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Abstract: Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive
therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising
radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized,
targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic
pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are
increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs)
and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in
quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic
and theranostic fields, from data and image processing to clinical decision support, improving patient
selection, personalized treatment strategies, response prediction, and prognostication. Furthermore,
AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex
and time-consuming tasks in the RPT workflow. The present work provides a comprehensive
overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-
targeting radioligands, describing the fundamental concepts and specific imaging/treatment features.
Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically,
contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment
response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as
ongoing developments and future directions are discussed.

Keywords: radiotheranostics; radiomics; artificial intelligence; SSTR; PSMA; personalized dosimetry

1. Introduction

Radiotheranostics represents a medical paradigm that uses radiopharmaceuticals for
targeted radionuclide therapy (TRT), also known as radiopharmaceutical therapy (RPT).
The approach involves the use of the same or different radiopharmaceuticals for both thera-
peutic and imaging purposes, enabling the matched targeting of specific disease sites [1–3].
The radiotheranostics paradigm enables the visualization of drug pharmacokinetics in the
body, enabling personalized medicine frameworks [1]. Radiotheranostics makes it feasible
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to customize treatment planning based on individual variations by choosing “the right
drug for the right patient at the right time” [4].

This study specifically concentrates on radiotheranostic ligand pairs that selectively
bind to somatostatin receptors (SSTRs) and the prostate-specific membrane antigen (PSMA).
In general, PSMA expression is higher in prostate cancer (PCa) cells than benign prostate
cells, providing a comparatively specific target for patients with this tumor. Moreover,
SSTRs are expressed much higher in neuroendocrine tumor (NET) cells or meningiomas
than in normal tissues [5].

Prostate cancer is one of the three most common cancers in the world (7.1% of all
cancers), with a high survival rate (a 5-year survival rate of >95%) and high recurrence
rates [6–9]. Figure 1A illustrates a simplified disease course for PCa patients. In the first
stage, patients are diagnosed through an abnormal serum prostate-specific antigen (PSA)
level, a PCa tumor marker. Most of them will be treated (for example, with radiation
therapy or surgery), and their PSA will nearly reach zero. However, some of them will
have biochemical recurrences. A significant number of PCa patients will progress to
metastatic castrate-resistant prostate cancer (mCRPC). Therefore, there is a growing need
for alternative therapeutic strategies for these patients. In this regard, several molecules
were tested to target PSMA expressed on the cell surface of mCRPC patients [10].
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Figure 1. The principle of radiotheranostics in mCRPC patients. (A). The typical timeline of different
therapies, including RPT (also known as RLT). (B). PSMA-binding domain, linker, and chelator
labeled with Lu-177 deliver ionizing radiation to the tumor.

PSMA is a type II, 750-amino acid transmembrane protein anchored in the cell
membrane of prostate epithelial cells [11]. Radiopharmaceuticals targeting PSMA for
diagnostic imaging purposes include [68Ga]Ga-PSMA-11, [68Ga]Ga-PSMA-617, [68Ga]Ga-
PSMA-I&T, [18F]DCFPyL, [18F]PSMA-1007 or [124I]MIP-1095, [64Cu]Cu-PSMA-617, and
[44Sc]Sc-PSMA-617. For therapies, [90Y]Y-J591, [177Lu]Lu-PSMA-617, [177Lu]Lu-PSMA-I&T,
[90Y]Y-PSMA-617, [225Ac]Ac-PSMA-I&T, and [225Ac]Ac-PSMA-617 have been used [12,13].
Currently, 68Ga or 18F labeled radioligand binding to PSMA are paramount players in
PCa applications [14].

