Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Site of the Experiment
2.2. Field Experiments and Irrigation Management
2.3. Soil Physicochemical Properties
2.4. Vegetation Observation and Analysis
2.5. Statistics
3. Results
3.1. Precipitation and Irrigation
3.2. Density of Bulk Soil and Moisture Content of Soil
3.3. Spatial Distributions of EC and pH
3.4. Spatial Distributions of Soil Ions
3.5. SAR and ESP
3.6. Correlations Between Soil Physicochemical Properties
3.7. Plant Responses
4. Discussion
4.1. Changes in Soil Salinity
4.2. Changes in Soil Physicochemical Properties During the Desalination Process
4.3. Correlations Between Plant Growth and Soil Physicochemical Properties
4.4. Recommendations for the Improved Implementation of Summer Afforestation and Multi-Stage Drip Irrigation
- (1)
- Maintaining the soil moisture potential (SMP) at a depth of 0.2 m directly beneath the drip emitters at −5 and −10 kPa during Stage I and II has proven effective in the restoration of saline–sodic soils, facilitating frequent irrigation and salt leaching. For subsequent phases, we recommend targeting SMP values of −20 and −45 kPa, considering the necessity for reduced irrigation frequency, which supports root system development, thereby enhancing soil water retention and improving the utilization of rainfall resources.
- (2)
- An irrigation quantity of 6 mm was found to be inadequate to meet plant demands during the rainfed phase (Stage IV). Therefore, it is advisable to implement a higher irrigation volume (e.g., 10 mm), which should be adjusted according to the SMP levels.
- (3)
- It is noteworthy that the pH value of coastal saline soils increased during the remediation process. During these processes, the addition of industrial phosphoric acid to the irrigation water is essential to create a favorable soil environment for plant growth. Furthermore, applying mulch during planting is recommended, as it helps minimize soil evaporation and reduces salt accumulation in the upper layers of the soil.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birka, W.; Edward, S.; Veronika, D.; Boris, V.; Thomas, G.; Wim, T.; Andre, F. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 2011, 4, 2669–2681. [Google Scholar]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The threat of soil salinity: A european scale review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.; Wang, B.; Sun, Y.; Cui, G.; Liang, Z. Analysis of spatial-temporal variation of the saline-sodic soil in the west of jilin province from 1989 to 2019 and influencing factors. Catena 2022, 217, 106492. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, Z.; Huang, Z.; López-Vicente, M.; Zhao, J.; Ding, L.; Wu, G. Shrub encroachment in alpine meadows increases the potential risk of surface soil salinization by redistributing soil water. Catena 2022, 219, 106593. [Google Scholar] [CrossRef]
- Carillo, P.; Cirillo, C.; De Micco, V.; Arena, C.; De Pascale, S.; Rouphael, Y. Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. Trained to different canopy shapes. Agric. Water Manag. 2019, 212, 12–22. [Google Scholar] [CrossRef]
