Pt Species | Langmuir | Freundlich | amax [mg/g] | ||||
---|---|---|---|---|---|---|---|
am [mg/g] | kL [L/mg] | R2 | nF [a. u.] | kF [mg1−nFLnF/g] | R2 | ||
Pt(II) | 48.2 * ± 2.1 # | 0.07 * ± 0.01 # | 0.998 | 0.23 * ± 0.01 # | 12.6 * ± 0.1 # | 0.849 | 46.0 * ± 2.0 # |
Pt(IV) | 67.1 * ± 1.6 # | 0.07 * ± 0.01 # | 0.986 | 0.24 * ± 0.01 # | 15.3 * ± 0.1 # | 0.823 | 60.0 * ± 2.3 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olchowski, R.; Szymczak, P.; Dobrowolski, R. Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste. Molecules 2025, 30, 2910. https://doi.org/10.3390/molecules30142910
Olchowski R, Szymczak P, Dobrowolski R. Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste. Molecules. 2025; 30(14):2910. https://doi.org/10.3390/molecules30142910
Chicago/Turabian StyleOlchowski, Rafał, Patryk Szymczak, and Ryszard Dobrowolski. 2025. "Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste" Molecules 30, no. 14: 2910. https://doi.org/10.3390/molecules30142910
APA StyleOlchowski, R., Szymczak, P., & Dobrowolski, R. (2025). Low-Cost Honeycomb Biomass Adsorbent for Efficient Pt Recovery from Automobile Catalyst Waste. Molecules, 30(14), 2910. https://doi.org/10.3390/molecules30142910