In March 2022, [177Lu]Lu-PSMA-617 received Food and Drug Administration (FDA)
approval as a treatment option for adult patients with PSMA-positive mCRPC, marketed
as Pluvicto® [15]. The use of radiolabeled PSMA-targeting ligands provides an important
theranostic paradigm, with potential for treating mCRPC patients (Figure 1B) [16,17].
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A similar scenario exists for neuroendocrine tumors (Figure 2). Although the epidemi-
ologic importance of NETs is not as high as that of prostate cancer, NETs consist of 0.5% of
all malignancies, and the incidence rate has increased six–fold over the past decades [18,19].
Patients with NETs showing high SSTR expression are appropriate candidates for [68Ga]Ga-
/[177Lu]Lu-SSTR applications [20].
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Figure 2. Schematic overview of radiotheranostics principle in NETs patients and the development
of radiopharmaceutical. The chelator labeled with Lu-177 binds to SSTRs and delivers ionizing
radiations to destroy tumor cells.

Several PET-labeled peptides, including [68Ga]Ga-DOTA-Tyr3 octreotide ([68Ga]Ga-
DOTA-TATE), [68Ga]Ga-DOTA-Phe1 Tyr3 octreotide ([68Ga]Ga-DOTA-TOC), [68Ga]Ga-
DOTA-1-NaI3 octreotide ([68Ga]Ga-DOTA-NOC), and [64Cu]Cu bound DOTA-TATE and
DOTA-TOC are synthesized for diagnostic applications. Additionally compounds such as
Lutetium-177 (177Lu), Yttrium-90 (90Y), and Actinium-225 (225Ac) bound DOTA-TATE and
DOTA-TOC, are produced for therapeutic purposes. In January 2018, the FDA approved
[177Lu]Lu-DOTA-TATE for the treatment of SSTR-positive gastroenteropancreatic neuroen-
docrine tumors (GEP-NETs) [21]. A complete list of clinically relevant radiotheranostic
pairs targeting SSTR and PSMA is shown in Table 1 [22].

Artificial intelligence (AI)-based algorithms are increasingly being used to support,
simplify, and facilitate dosimetry workflow. Moreover, AI has the potential to predict
treatment outcomes and the absorbed dose. Compared to the visual/qualitative assessment
of PET images and conventional PET parameters such as the standard uptake value (SUV),
radiomics has additional value in diagnostics and prognostics [23].

The present review aims to highlight areas of importance in which radiomics and AI
can play an essential role in radiotheranostic SSTR- and PSMA-targeting ligand pairs. First,
we present a concise review of radiomics and AI. In four sections, we elaborate on the
application of radiomics and AI in radiopharmaceuticals targeting SSTR and/or PSMA via
image-guided RPTs. Moreover, we briefly explain RPT dosimetry workflows and the role
of AI in the dosimetry of 177Lu and 90Y-labeled-SSTR and PSMA ligand therapies. Finally,
we discuss possible future development directions.
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Table 1. Radiotheranostic pairs and targets in NETs and mCRPC diseases with an emphasis on
clinical relevance.

Therapeutic
Radioisotopes

Diagnostic Radioisotopes-Pharmaceuticals

SSTRs Target/NET PSMA Target/mCRPC

177Lu

[68Ga]Ga-DOTA-TATE PET [68Ga]Ga-PSMA-617 PET

[68Ga]Ga-DOTA-TOC PET
[68Ga]Ga-PSMA-I&T PET

[68Ga]Ga-PSMA-11 PET

[64Cu]Cu-DOTA-TATE PET
[64Cu]Cu-PSMA-617 PET

[64Cu]Cu-DOTA-TOC PET

No Clinical Match [18F]PSMA-617 PET

No Clinical Match [44Sc]Sc-PSMA-617 PET

225Ac
[177Lu]Lu-DOTA-TATE SPECT

[177Lu]Lu-PSMA-617 SPECT
[177Lu]Lu-DOTA-TOC SPECT

90Y

[177Lu]Lu-DOTA-TATE SPECT [177Lu]Lu-PSMA-617 SPECT

[177Lu]Lu-DOTA-TOC SPECT [177Lu]Lu-J591 SPECT

[111In]In-DOTA-TATE SPECT
[111In]In-J591 SPECT

[111In]In-DOTA-TOC SPECT
These clinical radiotheranostics pairs are listed for completeness, but they are not discussed further.

