Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = re-adsorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 4663 KiB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 37
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

22 pages, 4077 KiB  
Article
Strong Amphoteric Adsorption of Reactive Red-141 onto Modified Orange Peel Derivatives: Optimization, Characterization, and Mechanism
by Behlul Koc-Bilican, Ismail Bilican and Hakan Çelebi
Polymers 2025, 17(13), 1875; https://doi.org/10.3390/polym17131875 - 4 Jul 2025
Viewed by 502
Abstract
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray [...] Read more.
This study investigates the adsorption performance of Reactive Red-141 (ReR-141) using three modified orange peel derivatives: raw orange peel (ROP), oil-free orange peel (NOOP), and cellulose extract (CE). The adsorbents were prepared through sequential treatments and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy to investigate their surface morphology and functional groups. Batch adsorption experiments were conducted under varying conditions of pH, temperature, time, and adsorbent amount. NOOP displayed the highest adsorption capacity (99.72% removal efficiency), followed by CE (86.99%) and ROP (77.55%), under optimal conditions. The adsorption kinetics followed a PSO model, while the equilibrium data were best described by Langmuir, indicating monolayer adsorption. Thermodynamic factors confirmed that the process was self-generated and primarily determined by physisorption. Desorption studies using 0.2 M NaOH demonstrated that NOOP retained 98.16% efficiency after three cycles, indicating its strong reusability. The adsorption mechanism is determined by different interactions, such as electrostatic forces, H-bonding, and π–π stacking. These findings suggest that orange peel derivatives, particularly NOOP, serve as optimal and environmentally sustainable adsorbents for the yield of ReR-141 from synthetic aqueous media. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 4822 KiB  
Article
Enhanced Visualization of Erythrocytes Through Photoluminescence Using NaYbF4:Yb3+,Er3+ Nanoparticles
by Vivian Torres-Vera, Lorena M. Coronado, Ana Patricia Valencia, Alejandro Von Chong, Esteban Rua, Michelle Ng, Jorge Rubio-Retama, Carmenza Spadafora and Ricardo Correa
Biosensors 2025, 15(7), 396; https://doi.org/10.3390/bios15070396 - 20 Jun 2025
Viewed by 605
Abstract
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion [...] Read more.
Rare-earth nanoparticles (RE-NPs), particularly NaYF4:Yb3+,Er3+, have emerged as a promising class of photoluminescent probes for bioimaging and sensing applications. These nanomaterials are characterized by their ability to absorb low-energy photons and emit higher-energy photons through an upconversion luminescence process. This process can be triggered by continuous-wave (CW) light excitation, providing a unique optical feature that is not exhibited by native biomolecules. However, the application of upconversion nanoparticles (UCNPs) in bioimaging requires systematic optimization to maximize the signal and ensure biological compatibility. In this work, we synthesized hexagonal-phase UCNPs (average diameter: 29 ± 3 nm) coated with polyacrylic acid (PAA) and established the optimal conditions for imaging human erythrocytes. The best results were obtained after a 4-h incubation in 100 mM HEPES buffer, using a nanoparticle concentration of 0.01 mg/mL and a laser current intensity of 250–300 mA. Under these conditions, the UCNPs exhibited minimal cytotoxicity and were found to predominantly localize at the erythrocyte membrane periphery, indicating surface adsorption rather than internalization. Additionally, a machine learning model (Random Forest) was implemented that classified the photoluminescent signal with 80% accuracy and 83% precision, with the signal intensity identified as the most relevant feature. This study establishes a quantitative and validated protocol that balances signal strength with cell integrity, enabling robust and automated image analysis. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