- Han, X.; Kang, Y.; Wan, S.; Li, X. Effect of salinity on oleic sunflower (Helianthus Annuus Linn.) Under drip irrigation in arid area of northwest china. Agric. Water Manag. 2022, 259, 107267. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Goussi, R.; Manaa, A.; Derbali, W.; Cantamessa, S.; Abdelly, C.; Barbato, R. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in the llungiella salsuginea. J. Photochem. Photobiol. B Biol. 2018, 183, 275–287. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Wan, S.; Chen, X.; Chu, L. Reclamation of very heavy coastal saline soil using drip-irrigation with saline water on salt-sensitive plants. Soil Tillage Res. 2015, 146, 159–173. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X. Using saline water drip irrigation and soil matric potential control for tree establishment in coastal saline soil. Ecol. Eng. 2021, 170, 106337. [Google Scholar] [CrossRef]
- Zhu, W.; Kang, Y.; Li, X.; Wan, S.; Dong, S. Changes in understory vegetation during the reclamation of saline-alkali soil by drip irrigation for shelterbelt establishment in the hetao irrigation area of China. Catena 2022, 214, 106247. [Google Scholar] [CrossRef]
- Zhu, W.; Li, X.; Dong, S.; Kang, Y.; Cui, G.; Miao, J.; Li, E. Planting trees in saline soil using ridge cultivation with drip irrigation in an arid region of china. Land Degrad. Dev. 2022, 33, 1184–1192. [Google Scholar] [CrossRef]
- Chen, M.; Kang, Y.; Wan, S.; Liu, S. Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agric. Water Manag. 2009, 96, 1766–1772. [Google Scholar] [CrossRef]
- Wan, S.; Kang, Y.; Wang, D.; Liu, S. Effect of saline water on cucumber (Cucumis sativus L.) Yield and water use under drip irrigation in north China. Agric. Water Manag. 2010, 98, 105–113. [Google Scholar] [CrossRef]
- Dong, S.; Wang, G.; Kang, Y.; Ma, Q.; Wan, S. Soil water and salinity dynamics under the improved drip-irrigation scheduling for ecological restoration in the saline area of yellow river basin. Agric. Water Manag. 2022, 264, 107255. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Wan, S.; Chen, X.; Liu, S.; Xu, J. Response of a salt-sensitive plant to processes of soil reclamation in two saline–sodic, coastal soils using drip irrigation with saline water. Agric. Water Manag. 2016, 164, 223–234. [Google Scholar] [CrossRef]
- Sun, J.; Kang, Y.; Wan, S.; Hu, W.; Jiang, S.; Zhang, T. Soil salinity management with drip irrigation and its effects on soil hydraulic properties in north china coastal saline soils. Agric. Water Manag. 2012, 115, 10–19. [Google Scholar] [CrossRef]
- Spring and Its Impact on Agriculture: A Complete Guide for Farmers. Available online: https://agronoblog.com/agriculture/ (accessed on 4 May 2025).
- Liu, Y.; Jia, Z.; Gu, L.; Gao, J. Vertical and lateral uprooting resistance of salix matsudana koidz in a riparian area. For. Chron. 2013, 89, 162–168. [Google Scholar] [CrossRef]
- Ohte, N.; Koba, K.; Yoshikawa, K.; Sugimoto, A.; Matsuo, N.; Kabeya, N.; Wang, L.H. Water utilization of natural and planted trees in the semiarid desert of inner mongolia, china. Ecol. Appl. 2003, 13, 337–351. [Google Scholar] [CrossRef]
- Sha, Y.; Hu, N.; Wang, Y.; Chen, S.; Zou, C.; Dai, Z.; Zhang, H.; Ding, D. Enhanced phytoremediation of uranium contaminated soil by artificially constructed plant community plots. J. Environ. Eng. 2019, 208, 106036. [Google Scholar] [CrossRef]
- Wang, G.X.; Su, X.S.; Zhang, Y.; Gong, X.L.; Yu, J.; Gou, F.G.; Lv, H.; Wang, Y.Q. Characteristics of Temporal and Spatial Distribution of Salinity in Saline Soil and its Main Influencing Facing Factors in Xuwei New District of Liangyungang. Saf. Environ. Eng. 2021, 28, 16–24. [Google Scholar]
- Ditzler, C.; Scheffe, K.; Monger, H.C. Soil Survey Manual; Government Printing Office: Washington, DC, USA, 2017; p. 639.