2. Radiomics and AI Workflow

In precision medicine, radiomics is currently underway in research based on feature
extraction from medical images. Radiomics paves the way to map multimodal imaging
into quantitative information on a large scale [24]. Figure 3 depicts the steps required to
build a predictive model from medical images [25,26]. The radiomics workflow begins with
image acquisition and segmentation. After image post-processing, hundreds of radiomic
features (RFs) are measured from segmented regions to provide raw data for developing
the final model. The major categories of features are as follows:

• Geometric or shape features: based on the segmented regions.
• Statistical or intensity features: computed using intensity values in each image region.
• Textural features (TFs): quantification of image intensity and regularity via mathemat-

ical functions.
• Wavelet or high-order features: the image transformation process is essential to obtain

these features.

Individual features are discarded for dimension reduction through feature selection in
the next step. Options include intraclass correlation coefficients (ICC), principal component
analysis (PCA), least absolute shrinkage and selection operator (LASSO), recursive feature
elimination (RFE), and outputs from machine learning methods (ML).

Different approaches are applied in developing the model depending on the task: uni-
variate or multivariate analysis and supervised or unsupervised ML methods. Supervised
ML algorithms are classified into classification and regression algorithms if the variables
are categorical or continuous, respectively. Classification algorithms are divided into linear
and nonlinear models. Logistic regression and support vector machines (SVMs) are two
methods of analyzing linear models.

In nonlinear models, k-nearest neighbors (KNNs), gradient boosting, decision tree,
extra trees (ETs), and random forest are the most commonly used algorithms. The most
widely used regression algorithms are linear, logistic, polynomial, support vector regression
(SVR), decision regression, random forest regression (RFR), and ridge and lasso regressions.



Diagnostics 2024, 14, 181 5 of 39

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 44 
 

 

[64Cu]Cu-DOTA-TOC PET 
No Clinical Match [18F]PSMA-617 PET 
No Clinical Match [44Sc]Sc-PSMA-617 PET 

225Ac 
[177Lu]Lu-DOTA-TATE SPECT 

[177Lu]Lu-PSMA-617 SPECT 
[177Lu]Lu-DOTA-TOC SPECT 

90Y 

[177Lu]Lu-DOTA-TATE SPECT [177Lu]Lu-PSMA-617 SPECT 
[177Lu]Lu-DOTA-TOC SPECT [177Lu]Lu-J591 SPECT 
[111In]In-DOTA-TATE SPECT 

[111In]In-J591 SPECT 
[111In]In-DOTA-TOC SPECT 

These clinical radiotheranostics pairs are listed for completeness, but they are not discussed further. 

2. Radiomics and AI Workflow 
In precision medicine, radiomics is currently underway in research based on feature 

extraction from medical images. Radiomics paves the way to map multimodal imaging 
into quantitative information on a large scale [24]. Figure 3 depicts the steps required to 
build a predictive model from medical images [25,26]. The radiomics workflow begins 
with image acquisition and segmentation. After image post-processing, hundreds of radi-
omic features (RFs) are measured from segmented regions to provide raw data for devel-
oping the final model. The major categories of features are as follows: 
 Geometric or shape features: based on the segmented regions.  
 Statistical or intensity features: computed using intensity values in each image re-

gion. 
 Textural features (TFs): quantification of image intensity and regularity via mathe-

matical functions.  
 Wavelet or high-order features: the image transformation process is essential to ob-

tain these features. 

 
Figure 3. Radiomics and AI workflow from image acquisition to radiomics modeling. 

Individual features are discarded for dimension reduction through feature selection 
in the next step. Options include intraclass correlation coefficients (ICC), principal com-
ponent analysis (PCA), least absolute shrinkage and selection operator (LASSO), recursive 
feature elimination (RFE), and outputs from machine learning methods (ML). 