12 pages, 1978 KiB  
Article
The Investigation of the Adsorption of Methylene Blue from Water by Torrefied Biomass
by Mariana Consiglio Kasemodel, Leandro Gonçalves de Aguiar, Valéria Guimarães Silvestre Rodrigues and Érica Leonor Romão
Colorants 2025, 4(2), 21; https://doi.org/10.3390/colorants4020021 - 7 Jun 2025
Viewed by 754
Abstract
This research investigates the adsorption potential of four types of adsorbents produced from agro-industrial waste (grape pomace—GP, tree pruning—TP, sugarcane bagasse—SB, and eucalyptus sawdust—ES) for the uptake of thiazine dye methylene blue (MB) from aqueous solution. A kinetic model based on a hybrid-order [...] Read more.
This research investigates the adsorption potential of four types of adsorbents produced from agro-industrial waste (grape pomace—GP, tree pruning—TP, sugarcane bagasse—SB, and eucalyptus sawdust—ES) for the uptake of thiazine dye methylene blue (MB) from aqueous solution. A kinetic model based on a hybrid-order rate equation was fitted to experimental data. The result showed that BGP-300 presented the highest mass yield (58.84%) and energy yield (69.56%), followed by BTP-300 > BES-300 > BSB-300. Adsorption studies showed that BGP-300 had a better performance in the uptake of MB, with a removal efficiency (Re) of 96.5% and adsorption capacity at equilibrium (qe) of 9.3 mg g−1, followed by tree pruning biochar (BTP-300), with an Re of 65.0% and qe of 5.3 mg g−1. Meanwhile, eucalyptus sawdust (BES-300) and sugarcane bagasse (BSB-300) biochar did not facilitate any significant removal of MB. Adsorption kinetics is best described by a second-order rate with R2 varying from 0.75 to 0.96. Desorption studies show a low concentration released to the solution, indicating that adsorption may occur physically and chemically. Therefore, this research provides comprehensive insights into the adsorption characteristics of different biochars, emphasizing the potential of torrefied materials BGP-300 and BTP-300 as effective for MB uptake from aqueous solution. Full article
Show Figures

Figure 1

15 pages, 2854 KiB  
Article
Effects of Biochar on the Temporal Dynamics and Vertical Distribution of Iron and Phosphorus Under Soil Submergence
by Ying-Ren Lai and Shan-Li Wang
Agronomy 2025, 15(6), 1394; https://doi.org/10.3390/agronomy15061394 - 5 Jun 2025
Viewed by 474
Abstract
Biochar is considered a promising amendment for improving phosphorus (P) availability in agricultural soils; however, its effects on the chemical transformation and long-term immobilization of P in submerged soils across soil depth and over time remain unclear. This study conducted a 98-day column [...] Read more.
Biochar is considered a promising amendment for improving phosphorus (P) availability in agricultural soils; however, its effects on the chemical transformation and long-term immobilization of P in submerged soils across soil depth and over time remain unclear. This study conducted a 98-day column incubation experiment to investigate the effects of rice straw biochar (RSB) on the spatial and temporal dynamics of iron (Fe) and P under soil submergence. Soils with and without biochar addition were mixed with water homogeneously and then added into each PVC column with an additional standing water layer above the soil surface. The results revealed a two-stage shift in soil redox potential (Eh), with more rapid changes observed at deeper depths. RSB addition accelerated the decline in Eh and increased the soil pH. The rise in pH by submergence and biochar addition promoted the release of soluble and exchangeable P from soil to pore water during incubation. Ca-associated P precipitation and re-adsorption resulted in relatively low phosphate concentrations in pore water. RSB addition increased P availability in the early stage by releasing soluble and exchangeable P and promoting phosphate desorption through pH elevation, which increased the negative surface charge of soil constituents, thereby reducing their affinity for phosphate and enhancing its release into the pore water. However, prolonged submergence led to the transformation of soluble and exchangeable P into more stable Ca-P precipitates, limiting long-term P availability. These findings provide new insights into the temporal and spatial dynamics of P in submerged soils and highlight the short-term benefits and long-term limitations of biochar for sustaining P availability in paddy rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

