Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = radiopharmaceutical biomarkers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4259 KiB  
Article
Towards Dual-Tracer SPECT for Prostate Cancer Imaging Using [99mTc]Tc-PSMA-I&S and [111In]In-RM2
by Carolina Giammei, Theresa Balber, Veronika Felber, Thomas Dillinger, Jens Cardinale, Marie R. Brandt, Anna Stingeder, Markus Mitterhauser, Gerda Egger and Thomas L. Mindt
Pharmaceuticals 2025, 18(7), 1002; https://doi.org/10.3390/ph18071002 - 3 Jul 2025
Viewed by 523
Abstract
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially [...] Read more.
Background/Objectives: Radiolabeled biomolecules specifically targeting overexpressed structures on tumor cells hold great potential for prostate cancer (PCa) imaging and therapy. Due to heterogeneous target expression, single radiopharmaceuticals may not detect or treat all lesions, while simultaneously applying two or more radiotracers potentially improves staging, stratification, and therapy of cancer patients. This study explores a dual-tracer SPECT approach using [111In]In-RM2 (targeting the gastrin-releasing peptide receptor, GRPR) and [99mTc]Tc-PSMA-I&S (targeting the prostate-specific membrane antigen, PSMA) as a proof of concept. To mimic heterogeneous tumor lesions in the same individual, we aimed to establish a dual xenograft mouse model for preclinical evaluation. Methods: CHO-K1 cells underwent lentiviral transduction for human GRPR or human PSMA overexpression. Six-to-eight-week-old female immunodeficient mice (NOD SCID) were subsequently inoculated with transduced CHO-K1 cells in both flanks, enabling a dual xenograft with similar target density and growth of both xenografts. Respective dual-isotope imaging and γ-counting protocols were established. Target expression was analyzed ex vivo by Western blotting. Results: In vitro studies showed similar target-specific binding and internalization of [111In]In-RM2 and [99mTc]Tc-PSMA-I&S in transduced CHO-K1 cells compared to reference lines PC-3 and LNCaP. However, in vivo imaging showed negligible tumor uptake in xenografts of the transduced cell lines. Ex vivo analysis indicated a loss of the respective biomarkers in the xenografts. Conclusions: Although the technical feasibility of a dual-tracer SPECT imaging approach using 111In and 99mTc has been demonstrated, the potential of [99mTc]Tc-PSMA-I&S and [111In]In-RM2 in a dual-tracer cocktail to improve PCa diagnosis could not be verified. The animal model, and in particular the transduced cell lines developed exclusively for this project, proved to be unsuitable for this purpose. The in/ex vivo experiments indicated that results from an in vitro model may not necessarily be successfully transferred to an in vivo setting. To assess the potential of this dual-tracer concept to improve PCa diagnosis, optimized in vivo models are needed. Nevertheless, our strategies address key challenges in dual-tracer applications, aiming to optimize future SPECT imaging approaches. Full article
Show Figures

Graphical abstract

16 pages, 1663 KiB  
Review
Advances in Molecular Imaging for Neuroendocrine Neoplasms
by Bradley Girod and Vikas Prasad
Cancers 2025, 17(12), 2013; https://doi.org/10.3390/cancers17122013 - 17 Jun 2025
Viewed by 501
Abstract
Neuroendocrine neoplasms (NENs) represent a heterogenous group of tumors with significant inter- and intra-patient variability. Once considered to be rare, neuroendocrine neoplasms are being increasingly recognized through the advent of advanced diagnostic techniques, which may be contributing to the significant increase in the [...] Read more.
Neuroendocrine neoplasms (NENs) represent a heterogenous group of tumors with significant inter- and intra-patient variability. Once considered to be rare, neuroendocrine neoplasms are being increasingly recognized through the advent of advanced diagnostic techniques, which may be contributing to the significant increase in the incidence and detection rate of these tumors. NENs can be classified into well differentiated and poorly differentiated neuroendocrine tumors (NETs) or neuroendocrine carcinomas (NECs). The proliferation rate of NETs can vary from Ki-67 1–55%. In addition, the SSTR expression can vary significantly. Because of this high “heterogeneity”, their detection and characterization have become essential to disease management, leading to dual-tracer imaging, most commonly with FDG- and SSTR-targeted PET/CT. Because of the complexity of the disease, the optimal treatment of patients depends on a combination of imaging, serological biomarkers, and clinical information. There remains a significant portion of patients who do not respond as anticipated, and the management of their disease remains challenging with current techniques, necessitating the refinement of our technologies and the development of new ones. In addition to new biological targets, improved peptide vector targeting for the somatostatin receptor needs further development. This review aims to evaluate the existing imaging techniques utilized in the diagnosis, assessment, and treatment of NENs, as well as the emerging radiopharmaceuticals and technologies, which will expand our imaging repertoire as well as our management options. Full article
(This article belongs to the Special Issue Current Advances in Management of Neuroendocrine Neoplasms)
Show Figures