Different approaches are applied in developing the model depending on the task: 
univariate or multivariate analysis and supervised or unsupervised ML methods. Super-
vised ML algorithms are classified into classification and regression algorithms if the var-
iables are categorical or continuous, respectively. Classification algorithms are divided 

Figure 3. Radiomics and AI workflow from image acquisition to radiomics modeling.

In contrast to supervised learning methods, unsupervised learning approaches do
not contain predefined response variables. Instead, the model finds hidden patterns and
insights from the given data. In these procedures, similar data are grouped (clustering), or
dimensionality is reduced. Some popular models in this category are K-means clustering,
KNN, neural networks (NNs) or artificial neural networks (ANNs), PCA, and independent
component analysis (ICA) [27].

Deep learning (DL) methods have been introduced as a more comprehensive part of
ML methods with various techniques. Classic neural networks, convolutional neural net-
works (CNNs), recurrent neural networks, auto-encoders, generative adversarial networks
(GANs), and gradient descent are examples of DL methods [28]. Challenges still need
to be addressed to strengthen radiomics’ role in clinical practice. Most difficulties come
from imaging feature variability among different devices and protocols, model robustness,
and performance interpretation. In a multicenter context, addressing variability in acqui-
sition and reconstruction protocols is crucial to ensure reproducibility [29]. Accordingly,
harmonization procedures have been developed to provide a high reproducibility of RFs
in multicenter studies. Reuze et al. [30] and Orlhac et al. [31] reviewed the radiomics
workflow and its challenges.

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) AI Task Force
published a report on evaluating and validating AI algorithms [32]. This guideline applies
extensively to radiomics studies involving AI. According to Figure 4, created based on this
guideline, for a prostate cancer patient referred to PET/CT imaging, AI can be applied in a
chain from radiochemistry to the physician’s report generation.

In the first step, AI could predict drug-target interactions, predict and optimize radio-
chemical reactions, carry out de novo drug design, and optimize radiopharmacy work-
flows. In the next step, ML-based methods may be well suited to difficult issues in image
acquisition and instrumentation. For image reconstruction, AI may offer faster image
reconstruction, a better signal-to-noise ratio, and fewer artifacts.

Image analysis can be automated using AI for different tasks, such as lesion detection,
segmentation, and quantification for diagnosis and dosimetry. Moreover, AI has the
potential to investigate patterns associated with patient results within large biological and
imaging datasets. Additionally, AI can also detect and diagnose. By using ML methods,
diagnostic images can be interpreted and translated into reports and clinical databases.
Finally, clinicians can receive actionable advice after extracting, distilling, and integrating
clinical information from various sources.
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SNMMI AI task-force guideline.

3. Application of Radiomics and AI in 68GA SSTR and PSMA Image-Guided RPTS

The Ga-68/Lu-177 radiotheranostic pair can be used with SSTR and PSMA target-
ing ligands [33,34]. Gallium-68 (68Ga), with a half-life of 68 min and β+ emission (89%,
Eβ+max = 1920 keV), is suitable for chemical bonding with various chelators. Moreover, it is
an appropriate radionuclide for PET imaging of different targets in various diseases. Among
these, the most famous are somatostatin receptors in NETs and PSMA in PCa [35,36].

The other radionuclide, Lu-177, has a physical half-life of 6.65 days, emitting short-
ranged β-rays (Eβ-max = 0.497 MeV; Rave = 0.23 mm in soft tissues) suitable for destroying
targeted cancerous cells. Furthermore, it contains γ-rays (Eγ = 113 and 208 keV; abundance
of 6% and 11%, respectively), which help track in vivo radiopharmaceuticals using post-
therapeutic imaging [37].