63 pages, 12842 KiB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1000
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 2624 KiB  
Article
Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions
by Nesipkhan Bektenov, Kanat Sadykov, Ainash Baidullayeva, Nurzhan Chinibayeva, Tulegen Chalov, Gulim Koszhanova and Elmira Kambarova
Processes 2025, 13(5), 1584; https://doi.org/10.3390/pr13051584 - 20 May 2025
Viewed by 560
Abstract
This study focuses on the synthesis and characterization of a cationic ion-exchange sorbent derived from vermiculite and epoxy acrylate copolymers, designed to address freshwater scarcity by removing toxic metal ions from aqueous environments. The sorbent was engineered to preserve the chemical integrity of [...] Read more.
This study focuses on the synthesis and characterization of a cationic ion-exchange sorbent derived from vermiculite and epoxy acrylate copolymers, designed to address freshwater scarcity by removing toxic metal ions from aqueous environments. The sorbent was engineered to preserve the chemical integrity of freshwater while adhering to environmental safety standards. Vermiculite served as the base material, modified with glycidyl methacrylate (GMA), acrylonitrile (ACN), and orthophosphoric acid (H3PO4) in a mass ratio of 1:0.35:0.15:3. Optimization experiments explored varying H3PO4 proportions (two- and threefold increases) to refine the synthesis conditions. The materials underwent microwave irradiation at 300 W for 10 min. Infrared (IR) spectroscopy confirmed the presence of functional groups (P=O, P−O−C), enhancing sorption capacity, while scanning electron microscopy (SEM) revealed a porous structure crucial for adsorption. Sorption properties, assessed via atomic emission spectroscopy, demonstrated capacities of 39.80 mg/g for MoO42− and 39.06 mg/g for ReO4, with extraction efficiencies of 79% and 78%, respectively. Chemical stability tests indicated the sorbent retained up to 90% of its functionality in aggressive environments, highlighting its robustness. The developed sorbent offers a high-performance, cost-effective solution for heavy metal removal from wastewater, advancing sustainable water purification technologies. Full article
(This article belongs to the Special Issue Chemical Engineering Towards Sustainable Development Goals)
Show Figures

Figure 1

15 pages, 2820 KiB  
Article
Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils
by Linlin Chu, Rong Ma and Dan Chen
Agronomy 2025, 15(5), 1192; https://doi.org/10.3390/agronomy15051192 - 15 May 2025
Viewed by 345
Abstract
The improved multi-stage drip irrigation scheduling, combined with agronomic engineering, was successfully applied for spring re-vegetation in coastal saline soils. To date, few studies have addressed summer vegetation planting using this method. The aim of this study is to reveal the desalinization mechanism [...] Read more.
The improved multi-stage drip irrigation scheduling, combined with agronomic engineering, was successfully applied for spring re-vegetation in coastal saline soils. To date, few studies have addressed summer vegetation planting using this method. The aim of this study is to reveal the desalinization mechanism associated with summer afforestation and multi-stage drip irrigation. A three-year field experiment was conducted in the coastal saline land of southern China. The trial consisted of four irrigation stages, with the soil moisture potential (SMP) monitored directly beneath the drip emitter at a depth of 0.2 m, correspondingly controlled to be higher than −10 kPa (Stage I), −25 kPa (Stage II), and −45 kPa (Stage III), respectively. Results indicated that soil bulk density decreased by 14%, while soil moisture increased by 30% compared to initial conditions. The average electrical conductivity (EC) value across the entire soil layer decreased by 65.64% to 97.79%. Soil pH gradually increased during the first three irrigation stages, with the rate of increase accelerating during the rainfed stage, reaching values between 9.22 and 9.87. The concentrations of soil ions, including Ca2+, K+, Mg2+, Na+, and SO42−, decreased by 95.18%, 79.67%, 87.74%, 89.68%, and 57.19%, respectively, in the final irrigation stage. Throughout the entire soil profile, the average sodium adsorption ratio (SAR) decreased by 49.37%, while the average exchangeable sodium percentage (ESP) increased by 9.98%. This study demonstrated that multi-stage drip irrigation scheduling significantly influenced the soil physicochemical properties, soil salt ions, and vegetation growth, and thereby explained the efficient desalinization mechanism associated with this irrigation strategy. It is recommended to increase the amount of irrigation water and apply acidic regulators during the rainfed stage to reduce soil pH for vegetation establishment in coastal saline areas. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 2794 KiB  
Article
Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study
by Kiana Modaresahmadi, Amid P. Khodadoust and James Wescott
Separations 2025, 12(5), 119; https://doi.org/10.3390/separations12050119 - 7 May 2025
Viewed by 470
Abstract
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent [...] Read more.
Defluoridation of water was investigated in an adsorption column study using Al-Mg-Ca-coated sand (AMCCS), a ternary metal oxide adsorbent with eco-friendly components that were shown to be effective for water defluoridation, in a batch adsorption study. A packed column of the AMCCS sorbent was evaluated as function of column flow rate, solution type, and sorbent recyclability. Adsorption column experiments included two column flow rates of 2 mL/min and 10 mL/min using two different solutions: deionized water and a synthetic solution representative of groundwater. Greater fluoride column adsorption capacity was obtained at the lower flow rate for both solutions, mainly due to longer contact times between solution and AMCCS sorbent. Adsorption of fluoride occurred through physical adsorption, which followed the Langmuir adsorption model and second-order kinetics for deionized water and synthetic solution. A lower AMCCS column fluoride adsorption capacity was observed for the synthetic solution due to the competition from adsorption of other ions in the synthetic solution, whereas fluoride adsorption by the AMCCS column was influenced by interphase mass transfer to a lesser extent using the synthetic solution than deionized water. The re-coating of spent AMCCS sorbent in the adsorption column resulted in effective recycling and reuse of the AMCCS adsorption column for both deionized water and the synthetic solution, rendering the AMCCS adsorption column a recyclable and sustainable flow through water defluoridation system. Full article
Show Figures