Figure 1

17 pages, 2722 KiB  
Article
Immune Modulation During Treatment with Enzalutamide Alone or with Radium-223 in Patients with Castration Resistant Prostate Cancer
by Peter D. Zang, Diane M. Da Silva, Zhang-Xu Liu, Shivani Kandukuri, Denice Tsao-Wei, Anishka D’Souza, W. Martin Kast, Sumanta K. Pal, Cheryl Kefauver, Maribel Juanqueira, Lixin Yang, David I. Quinn and Tanya B. Dorff
Cancers 2025, 17(10), 1730; https://doi.org/10.3390/cancers17101730 - 21 May 2025
Viewed by 832
Abstract
Introduction: Prostate cancer has been generally resistant to immunotherapy approaches. Radiation can be immunostimulatory, but the extent to which standard prostate cancer treatments induce immune activation has not been well described. The bone-targeted radiopharmaceutical Radium223 (Ra223) has been proposed to enrich immune function, [...] Read more.
Introduction: Prostate cancer has been generally resistant to immunotherapy approaches. Radiation can be immunostimulatory, but the extent to which standard prostate cancer treatments induce immune activation has not been well described. The bone-targeted radiopharmaceutical Radium223 (Ra223) has been proposed to enrich immune function, but clinical studies have not fully delineated whether this is true, or by what mechanisms. Enzalutamide has been shown to increase PD-L1 expression on dendritic cells, which could impact immune activation, though the extent to which this is associated with other evidence of immune activation remains uncertain, and combination strategies remain of interest. We performed a randomized phase II trial to evaluate whether Radium223 (Ra223) added to enzalutamide would induce greater immune activation and clinical responses compared to enzalutamide alone in men with metastatic castration-resistant prostate cancer (mCRPC). Methods: Eligible patients were randomized 2:1 to Arm A (enzalutamide 160 mg PO daily + Ra223 55 kBq/kg IV q4 weeks × 6 doses) or Arm B (enzalutamide 160 mg PO daily). Blood was collected at treatment start and during treatment to measure soluble immune checkpoint biomarkers (BTLA, TIM3, HVEM, GITR, LAG3, PD-1, CTLA-4, PD-L1, PD-L2, ICOS). Immunophenotyping by mass cytometry time of flight (CyTOF) was performed to measure peripheral blood mononuclear cell populations before and after treatment. CyTOF was used to determine changes in circulating immune cell population subsets before and after treatment. Biopsies were performed of an active bone metastatic lesion prior to study treatment and after at least 3 months. IHC was subsequently performed to examine changes in immune cell population subsets before and after treatment, and changes in pSTAT3 levels. Results: In total, 30 patients were enrolled, with median age 68. The median duration of follow up was 36 months. PSA responses, PFS, and OS were not significantly different between the two arms; however, the study was not powered for clinical endpoints. Peripheral blood and bone biopsy specimens were analyzed for immune correlatives. Soluble receptor concentrations showed significantly increased expression of PDL-2 in the combination arm, but this was not seen on CyTOF. Otherwise, there were no significant differences in markers of immune activation/exhaustion or immune cell population subsets in the combination arm and enzalutamide monotherapy arm. IHC also did not show a significant difference in immune cell population subsets in bone biopsy specimens before and after treatment in both arms. However, treatment with the combination arm did show significantly increased levels of pSTAT3 (p = 0.04), which was not seen in the enzalutamide monotherapy arm. Conclusions: Our study showed an overall lack of evidence for immune activation or cytokine induction with the combination, which does not make a strong case for combinatorial immunotherapy approaches. However, the combination did induce higher levels of pSTAT3, which has been implicated in radio-resistance. Therefore, the addition of a STAT3 inhibitor to the combination may be of interest to improve efficacy. Full article
(This article belongs to the Collection Oncology: State-of-the-Art Research in the USA)
Show Figures

