Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sorbent Preparation
2.3. Characterization of the AMCCS Sorbent
2.4. Column Adsorption Experiments
2.5. Recycling of Column Adsorbent and Reuse Studies
3. Results and Discussion
3.1. Adsorption Column Performance for DI Water
3.2. Adsorption Column Performance for Synthetic Solution
3.3. Adsorption Capacity of AMCCS Adsorption Column
Adsorbent Name | Fluoride in Column Influent (mg/L) | Column Flow Rate (mL/min) | Column Adsorption Capacity qm (mg/kg) | Adsorbent BET Surface Area (m2/g) | Surface-Normalized Column Adsorption Capacity (µg/m2) | Reference |
---|---|---|---|---|---|---|
Aluminum–Magnesium–Calcium-coated sand | 5 | 10 | 401 | 1.255 | 319.5 | Current work |
Activated alumina | 5 | 20 | 1450 | 250 | 5.8 | [24] |
(PCZH)-complexed PVA hydrogel bead Copper−zirconium | 10 | 0.5 | 10,430 | 1.95 | 5349 | [36] |
Hydrous ferric oxide | 30 | 20.5 | 6710 | 148 | 45.3 | [39] |
Kanuma mud | 20 | 5 | 585 | 144 | 4.06 | [43] |
Al(OH)3@AC | 10 | 7.5 | 41,840 | 20 | 2092 | [37] |
Aluminum-modified zeolite | 10 | 1 | 3240 | - | - | [38] |
Red mud | 5 | 5 | 1490 | 10.2 | 146.1 | [47] |
Magnesia–pullulan composite | 10 | 16 | 16,600 | 32.89 | 504.7 | [11] |
3.4. Column Adsorption Modeling
3.5. Column Recycling and Reuse
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatnagar, M.; Rao, P.; Saxena, A.; Bhatnagar, R.; Meena, P.; Barbar, S.; Chouhan, A.; Vimal, S. Biochemical changes in brain and other tissues of young adult female mice from fluoride in their drinking water. Fluoride 2006, 39, 280–284. [Google Scholar]
- Srivastava, S.; Flora, S.J. Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Curr. Environ. Health Rep. 2020, 7, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kumar Malay, D.; Salim, A.J. Comparative study of batch adsorption of fluoride using commercial and natural adsorbent. Res. J. Chem. Sci. 2011, 1, 68–75. [Google Scholar]
- Baba, A.; Tayfur, G. Groundwater contamination and its effect on health in Turkey. Environ. Monit. Assess. 2011, 183, 77–94. [Google Scholar] [CrossRef]
- Peckham, S.; Awofeso, N. Water fluoridation: A critical review of the physiological effects of ingested fluoride as a public health intervention. Sci. World J. 2014, 2014, 293019. [Google Scholar] [CrossRef]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Khan, S.A.; Kumar, A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environ. Int. 2018, 111, 80–108. [Google Scholar] [CrossRef]
- National Research Council. Fluoride in Drinking Water: A Scientific Review of EPA’s Standards; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 1993; Volume 1, pp. 45–46. [Google Scholar]
- Ye, Y.; Yang, J.; Jiang, W.; Kang, J.; Hu, Y.; Ngo, H.H.; Guo, W.; Liu, Y. Fluoride removal from water using a magnesia-pullulan composite in a continuous fixed-bed column. J. Environ. Manag. 2018, 206, 929–937. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services Federal Panel on Community Water Fluoridation. U.S. Public Health Service Recommendation for Fluoride Concentration in Drinking Water for the Prevention of Dental Caries; Public Health Reports; U.S. Department of Health and Human Services Federal Panel on Community Water Fluoridation: Washington, DC, USA, 2015; Volume 130, pp. 318–331. [CrossRef]
- Ahmad, S.; Ali, S.; Modaresahmadi, K.; Singh, R.; Neeti, K. Fluoride Contamination, Health Effects, and Defluoridation Techniques in Groundwater-Dependent Developing Countries. In Groundwater in Developing Countries: Case Studies from MENA, Asia and West Africa; Springer Nature: Cham, Switzerland, 2025; pp. 1–45. [Google Scholar] [CrossRef]