Graphical abstract

14 pages, 4714 KiB  
Article
Investigating the Physical Adsorption of DCPD/Furfural and H2 Adsorption–Dissociation Behaviors in RE-MOFs
by Muye Niu, Zuoshuai Xi, Chenhui He, Wenting Ding, Shanshan Cheng, Juntao Zhang and Hongyi Gao
Molecules 2025, 30(9), 1954; https://doi.org/10.3390/molecules30091954 - 28 Apr 2025
Viewed by 346
Abstract
Metal–organic frameworks (MOFs) have emerged as promising catalysts in the hydrogenation of bicyclopentadiene (DCPD) and furfural. The physical adsorption behaviors of substrate molecules and H2 within the pore structures of MOFs significantly influence the efficacy of subsequent catalytic reactions. This study employs [...] Read more.
Metal–organic frameworks (MOFs) have emerged as promising catalysts in the hydrogenation of bicyclopentadiene (DCPD) and furfural. The physical adsorption behaviors of substrate molecules and H2 within the pore structures of MOFs significantly influence the efficacy of subsequent catalytic reactions. This study employs molecular dynamics (MD) simulations to identify the optimal temperature and pressure conditions for the adsorption of DCPD and H2, as well as furfural and H2, within rare-earth-element-based MOFs (RE-MOFs). By analyzing the physical adsorption characteristics of 1538 RE-MOFs, we investigate the correlation between pore structures and adsorption capabilities. This exploration has led to the identification of 10 RE-MOF structures that demonstrate superior physical adsorption performance for both DCPD and furfural. Following this initial evaluation, density functional theory (DFT) calculations were conducted to determine the chemisorption energies of H2 molecules on these 10 selected RE-MOF structures. Notably, the structure identified as “JALLEQ_clean” exhibited the most optimal overall adsorption performance. This study elucidates the quantitative relationship between the pore structure of RE-MOFs and their physical adsorption performance, clarifying the influence of porosity parameters on adsorption capacity and highlighting the advantages of cluster-type structures in mass transfer and adsorption. The findings provide theoretical guidance for developing high-performance RE-MOF catalysts and offer new insights for the rational design of MOF-based catalytic materials. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

16 pages, 4215 KiB  
Review
Progress in UV Photodetectors Based on ZnO Nanomaterials: A Review of the Detection Mechanisms and Their Improvement
by Gaoda Li, Bolang Cheng, Haibo Zhang, Xinghua Zhu and Dingyu Yang
Nanomaterials 2025, 15(9), 644; https://doi.org/10.3390/nano15090644 - 24 Apr 2025
Cited by 2 | Viewed by 910
Abstract
Recent advancements in ultraviolet (UV) photodetection technology have driven intensive research on zinc oxide (ZnO) nanomaterials due to their exceptional optoelectronic properties. This review systematically examines the fundamental detection mechanisms in ZnO-based UV photodetectors (UVPDs), including photoconductivity effects, the threshold dimension phenomenon and [...] Read more.
Recent advancements in ultraviolet (UV) photodetection technology have driven intensive research on zinc oxide (ZnO) nanomaterials due to their exceptional optoelectronic properties. This review systematically examines the fundamental detection mechanisms in ZnO-based UV photodetectors (UVPDs), including photoconductivity effects, the threshold dimension phenomenon and light-modulated interface barriers. Based on these mechanisms, a large surface barrier due to surface-adsorbed O2 is generally constructed to achieve a high sensitivity. However, this improvement is obtained with a decrease in response speed due to the slow desorption and re-adsorption processes of surface O2 during UV light detection. Various improvement strategies have been proposed to overcome this drawback and keep the high sensitivity, including ZnO–organic semiconductor interfacing, defect engineering and doping, surface modification, heterojunction and the Schottky barrier. The general idea is to modify the adsorption state of O2 or replace the adsorbed O2 with another material to build a light-regulated surface or an interface barrier, as surveyed in the third section. The critical trade-off between sensitivity and response speed is also addressed. Finally, after a summary of these mechanisms and the improvement methods, this review is concluded with an outlook on the future development of ZnO nanomaterial UVPDs. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