Figure 1

25 pages, 2389 KiB  
Review
Future Prospect of Low-Molecular-Weight Prostate-Specific Membrane Antigen Radioisotopes Labeled as Theranostic Agents for Metastatic Castration-Resistant Prostate Cancer
by Ratu Ralna Ismuha, Rien Ritawidya, Isti Daruwati and Muchtaridi Muchtaridi
Molecules 2024, 29(24), 6062; https://doi.org/10.3390/molecules29246062 - 23 Dec 2024
Cited by 1 | Viewed by 1446
Abstract
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight [...] Read more.
Prostate cancer ranks as the fourth most common cancer among men, with approximately 1.47 million new cases reported annually. The emergence of prostate-specific membrane antigen (PSMA) as a critical biomarker has revolutionized the diagnosis and treatment of prostate cancer. Recent advancements in low-molecular-weight PSMA inhibitors, with their diverse chemical structures and binding properties, have opened new avenues for research and therapeutic applications in prostate cancer management. These novel agents exhibit enhanced tumor targeting and specificity due to their small size, facilitating rapid uptake and localization at the target site while minimizing the retention in non-target tissues. The primary aim of this study is to evaluate the potential of low-molecular-weight PSMA inhibitors labeled with radioisotopes as theranostic agents for prostate cancer. This includes assessing their efficacy in targeted imaging and therapy and understanding their pharmacokinetic properties and mechanisms of action. This study is a literature review focusing on in vitro and clinical research data. The in vitro studies utilize PSMA-targeted radioligands labeled with radioisotopes to assess their binding affinity, specificity, and internalization in prostate cancer cell lines. Additionally, the clinical studies evaluate the safety, effectiveness, and biodistribution of radiolabeled PSMA ligands in patients with advanced prostate cancer. The findings indicate promising outcomes regarding the safety and efficacy of PSMA-targeted radiopharmaceuticals in clinical settings. The specific accumulation of these agents in prostate tumor lesions suggests their potential for various applications, including imaging and therapy. This research underscores the promise of radiopharmaceuticals targeting PSMA in advancing the diagnosis and treatment of prostate cancer. These agents improve diagnostic accuracy and patients’ outcomes by enhancing imaging capabilities and enabling personalized treatment strategies. Full article
(This article belongs to the Special Issue New Insights into Radiopharmaceuticals)
Show Figures