- Meenakshi, T.; Maheshwari, R.C. Fluoride in drinking water and its removal. J. Hazard. Mater. 2006, 137, 456–463. [Google Scholar] [CrossRef]
- Vasudevan, S.; Kannan, B.S.; Lakshmi, J.; Mohanraj, S.; Sozhan, G. Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. J. Chem. Technol. Biotechnol. 2011, 86, 428–436. [Google Scholar] [CrossRef]
- Fadaei, A. Comparison of water defluoridation using different techniques. Int. J. Chem. Eng. 2021, 1, 2023895. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; Wu, Z.; Xie, C.; Zhang, K.; Kong, L.; Liu, J. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 2020, 8, 104516. [Google Scholar] [CrossRef]
- Modaresahmadi, K.; Khodadoust, A.P.; Wescott, J. Adsorption of fluoride from water using aluminum-coated silica adsorbents: Comparison of silica sand and microcrystalline silica. Separations 2024, 11, 125. [Google Scholar] [CrossRef]
- Modaresahmadi, K.; Khodadoust, A.P.; Wescott, J. Defluoridation of water using Cu-Mg binary-metal-oxide-coated sand. Water 2024, 16, 2178. [Google Scholar] [CrossRef]
- Chi, Y.; Chen, Y.; Hu, C.; Wang, Y.; Liu, C. Preparation of Mg-Al-Ce triple-metal composites for fluoride removal from aqueous solutions. J. Mol. Liq. 2017, 242, 416–422. [Google Scholar] [CrossRef]
- Wang, M.; Yu, X.; Yang, C.; Yang, X.; Lin, M.; Guan, L.; Ge, M. Removal of fluoride from aqueous solution by Mg-Al-Zr triple-metal composite. Chem. Eng. J. 2017, 322, 246–253. [Google Scholar] [CrossRef]
- Modaresahmadi, K.; Khodadoust, A.P.; Wescott, J. Adsorption of fluoride from water using aluminum coated sand: Kinetics, equilibrium, effect of pH, and coexisting ions. J. Geosci. Environ. Prot. 2022, 10, 224–241. [Google Scholar] [CrossRef]
- Ghorai, S.; Pant, K.K. Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chem. Eng. J. 2004, 98, 165–173. [Google Scholar] [CrossRef]
- López Valdivieso, A.; Reyes Bahena, J.L.; Song, S.; Herrera Urbina, R. Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface. J. Colloid Interface Sci. 2006, 298, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kamble, S.P.; Deshpande, G.; Barve, P.P.; Rayalu, S.; Labhsetwar, N.K.; Malyshew, A.; Kulkarni, B.D. Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: Batch and continuous operation. Desalination 2010, 264, 15–23. [Google Scholar] [CrossRef]
- Salifu, A.; Petrusevski, B.; Ghebremichael, K.L.; Modestus, L.; Buamah, R.; Aubry, C.; Amy, G.L. Aluminum (hydr)oxide coated pumice for fluoride removal from drinking water: Synthesis, equilibrium, kinetics and mechanism. Chem. Eng. J. 2013, 228, 63–74. [Google Scholar] [CrossRef]
- Modaresahmadi, K.; Khodadoust, A.P.; Wescott, J. Adsorption of fluoride from water using Al–Mg–Ca ternary metal oxide-coated sand. Water Supply 2023, 23, 4699–4713. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of drinking water using adsorption processes. J. Hazard. Mater. 2013, 248–249, 1–19. [Google Scholar] [CrossRef]
- Wallace, A.R.; Su, C.; Choi, Y.-K.; Kan, E.; Sun, W. Removal of fluoride from water using a calcium-modified dairy manure-derived biochar. J. Environ. Eng. 2020, 146, 04020128. [Google Scholar] [CrossRef]
- Waghmare, S.S.; Arfin, T. Fluoride removal from water by calcium materials: A state-of-the-art review. Int. J. Innov. Res. Sci. Eng. Technol. 2015, 4, 8090–8102. [Google Scholar] [CrossRef]