16 pages, 260 KiB  
Review
The Physical Processes and Chemical Transformations of Third-Hand Smoke in Indoor Environments and Its Health Effects: A Review
by Yuyu Wang and Jianwei Gu
Atmosphere 2025, 16(4), 370; https://doi.org/10.3390/atmos16040370 - 24 Mar 2025
Cited by 1 | Viewed by 2226
Abstract
Tobacco smoke is an important pollutant that causes over 8 million deaths each year, of which, 1.3 million deaths are attributed to second-hand smoke. Third-hand smoke refers to the chemical emitted from smoking that remains in the air, dust, and on the surfaces [...] Read more.
Tobacco smoke is an important pollutant that causes over 8 million deaths each year, of which, 1.3 million deaths are attributed to second-hand smoke. Third-hand smoke refers to the chemical emitted from smoking that remains in the air, dust, and on the surfaces after smoking has stopped. These substances, which are deposited or adsorbed on indoor surfaces and dust and can be re-emitted into the indoor air continually, leading to human exposure over an extended period. The properties of the third-hand smoke chemicals and indoor surfaces are key factors influencing their indoor behaviors and human exposure. Additionally, the substances on surfaces can react with atmospheric oxidants to form secondary pollutants. For instance, nicotine in third-hand smoke reacts with atmospheric oxidants (ozone, nitrous acid, and hydroxyl radicals) to produce other toxic, carcinogenic substances, which may be more toxic, further increasing the risk to human health. This review aims to address three key questions: (1) What are the components of third-hand smoke? (2) How does third-hand smoke adsorb and desorb on/from indoor surfaces, and undergo chemical transformation? (3) How is exposure to third-hand smoke related to human health effects? Therefore, we conducted a comprehensive review of the chemical composition of third-hand smoke, its adsorption and desorption on indoor surfaces, chemical transformations indoors, and health effects, The chemical composition of third-hand smoke is complex, containing various toxic substances, carcinogens, and heavy metals. This review provided suggestions to prevent exposure to third-hand smoke. Full article
(This article belongs to the Section Air Quality and Health)
18 pages, 5239 KiB  
Article
A Facile Two-Step High-Throughput Screening Strategy of Advanced MOFs for Separating Argon from Air
by Xiaoyi Xu, Bingru Xin, Zhongde Dai, Chong Liu, Li Zhou, Xu Ji and Yiyang Dai
Nanomaterials 2025, 15(6), 412; https://doi.org/10.3390/nano15060412 - 7 Mar 2025
Viewed by 769
Abstract
Metal–organic frameworks (MOFs) based on the pressure swing adsorption (PSA) process show great promise in separating argon from air. As research burgeons, the number of MOFs has grown exponentially, rendering the experimental identification of materials with significant gas separation potential impractical. This study [...] Read more.
Metal–organic frameworks (MOFs) based on the pressure swing adsorption (PSA) process show great promise in separating argon from air. As research burgeons, the number of MOFs has grown exponentially, rendering the experimental identification of materials with significant gas separation potential impractical. This study introduced a high-throughput screening through a two-step strategy based on structure–property relationships, which leveraged Grand Canonical Monte Carlo (GCMC) simulations, to swiftly and precisely identify high-performance MOF adsorbents capable of separating argon from air among a vast array of MOFs. Compared to traditional approaches for material development and screening, this method significantly reduced both experimental and computational resource requirements. This research pre-screened 12,020 experimental MOFs from a computationally ready experimental MOF (CoRE MOF) database down to 7328 and then selected 4083 promising candidates through structure–performance correlation. These MOFs underwent GCMC simulation assessments, showing superior adsorption performance to traditional molecular sieves. In addition, an in-depth discussion was conducted on the structural characteristics and metal atoms among the best-performing MOFs, as well as the effects of temperature, pressure, and real gas conditions on their adsorption properties. This work provides a new direction for synthesizing next-generation MOFs for efficient argon separation in labs, contributing to energy conservation and consumption reduction in the production of high-purity argon gas. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