Figure 1

35 pages, 936 KiB  
Review
Novel Molecular Classification of Breast Cancer with PET Imaging
by Ngô Minh Toàn
Medicina 2024, 60(12), 2099; https://doi.org/10.3390/medicina60122099 - 21 Dec 2024
Cited by 1 | Viewed by 2067
Abstract
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or [...] Read more.
Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression. This narrative review, which focuses on both clinical patients and preclinical studies, explores the latest advancements in PET imaging for breast cancer, emphasizing the development of new tracers targeting hormone receptors such as the estrogen alpha receptor, progesterone receptor, androgen receptor, estrogen beta receptor, as well as the ErbB family of receptors, VEGF/VEGFR, PARP1, PD-L1, and markers for indirectly assessing Ki-67. These innovative radiopharmaceuticals have the potential to guide personalized treatment approaches based on the unique tumor profiles of individual patients. Additionally, they may improve the assessment of treatment efficacy, ultimately leading to better outcomes for those diagnosed with breast cancer. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 1381 KiB  
Review
Bone-Targeting Radionuclides in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review on Radium-223 Chloride (Alpharadin) in Combination with Other Therapies
by Ali H. D. Alshehri
Diagnostics 2024, 14(21), 2407; https://doi.org/10.3390/diagnostics14212407 - 29 Oct 2024
Cited by 1 | Viewed by 3154
Abstract
Recent advances have broadened the range of therapeutic options for mCRPC, with several new treatments, including novel hormonal therapies (enzalutamide, abiraterone), chemotherapeutic agents (docetaxel, cabazitaxel), immunotherapies (sipuleucel-T), and bone targeting radiopharmaceuticals (radium-223) showing improved clinical outcomes and receiving U.S. Food and Drug Administration [...] Read more.
Recent advances have broadened the range of therapeutic options for mCRPC, with several new treatments, including novel hormonal therapies (enzalutamide, abiraterone), chemotherapeutic agents (docetaxel, cabazitaxel), immunotherapies (sipuleucel-T), and bone targeting radiopharmaceuticals (radium-223) showing improved clinical outcomes and receiving U.S. Food and Drug Administration approval. These new treatments provide new avenues for improving patient survival and quality of life. Radium-223, a targeted alpha-emitter, specifically targets bone metastases, offering palliative benefits and a potential increase in life expectancy. The integration of radium-223 with other treatments shows promise for managing mCRPC. However, the optimal sequencing and combination of radium-223 with other therapies are still being explored, with various clinical trials investigating new therapeutic approaches. The integration of these therapies, especially to provide more effective, personalized treatment strategies, requires further investigation. A thorough literature review was conducted on current treatments for mCRPC, including chemotherapeutic agents, oral hormonal therapies targeting the androgen receptor axis, immunotherapies, and radium-223. Ongoing clinical trials investigating radium-233 in the context of other therapies for the treatment of mCRPC patients were also reviewed. Further studies should focus on determining the optimal sequencing and dosing and identifying biomarkers that predict treatment response to enhance outcomes of mCRPC patients. This review underlines the rational strategies of combining radium-223 with other therapies, investigating their impact on bone in terms of delaying skeletal-related events, and managing bone disease progression in mCRPC patients. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 13349 KiB  
Review
Innovations in Nuclear Medicine Imaging for Reactive Oxygen Species: Applications and Radiopharmaceuticals
by Joo Yeon Park, Sun Mi Park, Tae Sup Lee, Sang Ju Lee, Ji-Young Kim, Seung Jun Oh, Hai-Jeon Yoon, Bom Sahn Kim and Byung Seok Moon
Antioxidants 2024, 13(10), 1254; https://doi.org/10.3390/antiox13101254 - 17 Oct 2024
Cited by 1 | Viewed by 1736
Abstract
Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review [...] Read more.
Reactive oxygen species (ROS) are generated during normal cellular energy production and play a critical role in maintaining cellular function. However, excessive ROS can damage cells and tissues, contributing to the development of diseases such as cardiovascular, inflammatory, and neurodegenerative disorders. This review explores the potential of nuclear medicine imaging techniques for detecting ROS and evaluates various radiopharmaceuticals used in these applications. Radiopharmaceuticals, which are drugs labeled with radionuclides, can bind to specific biomarkers, facilitating their identification in vivo using nuclear medicine equipment, i.e., positron emission tomography and single photon emission computed tomography, for diagnostic purposes. This review includes a comprehensive search of PubMed, covering radiopharmaceuticals such as analogs of fluorescent probes and antioxidant vitamin C, and biomarkers targeting mitochondrial complex I or cystine/glutamate transporter. Full article
Show Figures

Figure 1

28 pages, 2441 KiB  
Review
TSPO Radioligands for Neuroinflammation: An Overview
by Silvia Salerno, Monica Viviano, Emma Baglini, Valeria Poggetti, Doralice Giorgini, Jacopo Castagnoli, Elisabetta Barresi, Sabrina Castellano, Federico Da Settimo and Sabrina Taliani
Molecules 2024, 29(17), 4212; https://doi.org/10.3390/molecules29174212 - 5 Sep 2024
Cited by 7 | Viewed by 2848
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively [...] Read more.
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO. Full article
(This article belongs to the Special Issue Progress in Drug Development for Inflammatory Diseases)
Show Figures