- Mondal, N.K.; Bhaumik, R.; Datta, J.K. Fluoride adsorption by calcium carbonate, activated alumina and activated sugarcane ash. Environ. Process. 2016, 3, 195–216. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Lv, X.; Lv, G.; Wang, J.; Zhang, J. Ca-Fe mixed metal oxide adsorbent prepared via a novel coprecipitator for efficient fluoride adsorption. J. Chin. Chem. Soc. 2022, 69, 1669–1679. [Google Scholar] [CrossRef]
- Iwar, R.T.; Ogedengbe, K.; Ugwudike, B.O. Groundwater fluoride removal by novel activated carbon/aluminium oxide composite derived from raffia palm shells: Optimization of batch operations and field-scale point of use system evaluation. Results Eng. 2022, 14, 100407. [Google Scholar] [CrossRef]
- Anas, M.; Rafique, T.; Soomro, F.; Ali, S.N. Fluoride removal from drinking water using alumina adsorbent: Batch and column experiments and working efficiency of engineered pilot plant. Desalination Water Treat. 2021, 221, 94–104. [Google Scholar] [CrossRef]
- Mani, S.K.; Bhandari, R. Efficient fluoride removal by a fixed-bed column of self-assembled Zr(IV)-, Fe(III)-, Cu(II)-complexed polyvinyl alcohol hydrogel beads. ACS Omega 2022, 7, 15048–15063. [Google Scholar] [CrossRef] [PubMed]
- Bakhta, S.; Sadaoui, Z.; Bouazizi, N.; Samir, B.; Cosme, J.; Allalou, O.; Le Derf, F.; Vieillard, J. Successful removal of fluoride from aqueous environment using Al(OH)3@AC: Column studies and breakthrough curve modeling. RSC Adv. 2024, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Teutli-Sequeira, A.; Solache-Ríos, M.; Martínez-Miranda, V.; Linares-Hernández, I. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process. Water Air Soil Pollut. 2015, 226, 239. [Google Scholar] [CrossRef]
- Nur, T.; Loganathan, P.; Nguyen, T.C.; Vigneswaran, S.; Singh, G.; Kandasamy, J. Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: Solution chemistry and modeling. Chem. Eng. J. 2014, 247, 93–102. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Q.; Krua, L.S.N.; Yi, R.; Zou, R.; Li, X.; Huang, P. Application progress of new adsorption materials for removing fluorine from Water. Water 2023, 15, 646. [Google Scholar] [CrossRef]
- Deng, Z.; Cheng, S.; Xu, N.; Zhang, X.; Pan, B. Pilot-scale field demonstration of environmental nanotechnology for groundwater defluoridation. ACS ES&T Eng. 2023, 3, 226–235. [Google Scholar] [CrossRef]
- APHA/AWWA/WEF 2018 Method 4500-F—Fluoride. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association; American Water Works Association; Water Environment Federation: Washington, DC, USA, 2018.
- Chen, N.; Zhang, Z.; Feng, C.; Li, M.; Chen, R.; Sugiura, N. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud. Desalination 2011, 268, 76–82. [Google Scholar] [CrossRef]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective removal of Fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. J. Fluor. Chem. 2017, 194, 40–50. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Radushkevich, L.V. Equation of the characteristic curve of activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 1947, 55, 331–333. [Google Scholar]
- Tor, A.; Danaoglu, N.; Arslan, G.; Cengeloglu, Y. Removal of fluoride from water by using granular red mud: Batch and column studies. J. Hazard. Mater. 2009, 164, 271–278. [Google Scholar] [CrossRef]
- Benefield, L.D.; Judkins, J.F.; Weand, B.L. Process Chemistry for Water and Wastewater Treatment; Prentice Hall: Englewood Cliffs, NJ, USA, 1982. [Google Scholar]
- Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944, 66, 1664–1666. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
Column Parameter | Value |
---|---|
adsorption column material | borosilicate glass |
