Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Procedure for Preparing the Modified Mineral Sorbent
2.3. Sorption Procedure for Molybdenum and Rhenium Ions
- A polymer sample weighing 0.05 g (accurate to 0.0001 g) was placed in an Erlenmeyer flask.
- 20 mL of the metal salt solution was added.
- V—is the volume of the solution (0.02 L),
- C1—is the initial ion concentration (mg/L),
- C2—is the final ion concentration after sorption (mg/L),
- m–is the mass of the sorbent (0.05 g).
- R—is the degree of extraction,
- C1—is the concentration of ions before sorption,
- C2—is the concentration of ions after sorption.
2.4. Chemical Stability Testing
- Two 0.1 g samples were placed in 250 mL round-bottom flasks.
- One sample was treated with 100 mL of a 5 N H2SO4 solution, and the other with a 5 N NaOH solution.
- The mixtures were heated in a boiling water bath for 30 min, cooled to room temperature, and filtered.
- The ion-exchange sorbent was converted to its hydroxyl form, and the SEC was determined.
2.5. Determining Stability in Oxidative Solutions
2.6. Physical and Chemical Characterization Methods
3. Results and Discussion
3.1. Optimization of Sorbent Synthesis Conditions. Study of the Influence of Various Factors (Mass Ratio, Temperature, and Duration) on the Modification of Organomineral Sorbents
3.1.1. Influence of Orthophosphoric Acid Concentration
3.1.2. Influence of Curing Duration and Microwave Power
3.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis of the Synthesized Sorbent
3.3. Microstructure Analysis of the Sorbent Based on Electron Microscopy
3.4. Sorption of Molybdenum Ions (MoO42−)
- −
- Sorb—active centers of the sorbent,
- −
- MoO42−—molybdate ion in solution.
3.5. Sorption of Rhenium Ions from Model Solutions
- −
- Sorb-X—an ion-exchange sorbent with exchange ions X− on the surface,
- −
- ReO4−—a perrhenate ion in solution,
- −
- X−—an exchange ion that is replaced by a rhenium ion.
3.6. Chemical Resistance of Sorbents in Aggressive Media
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oyaro, N.; Juddy, O.; Murago, E.N.M.; Gitonga, E. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. Int. J. Food Agric. Environ. 2007, 5, 119–121. [Google Scholar]
- Ahangarpour, A.; Oroojan, A.A.; Rezae, M.; Khodayar, M.J.; Alboghobeish, S.; Zeinvand, M. Effects of butyric acid and arsenic on isolated pancreatic islets and liver mitochondria of male mouse. Gastroenterol. Hepatol. Bed Bench 2017, 10, 44–53. [Google Scholar] [PubMed]
- Hou, Y.; Fu, Z.; Luo, J.; Liu, X.; Sun, H.; Li, G. Selective separation of rhenium from oxygen-pressure leach solution of molybdenite concentrate using modified D201 resin: Experiments and theoretical calculations. J. Mol. Liq. 2024, 408, 125371. [Google Scholar] [CrossRef]
- Fathi, M.B.; Rezai, B.; Alamdari, E.K. Competitive adsorption characteristics of rhenium in single and binary (Re-Mo) systems using Purolite A170. Int. J. Miner. Process. 2017, 169, 1–6. [Google Scholar] [CrossRef]
- Mao, J.; Hong, W.; Li, Q.; Gao, Y.; Jiang, Y.; Li, Y.; Li, B.; Gao, B.; Xu, X. The application strategies and progresses of silicon-based minerals in advanced oxidation processes for water decontamination. Coord. Chem. Rev. 2024, 511, 215871. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Mohamad Haafiz, M.K.; Zakaria, Z. Synthesis and characterization of chitosan-coated magnetic nanoparticles for removal of heavy metals from aqueous solutions. Int. J. Biol. Macromol. 2015, 81, 91–98. [Google Scholar] [CrossRef]