Figure 1

13 pages, 714 KiB  
Review
Prostate-Specific Membrane Antigen Radioligand Therapy in Non-Prostate Cancers: Where Do We Stand?
by Francesco Dondi, Alberto Miceli, Guido Rovera, Vanessa Feudo, Claudia Battisti, Maria Rondini, Andrea Marongiu, Antonio Mura, Riccardo Camedda, Maria Silvia De Feo, Miriam Conte, Joana Gorica, Cristina Ferrari, Anna Giulia Nappi and Giulia Santo
Bioengineering 2024, 11(7), 714; https://doi.org/10.3390/bioengineering11070714 - 14 Jul 2024
Cited by 1 | Viewed by 2714
Abstract
Introduction: The term theragnostic refers to the combination of a predictive imaging biomarker with a therapeutic agent. The promising application of prostate-specific membrane antigen (PSMA)-based radiopharmaceuticals in the imaging and treatment of prostate cancer (PCa) patients opens the way to investigate a possible [...] Read more.
Introduction: The term theragnostic refers to the combination of a predictive imaging biomarker with a therapeutic agent. The promising application of prostate-specific membrane antigen (PSMA)-based radiopharmaceuticals in the imaging and treatment of prostate cancer (PCa) patients opens the way to investigate a possible role of PSMA-based radiopharmaceuticals in cancers beyond the prostate. Therefore, the aim of this review was to evaluate the role of 177Lu-PSMA radioligand therapy (RLT) in malignancies other than prostate cancer by evaluating preclinical, clinical studies, and ongoing clinical trials. Methods: An extensive literature search was performed in three different databases using different combinations of the following terms: “Lu-PSMA”, “177Lu-PSMA”, “preclinical”, “mouse”, “salivary gland cancer”, “breast cancer”, “glioblastoma”, “solid tumour”, “renal cell carcinoma”, “HCC”, “thyroid”, “salivary”, “radioligand therapy”, and “lutetium-177”. The search had no beginning date limit and was updated to April 2024. Only articles written in English were included in this review. Results: A total of four preclinical studies were selected (breast cancer model n = 3/4). PSMA-RLT significantly reduced cell viability and had anti-angiogenic effects, especially under hypoxic conditions, which increase PSMA binding and uptake. Considering the clinical studies (n = 8), the complexity of evaluating PSMA-RLT in cancers other than prostate cancer was clearly revealed, since in most of the presented cases a sufficient tumour radiation dose was not achieved. However, encouraging results can be found in some types of diseases, such as thyroid cancer. Some clinical trials are still ongoing, and results from prospective larger cohorts of patients are awaited. Conclusions: The need for larger patient cohorts and more RLT cycles administered underscores the need for further comprehensive studies. Given the very preliminary results of both preclinical and clinical studies, ongoing clinical trials in the near future may provide stronger evidence of both the safety and therapeutic efficacy of PSMA-RLT in malignancies other than prostate cancer. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