- Nelson, D.W.; Sommers, L. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy, Inc.: Madison, WI, USA, 1983; Volume 9, pp. 539–579. [Google Scholar]
- Tecon, R.; Or, D. Biophysical processes supporting the diversity of microbial life in soil. Fems Microbiol. Rev. 2017, 41, 599–623. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Wei, B.; Xu, X.; Engel, B.; Li, G.; Huang, Q.; Xiong, Y.; Huang, G. Analyzing spatiotemporal characteristics of soil salinity in arid irrigated agro-ecosystems using integrated approaches. Geoderma 2019, 356, 113935. [Google Scholar] [CrossRef]
- Cary, J.W.; Mayland, H.F. Salt and water movement in unsaturated frozen soil. Soil Sci. Soc. Am. J. 1972, 36, 549–555. [Google Scholar] [CrossRef]
- Liu, Z.P.; Feng, S.Y.; Zhang, D.Q.; Han, Y.P.; Cao, R.X. Effects of precipitation, irrigation, and exploitation on groundwater geochemical evolution in the people’s victory canal irrigation area, china. Appl. Water Sci. 2023, 13, 1. [Google Scholar] [CrossRef]
- Selim, T.; Bouksila, F.; Berndtsson, R.; Persson, M. Soil Water Salinity Distribution under Different Treatments of Drip Irrigation. Soil Sci. Soc. Am. J. 2013, 77, 1144–1156. [Google Scholar] [CrossRef]
- Zhang, T.; Dong, Q.G.; Zhan, X.; He, J.; Feng, H. Moving salts in an impermeable saline-sodic soil with drip irrigation to permit wolfberry production. Agric. Water Manag. 2019, 213, 636–645. [Google Scholar] [CrossRef]
- Dong, S.; Wan, S.; Kang, Y.; Li, X. Prospects of using drip irrigation for ecological conservation and reclaiming highly saline soils at the edge of yinchuan plain. Agric. Water Manag. 2020, 239, 106255. [Google Scholar] [CrossRef]
- Li, X.B.; Kang, Y.H. Agricultural utilization and vegetation establishment on saline-sodic soils using a water–salt regulation method for scheduled drip irrigation. Agric. Water Manag. 2020, 231, 105995. [Google Scholar] [CrossRef]
- Li, Q.F.; Kong, F.L.; Xi, M.; Li, Y. Leaching of soil salt with different leaching water volumes in aquaculture ponds of Jiaozhou Bay Chin. J. Ecol. 2018, 37, 1127–1134. [Google Scholar]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (i): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Sreenivas, C.; Reddy, C.K. Salinity–sodicity relationships of the kalipatnam drainage pilot area, godavari western delta, india. Irrig. Drain. 2008, 57, 533–544. [Google Scholar] [CrossRef]
- Xia, J.; Ren, J.; Zhang, S.; Wang, Y.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the yellow river delta, china. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Liu, S.L.; Hou, X.Y.; Yang, M.; Cheng, F.Y.; Coxixo, A.; Wu, X.; Zhang, Y.Q. Factors driving the relationships between vegetation and soil properties in the yellow river delta, china. Catena 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Li, L.; Zhu, T.; Liu, J.; Zhao, C.; Li, L.; Chen, M. An orthogonal test of the effect of no3−, po43−, k+, and ca2+ on the growth and ion absorption of Elaeagnus angustifolia L. Seedlings under salt stress. Acta Physiol. Plant. 2019, 41, 179. [Google Scholar] [CrossRef]