20 pages, 6175 KiB  
Article
Benefit of an Ultrasonic Irradiation on the Depollution by Washing of Nickel- or Zinc-Contaminated Vermiculite
by Antoine Leybros, Sophie Herr, Rita Salameh and Rachel Pflieger
Molecules 2025, 30(5), 1110; https://doi.org/10.3390/molecules30051110 - 28 Feb 2025
Cited by 1 | Viewed by 519
Abstract
Pollution of soil by heavy metals has become a critical environmental issue. This study investigated an innovative approach to heavy metals removal, focusing on the desorption of nickel and zinc from vermiculite using a combination of leaching and ultrasonic (US) irradiation at 20 [...] Read more.
Pollution of soil by heavy metals has become a critical environmental issue. This study investigated an innovative approach to heavy metals removal, focusing on the desorption of nickel and zinc from vermiculite using a combination of leaching and ultrasonic (US) irradiation at 20 or 362 kHz. When 0.1 M HCl was used as a washing solution, Zn2+ desorption yields around 85% were obtained in all conditions. Under 20 kHz US, fragmentation of the particles occurred, leading to the formation of new sites where released Zn2+ could sorb, allowing improved decontamination by cation exchange. Even higher yields were obtained with the biobased citric acid. Ni2+ desorption yields were lower due to its distribution in less accessible Tessier fractions. They significantly increased under US, especially at 362 kHz. It is shown that US leads to transfer of the contaminant from less accessible fractions (in particular the residual one) to more accessible ones, and that at low frequency, new sorption sites are created by fragmentation, leading to readsorption in the exchangeable fraction. This study brought to light for the first time the potential of high-frequency US in enhancing soil washing, to a higher extent compared to low-frequency (20–50 kHz) US. Full article
(This article belongs to the Section Ultrasound Chemistry)
Show Figures

Graphical abstract

14 pages, 4058 KiB  
Article
Homogeneous Aptasensor with Electrochemical and Electrochemiluminescence Dual Detection Channels Enabled by Nanochannel-Based Probe Enrichment and DNase I Cleavage for Tumor Biomarker Detection
by Jiong Gao, Shiyue Zhang and Fengna Xi
Molecules 2025, 30(3), 746; https://doi.org/10.3390/molecules30030746 - 6 Feb 2025
Cited by 7 | Viewed by 1019
Abstract
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase [...] Read more.
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase I cleavage for selective detection of the tumor biomarker, carbohydrate antigen 125 (CA125). A two-dimensional (2D) composite probe was prepared by assembling the CA125-specific aptamer and the cationic probe tris(2,2′-bipyridyl)Ru(II) (Ru(bpy)32+), which exhibited both EC and ECL properties, onto graphene oxide (GO) nanosheets (Ru(bpy)32+/Apt@GO). A vertically ordered mesoporous silica film (VMSF) with ultrasmall, uniform, and vertically aligned nanochannel arrays was rapidly grown on the inexpensive and disposable indium tin oxide (ITO) electrode, forming the detection interface. Due to the size exclusion effect of the ultrasmall nanochannels in VMSF, the Ru(bpy)32+/Apt@GO probe was unable to penetrate the nanochannels, resulting in no detectable Ru(bpy)32+ signal on the electrode. Upon specific recognition of CA125 by the aptamer, an aptamer-CA125 complex was formed and subsequently detached from GO. DNase I then cleaved the aptamer-CA125 complex, releasing CA125 and allowing Ru(bpy)32+ to dissociate into the solution. This enzymatic cleavage enabled CA125 to re-enter the binding cycle, amplifying the release of Ru(bpy)32+ into the solution. The electrostatic adsorption of the cationic Ru(bpy)32+ by VMSF significantly enhanced both the EC and ECL signals. The constructed aptasensor exhibited a linear EC detection range for CA125 from 0.1 U/mL to 100 ng/mL, with a limit of detection (LOD) of 91 mU/mL. For ECL detection, CA125 was detected over a range from 0.001 to 100 U/mL, with a LOD as low as 0.4 mU/mL. The developed aptasensor demonstrated excellent selectivity and was successfully applied to the dual-mode EC/ECL detection of CA125 in fetal bovine serum samples. Full article
Show Figures

Figure 1

Back to TopTop