- Korobitsyna, A.D.; Pechishcheva, N.V.; Konysheva, E.Y.; Shunyaev, K.Y. Adsorption of Molybdenum(VI) and Rhenium(VII) on Mechanoactivated Graphite. Russ. J. Phys. Chem. A 2025, 99, 570–580. [Google Scholar] [CrossRef]
- Shan, W.; Shu, Y.; Chen, H.; Zhang, D.; Wang, W.; Ru, H.; Xiong, Y. The recovery of molybdenum(VI) from rhenium(VII) on amino-functionalized mesoporous materials. Hydrometallurgy 2016, 165, 251–260. [Google Scholar] [CrossRef]
- Melnikov, A.; Gordina, N.; Sinitsyn, A.; Gusev, G.; Gushchin, A. Rumyantsev Investigation of the influence of mechanochemical effects on the structure and properties of vermiculite sorbents. J. Solid State Chem. 2021, 306, 122795. [Google Scholar] [CrossRef]
- Neves, H.S.d.C.; da Silva, T.L.; da Silva, M.G.C.; Guirardello, R.; Vieira, M.G.A. Ion exchange and adsorption of cadmium from aqueous media in sodium-modified expanded vermiculite. Environ. Sci. Pollut. Res. 2022, 29, 79903–79919. [Google Scholar] [CrossRef] [PubMed]
- Shapkin, N.P.; Panasenko, A.E.; Khal’chenko, I.G.; Pechnikov, V.S.; Maiorov, V.Y.; Maslova, N.V.; Razov, V.I.; Papynov, E.K. Synthesis and characterization of new hybrid materials based on vermiculite and polyaniline. Russ. J. Inorg. Chem. 2020, 65, 1614–1622. [Google Scholar] [CrossRef]
- Sivaiah, M.V.; Kumar, S.S.; Venkatesan, K.A.; Sasidhar, P.; Krishna, R.M.; Murthy, G.S. Sorption of Strontium on Zirconia Modified Vermiculite. J. Nucl. Radiochem. Sci. 2004, 5, 33–36. [Google Scholar] [CrossRef]
- Adjei, J.K.; Ofori, A.; Megbenu, H.K.; Ahenguah, T.; Boateng, A.K.; Adjei, G.A.; Bentum, J.K.; Essumang, D.K. Health risk and source assessment of semi-volatile phenols, p-chloroaniline and plasticizers in plastic packaged (sachet) drinking water. Sci. Total Environ. 2021, 797, 149008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, Y.; Zhao, W.; Li, Y. Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism. R. Soc. Open Sci. 2018, 5, 181013. [Google Scholar] [CrossRef]
- Garipov, I.; Khaydarov, R.; Gapurova, O.; Khaydarov, R.; Evgrafova, S. The Application of Fiber Ion Exchange Sorbents for Wastewater Treatment and Purification of Gas Mixtures. J. Energy Environ. Chem. Eng. 2020, 5, 10. [Google Scholar] [CrossRef]
- Medeiros, M.d.A.; Sansiviero, M.T.; Araújo, M.H.; Lago, R.M. Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal. Appl. Clay Sci. 2009, 45, 213–219. [Google Scholar] [CrossRef]
- Han, B.; He, B.; Geng, R.; Zhao, X.; Li, P.; Liang, J.; Fan, Q. Ni(II) sorption mechanism at the vermiculite-water interface: Effects of interlayer. J. Mol. Liq. 2019, 274, 362–369. [Google Scholar] [CrossRef]
- Moraes, D.S.; Rodrigues, E.M.; Lamarão, C.N.; Marques, G.T.; Rente, A.F. New sodium activated vermiculite process. Testing on Cu2+ removal from tailing dam waters. J. Hazard. Mater. 2019, 366, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Hashem, F.S.; Amin, M.S.; El-Gamal, S.M.A. Chemical activation of vermiculite to produce highly efficient material for Pb2+ and Cd2+ removal. Appl. Clay Sci. 2015, 115, 189–200. [Google Scholar] [CrossRef]
- Balgysheva, B.; Massalimov, I.; Urakaev, F.; Sassykova, L.; Zhakirova, N.; Boranbayeva, G.; Dalabayeva, N.; Azatkyzy, S. Modified vermiculite of the mugodzhary deposit and its sorption properties. J. Chem. Technol. Metall. 2022, 57, 533–544. [Google Scholar]
- GOST 20255.1-89; Ionites. Method for Determining Static Exchange Capacity. Standartinform: Moscow, Russia, 2002; 5p. Available online: https://allgosts.ru/71/100/gost_20255.1-89?utm_source (accessed on 9 May 2025).