height | 30 cm |
diameter | 2.5 cm |
volume | 147.3 cm3 |
pore volume | 61.3 cm3 |
flow rate | 10 mL/min, 2 mL/min |
linear velocity | 2.04 cm/min, 0.41 cm/min |
AMCCS bed height | 13 cm |
AMCCS bed volume | 63.83 cm3 |
AMCCS bed pore volume | 26.58 cm3 |
Parameter | Description |
---|---|
Vs | solution volume processed from column breakthrough to column exhaustion (mL) |
Qw | influent flow rate (mL/min) |
tz = Vs ÷ Qw | time for fluoride adsorption zone to travel the length of its adsorption zone height after being established (min) |
VE | solution volume processed until column exhaustion (mL) |
tE = VE ÷ Qw | time needed for adsorption zone to establish itself and exit the bed (min) |
hz | adsorption zone height (cm) |
h | column bed depth (cm) |
Uz = hz ÷ tz = h ÷ (tE − tf) | adsorption zone rate of travel within the column bed (cm/min) |
tf = (tz)(1 − F) C0 C VB | time needed for initial formation of fluoride adsorption zone (min) influent fluoride (mg/L) effluent fluoride (mg/L) solution volume processed at breakthrough (mL) |
VE Sz = ∫ (C0 − C)dV VB | removal of fluoride through the adsorption zone between breakthrough and column exhaustion (mg) |
Smax = (C0)(VE − VB) | maximum amount of fluoride that can be removed through the adsorption zone between breakthrough and column exhaustion (mg) |
F = Sz ÷ Smax | AMCCS sorbent fraction within the adsorption zone at breakthrough that still has the capacity to remove fluoride |
(100%)[h + (F − 1) hz] ÷ h | percentage saturation of AMCCS sorbent at breakthrough |
Column Eluent | qtotal (mg) | qe (mg/kg) | EBCT (min) | tz (h) | tE (h) | SZ (mg) | Smax (mg) | F | tf (h) | Uz (cm/h) | hz (cm) | Saturation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
DI water | 48 | 401 | 6.38 | 21.7 | 32 | 17.95 | 65 | 0.276 | 15.7 | 0.797 | 17.3 | 3.8% |
synthetic solution | 31.5 | 263 | 6.38 | 15 | 20 | 17.34 | 45 | 0.385 | 9.23 | 1.207 | 18.1 | 14.4% |
AMCCS Column | Influent Fluoride C0 (mg/L) | Column Flow Rate = Q (mL/min) | AMCCS Sorbent Mass = X (g) | KTh (L/mg.min) | Calculated Adsorption Capacity = q0 (mg/kg) | Experimental Adsorption Capacity (mg/kg) | R2 | % Error |
---|---|---|---|---|---|---|---|---|
DI water | 5 | 10 | 120 | 7.2 × 10−4 | 528 | 401 | 0.794 | 24 |
Synthetic solution | 5 | 10 | 120 | 1.02 × 10−3 | 282 | 263 | 0.800 | 7 |
AMCCS Sorbent Column (DI Water) | Adsorption Capacity (qm, mg/kg) | Breakthrough Point (min) | AMCCS Sorbent Column (Synthetic Solution) | Adsorption Capacity (qm, mg/kg) | Breakthrough Point (min) |
---|---|---|---|---|---|
Fresh Column | 401 | 620 | Fresh Column | 263 | 300 |
Re-coated Column | 424 | 740 | Re-coated Column | 289 | 380 |
2nd Re-coated Column | 388 | 660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modaresahmadi, K.; Khodadoust, A.P.; Wescott, J. Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study. Separations 2025, 12, 119. https://doi.org/10.3390/separations12050119
Modaresahmadi K, Khodadoust AP, Wescott J. Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study. Separations. 2025; 12(5):119. https://doi.org/10.3390/separations12050119
Chicago/Turabian StyleModaresahmadi, Kiana, Amid P. Khodadoust, and James Wescott. 2025. "Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study" Separations 12, no. 5: 119. https://doi.org/10.3390/separations12050119
APA StyleModaresahmadi, K., Khodadoust, A. P., & Wescott, J. (2025). Defluoridation of Water Using Al-Mg-Ca Ternary Metal Oxide-Coated Sand in Adsorption Column Study. Separations, 12(5), 119. https://doi.org/10.3390/separations12050119