13 pages, 3079 KiB  
Article
Radiolabelled FGF-2 for Imaging Activated Fibroblasts in the Tumor Micro-Environment
by Valeria Bentivoglio, Filippo Galli, Michela Varani, Danilo Ranieri, Pallavi Nayak, Annunziata D’Elia, Andrea Soluri, Roberto Massari, Chiara Lauri and Alberto Signore
Biomolecules 2024, 14(4), 491; https://doi.org/10.3390/biom14040491 - 18 Apr 2024
Cited by 2 | Viewed by 2215
Abstract
Tumor associated fibroblasts (TAFs) play a key role in tumor growth and metastatization. TAFs overexpress different biomarkers that are usually expressed at low levels in physiological conditions. Among them are the fibroblast growth factor receptors (FGFRs) that bind the fibroblast growth factors (FGFs). [...] Read more.
Tumor associated fibroblasts (TAFs) play a key role in tumor growth and metastatization. TAFs overexpress different biomarkers that are usually expressed at low levels in physiological conditions. Among them are the fibroblast growth factor receptors (FGFRs) that bind the fibroblast growth factors (FGFs). In particular, the overexpression of FGFR-2c in tumors has been associated with advanced clinical stages and increased metastatization. Here, we developed a non-invasive tool to evaluate, in vivo, the expression of FGFR-2c in metastatic cancer. This is based on 99mTc-labelled FGF-2. Methods: 99mTc-FGF-2 was tested in vitro and in vivo in mice bearing allografts of sarcoma cells. Images of 99mTc-FGF-2 were acquired using a new portable high-resolution ultra-sensitive gamma camera for small animal imaging. Results: FGF-2 was labeled with high specific activity but low labelling efficiency, thus requiring post-labeling purification by gel-filtration chromatography. In vitro binding to 2C human keratinocytes showed a Kd of 3.36 × 10−9 M. In mice bearing J774A.1 cell allografts, we observed high and rapid tumor uptake of 99mTc-FGF-2 with a high Tumor/Blood ratio at 24 h post-injection (26.1 %ID/g and 12.9 %ID) with low kidney activity and moderate liver activity. Conclusions: we labeled FGF-2 with 99mTc and showed nanomolar Kd in vitro with human keratinocytes expressing FGF-2 receptors. In mice, 99mTc-FGF-2 rapidly and efficiently accumulated in tumors expressing FGF-2 receptors. This new radiopharmaceutical could be used in humans to image TAFs. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3288 KiB  
Article
Biodistribution Assessment of a Novel 68Ga-Labeled Radiopharmaceutical in a Cancer Overexpressing CCK2R Mouse Model: Conventional and Radiomics Methods for Analysis
by Anna Maria Pavone, Viviana Benfante, Paolo Giaccone, Alessandro Stefano, Filippo Torrisi, Vincenzo Russo, Davide Serafini, Selene Richiusa, Marco Pometti, Fabrizio Scopelliti, Massimo Ippolito, Antonino Giulio Giannone, Daniela Cabibi, Mattia Asti, Elisa Vettorato, Luca Morselli, Mario Merone, Marcello Lunardon, Alberto Andrighetto, Antonino Tuttolomondo, Francesco Paolo Cammarata, Marco Verona, Giovanni Marzaro, Francesca Mastrotto, Rosalba Parenti, Giorgio Russo and Albert Comelliadd Show full author list remove Hide full author list
Life 2024, 14(3), 409; https://doi.org/10.3390/life14030409 - 20 Mar 2024
Cited by 4 | Viewed by 2697
Abstract
The aim of the present study consists of the evaluation of the biodistribution of a novel 68Ga-labeled radiopharmaceutical, [68Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. [...] Read more.
The aim of the present study consists of the evaluation of the biodistribution of a novel 68Ga-labeled radiopharmaceutical, [68Ga]Ga-NODAGA-Z360, injected into Balb/c nude mice through histopathological analysis on bioptic samples and radiomics analysis of positron emission tomography/computed tomography (PET/CT) images. The 68Ga-labeled radiopharmaceutical was designed to specifically bind to the cholecystokinin receptor (CCK2R). This receptor, naturally present in healthy tissues such as the stomach, is a biomarker for numerous tumors when overexpressed. In this experiment, Balb/c nude mice were xenografted with a human epidermoid carcinoma A431 cell line (A431 WT) and overexpressing CCK2R (A431 CCK2R+), while controls received a wild-type cell line. PET images were processed, segmented after atlas-based co-registration and, consequently, 112 radiomics features were extracted for each investigated organ / tissue. To confirm the histopathology at the tissue level and correlate it with the degree of PET uptake, the studies were supported by digital pathology. As a result of the analyses, the differences in radiomics features in different body districts confirmed the correct targeting of the radiopharmaceutical. In preclinical imaging, the methodology confirms the importance of a decision-support system based on artificial intelligence algorithms for the assessment of radiopharmaceutical biodistribution. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