- Murzakasymova, N.S.; Bektenov, N.A.; Serebriakov, K.V.; Yelkin, E.S.; Gavrilenko, M.A. Control for selective sorption of heavy metals cations with anion exchanger AB-17-8 by modifying the surface with citrate groups. Mendeleev Commun. 2024, 34, 755–757. [Google Scholar] [CrossRef]
- Ergozhin, E.E.; Bektenov, N.A.; Arup, K. Sorption of ions strontium with new complex-forming ionites on the basis of epoxyacrylates and complexones. News of the Academy of sciences of the Republic of Kazakhstan. Ser. Chem. Technol. 2018, 1, 6–11. [Google Scholar]
- Zhang, B.; Gao, B.; Ma, W.; Mo, Z.; Song, Y.; Xie, S.; Jiang, F.; Hu, X. Adsorption of uranium(VI) by natural vermiculite: Isotherms, kinetic, thermodynamic and mechanism studies. J. Environ. Radioact. 2023, 270, 107305. [Google Scholar] [CrossRef] [PubMed]
- Kambarova, E.A.; Murzakasymova, N.S.; Bektenov, N.A. Investigation of the Possibility of Purifying Wastewater from Metal Ions Using New Sorbents. Problems of Geology and Subsurface Development. In Proceedings of the XXIV International Symposium Named after Academician M. A. Usov for Students and Young Scientists, Dedicated to the 75th Anniversary of Victory in the Great Patriotic War, Tomsk, Russia, 6–10 April 2020; Volume 2, pp. 348–350. Available online: https://earchive.tpu.ru/bitstream/11683/62754/1/conference_tpu-2020-C11_V2_p348-350.pdf (accessed on 9 May 2025).
- Deivasigamani, P.; Kumar, P.S.; Sundaraman, S.; Soosai, M.R.; Renita, A.A.; Karthikeyan, M.; Bektenov, N.; Baigenzhenov, O.; Venkatesan, D.; Kumar, A. Deep insights into kinetics, optimization and thermodynamic estimates of methylene blue adsorption from aqueous solution onto coffee husk (Coffee arabica) activated carbon. Environ. Res. 2023, 236, 116735. [Google Scholar] [CrossRef] [PubMed]
- Bektenov, N.; Baidullayeva, A.; Chalov, T.; Jumadilov, T.; Kanat, S. Modified Adsorbents Based on Glycidyl Methacrylate Copolymers for the Removal of Copper and Lead Ions from Wastewater. Eng. Sci. 2024, 31, 1237. [Google Scholar] [CrossRef]
- Sarı, A.; Saleh, T.A.; Tuzen, M. Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surf. Interfaces 2021, 27, 101504. [Google Scholar] [CrossRef]
- da Fonseca, M.G.; de Oliveira, M.M.; Arakaki, L.N.; Espinola, J.G.; Airoldi, C. Natural vermiculite as an exchanger support for heavy cations in aqueous solution. J. Colloid Interface Sci. 2005, 285, 50–55. [Google Scholar] [CrossRef]
- Prakash, N.; Soundarrajan, M.; Vendan, S.A.; Sudha, P.N.; Renganathan, N.G. Contemplating the feasibility of vermiculate blended chitosan for heavy metal removal from simulated industrial wastewater. Appl. Water Sci. 2017, 7, 4207–4218. [Google Scholar] [CrossRef]
- Suručić, L.; Janjić, G.; Marković, B.; Tadić, T.; Vuković, Z.; Nastasović, A.; Onjia, A. Speciation of Hexavalent Chromium in Aqueous Solutions Using a Magnetic Silica-Coated Amino-Modified Glycidyl Methacrylate Polymer Nanocomposite. Materials 2023, 16, 2233. [Google Scholar] [CrossRef]
- Wen, D.; Xie, C.; Zhang, M.; Dong, Z.; Zhai, M.; Zhao, L. DOPO-Modified Cellulose Microsphere: Preparation and Application for Selective Adsorption U(VI) under Acidic Solutions. Res. Sq. 2021. Preprint. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, J.; Jin, X.; Wan, L.; Wang, Y.; Chen, H.; Shan, W.; Xiong, Y. Brown algae based new sorption material for fractional recovery of molybdenum and rhenium from wastewater. Chem. Eng. J. 2015, 273, 231–239. [Google Scholar] [CrossRef]