- Feng, X.H.; An, P.; Guo, K.; Li, X.G.; Liu, X.J.; Zhang, X.M. Growth, root compensation and ion distribution in Lycium chinense under heterogeneous salinity stress. Sci. Hortic. 2017, 226, 24–32. [Google Scholar] [CrossRef]
Chemical Index | Mean | Standard Deviation | Minimum | Maximum | Median | Coefficient of Variation/(%) |
---|---|---|---|---|---|---|
Organic matter (g kg−1) | 5.46 | 2.85 | 2.79 | 11.00 | 4.52 | 52.12% |
Cation exchange capacity (cmol·kg−1) | 18.07 | 5.44 | 6.70 | 25.40 | 19.45 | 30.11% |
Available P (mg kg−1) | 6.30 | 2.31 | 2.90 | 10.20 | 5.65 | 36.58% |
Available K (mg kg−1) | 184.10 | 183.94 | 43.00 | 586.00 | 101.50 | 99.91% |
Alkali hydrolyzable nitrogen (mg kg−1) | 52.19 | 10.85 | 37.00 | 71.70 | 49.85 | 20.78% |
pH | 7.92 | 0.15 | 7.36 | 8.57 | 7.90 | 2.00% |
Electrical conductivity (dS m−1) | 22.44 | 16.71 | 0.60 | 71.76 | 24.44 | 75.00% |
EC (dS m−1) | pH | Content of Ions (g L−1) | SAR (mmol L−1)0.5 | ||||
---|---|---|---|---|---|---|---|
Ca2+ | K+ | Mg2+ | Na+ | SO42− | |||
0.35 | 7.58 | 1.07 | 1.01 | 0.47 | 1.21 | 3.01 | 0.97 |
Index | Soil Depth (cm) | Sep. 2021 | Oct. 2021 | Mar. 2022 | Oct. 2022 | Mar. 2023 |
---|---|---|---|---|---|---|
SAR (mmol L−1)0.5 | 0–10 | 15.00 ± 4.65 | 6.45 ± 1.81 | 3.96 ± 0.78 | 0.92 ± 0.32 | 2.06 ± 0.36 |
10–20 | 18.21 ± 3.18 | 7.65 ± 1.74 | 5.27 ± 0.54 | 1.80 ± 0.41 | 2.26 ± 0.23 | |
20–40 | 18.44 ± 2.76 | 6.07 ± 1.65 | 8.34 ± 2.09 | 1.75 ± 0.65 | 7.46 ± 2.03 | |
40–60 | 18.36 ± 0.69 | 6.54 ± 1.19 | 4.39 ± 0.14 | 1.28 ± 0.04 | 10.34 ± 0.61 | |
60–140 | 19.26 ± 3.06 | 10.12 ± 1.79 | 5.30 ± 0.68 | 2.86 ± 0.44 | 11.52 ± 0.32 | |
ESP | 0–10 | 0.64 ± 0.09 | 0.64 ± 0.05 | 0.58 ± 0.03 | 0.31 ± 0.11 | 0.53 ± 0.04 |
10–20 | 0.68 ± 0.04 | 0.72 ± 0.03 | 0.68 ± 0.01 | 0.48 ± 0.06 | 0.55 ± 0.02 | |
20–40 | 0.69 ± 0.02 | 0.56 ± 0.08 | 0.71 ± 0.04 | 0.48 ± 0.08 | 0.75 ± 0.04 | |
40–60 | 0.68 ± 0.02 | 0.50 ± 0.04 | 0.61 ± 0.10 | 0.41 ± 0.06 | 0.77 ± 0.05 | |
60–140 | 0.67 ± 0.02 | 0.59 ± 0.02 | 0.57 ± 0.12 | 0.56 ± 0.03 | 0.78 ± 0.05 |
Date of Determination | Growth Indicators of Salix matsudana | ||
---|---|---|---|
Survival Rate (%) | BD (cm) | GD (cm) | |
Sep. 2021 | 100 | 9.05 ± 0.12 | 10.26 ± 0.91 |
Dec. 2021 | 97 | 9.12 ± 0.19 | 10.35 ± 0.91 |
Feb. 2022 | 96 | 9.27 ± 0.25 | 10.57 ± 0.92 |
May 2022 | 94 | 9.33 ± 0.23 | 10.67 ± 0.96 |
Jul. 2022 | 93 | 9.51 ± 0.23 | 10.85 ± 0.94 |
Oct. 2022 | 91 | 9.63 ± 0.21 | 11.00 ± 0.98 |
Dec. 2022 | 91 | 9.68 ± 0.23 | 11.17 ± 1.06 |
Mar. 2023 | 91 | 9.75 ± 0.22 | 11.26 ± 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, L.; Ma, R.; Chen, D. Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils. Agronomy 2025, 15, 1192. https://doi.org/10.3390/agronomy15051192
Chu L, Ma R, Chen D. Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils. Agronomy. 2025; 15(5):1192. https://doi.org/10.3390/agronomy15051192
Chicago/Turabian StyleChu, Linlin, Rong Ma, and Dan Chen. 2025. "Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils" Agronomy 15, no. 5: 1192. https://doi.org/10.3390/agronomy15051192
APA StyleChu, L., Ma, R., & Chen, D. (2025). Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils. Agronomy, 15(5), 1192. https://doi.org/10.3390/agronomy15051192