24 pages, 3843 KiB  
Review
Beyond Small Molecules: Antibodies and Peptides for Fibroblast Activation Protein Targeting Radiopharmaceuticals
by Xiaona Sun, Yuxuan Wu, Xingkai Wang, Xin Gao, Siqi Zhang, Zhicheng Sun, Ruping Liu and Kuan Hu
Pharmaceutics 2024, 16(3), 345; https://doi.org/10.3390/pharmaceutics16030345 - 29 Feb 2024
Cited by 11 | Viewed by 5842
Abstract
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. [...] Read more.
Fibroblast activation protein (FAP) is a serine protease characterized by its high expression in cancer-associated fibroblasts (CAFs) and near absence in adult normal tissues and benign lesions. This unique expression pattern positions FAP as a prospective biomarker for targeted tumor radiodiagnosis and therapy. The advent of FAP-based radiotheranostics is anticipated to revolutionize cancer management. Among various types of FAP ligands, peptides and antibodies have shown advantages over small molecules, exemplifying prolonged tumor retention in human volunteers. Within its scope, this review summarizes the recent research progress of the FAP radiopharmaceuticals based on antibodies and peptides in tumor imaging and therapy. Additionally, it incorporates insights from recent studies, providing valuable perspectives on the clinical utility of FAP-targeted radiopharmaceuticals. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

23 pages, 1344 KiB  
Review
From Molecular Biology to Novel Immunotherapies and Nanomedicine in Uveal Melanoma
by Kamil J. Synoradzki, Natalia Paduszyńska, Malgorzata Solnik, Mario Damiano Toro, Krzysztof Bilmin, Elżbieta Bylina, Piotr Rutkowski, Yacoub A. Yousef, Claudio Bucolo, Sandrine Anne Zweifel, Michele Reibaldi, Michal Fiedorowicz and Anna M. Czarnecka
Curr. Oncol. 2024, 31(2), 778-800; https://doi.org/10.3390/curroncol31020058 - 1 Feb 2024
Cited by 7 | Viewed by 4906
Abstract
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp—a T cell–redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint [...] Read more.
Molecular biology studies of uveal melanoma have resulted in the development of novel immunotherapy approaches including tebentafusp—a T cell–redirecting bispecific fusion protein. More biomarkers are currently being studied. As a result, combined immunotherapy is being developed as well as immunotherapy with bifunctional checkpoint inhibitory T cell engagers and natural killer cells. Current trials cover tumor-infiltrating lymphocytes (TIL), vaccination with IKKb-matured dendritic cells, or autologous dendritic cells loaded with autologous tumor RNA. Another potential approach to treat UM could be based on T cell receptor engineering rather than antibody modification. Immune-mobilizing monoclonal T cell receptors (TCR) against cancer, called ImmTAC TM molecules, represent such an approach. Moreover, nanomedicine, especially miRNA approaches, are promising for future trials. Finally, theranostic radiopharmaceuticals enabling diagnosis and therapy with the same molecule bring hope to this research. Full article
Show Figures

Figure 1

24 pages, 2909 KiB  
Review
Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives
by Honest Ndlovu, Ismaheel O. Lawal, Kgomotso M. G. Mokoala and Mike M. Sathekge
Int. J. Mol. Sci. 2024, 25(3), 1575; https://doi.org/10.3390/ijms25031575 - 26 Jan 2024
Cited by 7 | Viewed by 2436
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry [...] Read more.
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches’ relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation. Full article
(This article belongs to the Special Issue Molecular Research on Breast Cancer Diagnosis and Treatment)
Show Figures

Figure 1

39 pages, 4286 KiB  
Review
Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens
by Elmira Yazdani, Parham Geramifar, Najme Karamzade-Ziarati, Mahdi Sadeghi, Payam Amini and Arman Rahmim
Diagnostics 2024, 14(2), 181; https://doi.org/10.3390/diagnostics14020181 - 14 Jan 2024
Cited by 19 | Viewed by 5614
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). [...] Read more.
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed. Full article
(This article belongs to the Special Issue Advanced Computer-Aided Diagnosis Using Medical Images)
Show Figures

Figure 1

Back to TopTop