- Marković, B.M.; Vuković, Z.M.; Spasojevic, V.; Kusigerski, V.; Pavlović, V.; Onjia, A.; Nastasović, A.B. Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption. J. Alloys Compd. 2017, 705, 38–50. [Google Scholar] [CrossRef]
- Batueva, T.; Scherban, M.; Kondrashova, N.; Chekanova, L. Sorption of rhenium (VII) and molybdenum (VI) by modified mesoporous silicas. Sep. Sci. Technol. 2021, 57, 532–541. [Google Scholar] [CrossRef]
- Joo, S.-H.; Kim, Y.-U.; Kang, J.-G.; Kumar, J.R.; Yoon, H.-S.; Parhi, P.K.; Shin, S.M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53, 2034–2037. [Google Scholar] [CrossRef]
- Pechishcheva, N.; Korobitsyna, A.; Ordinartsev, D.; Zaitceva, P.; Melchakova, O.; Estemirova, S. Effective simultaneous separation of copper (II) and molybdenum (VI) from rhenium (VII) by adsorption on X-alumina. Sep. Sci. Technol. 2021, 57, 180–191. [Google Scholar] [CrossRef]
Sorbent | Microwave Power (W) | Duration (min) | Yield (%) | SEC by 0.1 N sol. HCl, mg-eq/g |
---|---|---|---|---|
Vermiculite–GMA–ACN–H3PO4 | 300 | (2 times by 3 min) total 10 min | 80 | 5.91 |
Sample No. | Initial Concentration (mg/L) | Final Concentration (mg/L) | Sorption Capacity (mg/g) | Extraction Rate (%) |
---|---|---|---|---|
1 | 25.4 | 0.75 | 9.86 | 97 |
2 | 50.6 | 1.90 | 19.48 | 96 |
3 | 75.2 | 3.36 | 28.74 | 95 |
4 | 100.3 | 5.09 | 38.08 | 94 |
5 | 125.5 | 26.0 | 39.80 | 79 |
Sample No. | Concentration of Given Solutions, mg/L | Cinit.: Before Sorption, mg/L | Cfinal: After Sorption, mg/L | Sorption Capacity (SC), mg/g | Extraction Rate (R), % |
---|---|---|---|---|---|
1 | 25.0 | 25.2 | 0.11 | 10.04 | 99 |
2 | 50.0 | 50.3 | 1.02 | 19.71 | 98 |
3 | 75.0 | 75.1 | 1.61 | 29.40 | 98 |
4 | 100.0 | 100.1 | 4.09 | 38.40 | 96 |
5 | 125.0 | 125.2 | 27.55 | 39.06 | 78 |
Chemical Solution | Vermiculite–GMA–ACN–H3PO4 | Chemical Stability, % | |
---|---|---|---|
SEC by 0.1 N sol. HCl, mg-eq/g (Before) | SEC by 0.1 N sol. HCl, mg-eq/g (After) | ||
5 N solution of NaOH | 5.91 | 5.56 | 94.1 |
5 N solution of H2SO4 | 5.91 | 5.35 | 90.5 |
1 N solution of HNO3 | 5.91 | 5.66 | 95.8 |
10% solution of H2O2 | 5.91 | 5.63 | 95.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bektenov, N.; Sadykov, K.; Baidullayeva, A.; Chinibayeva, N.; Chalov, T.; Koszhanova, G.; Kambarova, E. Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions. Processes 2025, 13, 1584. https://doi.org/10.3390/pr13051584
Bektenov N, Sadykov K, Baidullayeva A, Chinibayeva N, Chalov T, Koszhanova G, Kambarova E. Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions. Processes. 2025; 13(5):1584. https://doi.org/10.3390/pr13051584
Chicago/Turabian StyleBektenov, Nesipkhan, Kanat Sadykov, Ainash Baidullayeva, Nurzhan Chinibayeva, Tulegen Chalov, Gulim Koszhanova, and Elmira Kambarova. 2025. "Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions" Processes 13, no. 5: 1584. https://doi.org/10.3390/pr13051584
APA StyleBektenov, N., Sadykov, K., Baidullayeva, A., Chinibayeva, N., Chalov, T., Koszhanova, G., & Kambarova, E. (2025). Vermiculite Modified with Glycidyl Methacrylate, Acrylonitrile, and Phosphoric Acid for the Adsorption of Molybdenum and Rhenium Ions from Aqueous Solutions. Processes, 13(5), 1584. https://doi.org/10.3390/pr13051584