In managing patients with mCRPC and NETs who received [177Lu]Lu-SSTR peptide
receptor radionuclide therapy (PRRT) and PSMA radioligand therapy (RLT), respectively
(both fall under the broad umbrella of “RPT” as denoted in most of what follows), the
potential of [68Ga]Ga-SSTR and PSMA PET RFs has been investigated for different tasks.

Radiomic features can identify patterns and provide additional information not per-
ceptible by the human eyes [38]. In this regard, therapy response assessment, restaging,
segmentation, and dose prediction were studied, as presented in the following section.
Moreover, Tables 2 and 3 summarize the radiomics studies on [68Ga]Ga-SSTR and PSMA
PET imaging for patients who underwent [177Lu]Lu-SSTR and PSMA RPT, respectively.
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Table 2. Summary of radiomics and AI studies on [68Ga]Ga-PSMA-11/[177Lu]Lu -PSMA-617 radiotheranostic pairs.

# First Author,
Year [Ref]

Radiopharmaceutical,
Modality

#
Pats Site Utility Feature Class Stats, ML/DL

Algorithms Software Finding RFs Result Conclusion

1
Grubmüller
et al., 2018

[39]
[68Ga]Ga-PSMA-11

PET/CT 38

77 primary
prostate and

metastatic LNs,
bone and
visceral

metastases

OS prediction
First order
(shape and
intensity)

Unavailable
Cox

proportional
hazards model,

KM, and
Cohen’s kappa

(κ)

Hermes
Hybrid3D
(Hermes
Medical

Solutions,
Stockholm)

TTV

TTV was significantly
associated with OS, and its
changes were significantly

associated with PSA
response (p = 0.58),

contrary to SUVmean
changes (p = 0.15)

PSMA-TTV is a
promising tool for

RPT response
evaluation

2
Khurshid
et al., 2018

[40]
[68Ga]Ga-PSMA-11

PET/CT 70

118 primary
prostate and

metastatic LNs,
bone and liver

metastases

Therapy
response

prediction

First order
(inten-

sity)/second
order (texture)

Spearman
correlation NM

NGLCM
(Entropy and
homogeneity)

Entropy (r = -0.327) and
homogeneity (r = 0.315)

TFs of bone lesions
correlated with ∆PSA

Better treatment
response for more

heterogeneous
lesions

3 Acar et al.,
2019 [41]

[68Ga]Ga-PSMA-11
PET/CT 75 257 metastatic

bone lesions

Therapy
response

prediction

First order
(shape and

inten-
sity)/second

order (texture)

Decision tree,
discriminant

analysis, SVM,
KNN, and
ensemble
classifier

LIFEx
GLZLM_SZHGE
and histogram-
based kurtosis

Weighted KNN achieved
the best classification

performance with
AUC = 0.76

(ACU = 73.5%,
SE = 73.5%, SP = 73.7%)

Metastatic or
responded sclerotic

bone lesions
discrimination

using CT texture
analysis and ML

4 Seifert et al.,
2020 [42]

[68Ga]Ga-PSMA-11
PET/CT 110

136 metastatic
LNs, bone and
visceral (liver,

lung, and
pleura) lesions

OS predic-
tion/restaging/Seg

First order
(shape and
intensity)/

Univariate
and

multivariate
regression,
Spearman

correlation, and
Mann–Whitney

U tests

MIWBAS, V.1.0,
Siemens PSMA-TV

Lesion number
(HR = 1.255), PSMA-TV

(HR =1.299), and
PSMA-TLQ (HR = 1.326)

prognosticators of OS

- Baseline
PSMA-PET TV was

a significant
negative

prognosticator of
OS in prostate

cancer before RPT
- In comparison
with PSMA-TV,

PSMA-TLQ was an
independent and

superior
prognosticator of

OS

5 Widjaja et al.,
2021 [43]

[68Ga]Ga-PSMA-11
PET/CT 71

208 primary
prostate and

metastatic LNs,
bone, liver, and

soft tissue
lesions

Biochemical
response

prediction

First order
(shape and
intensity)

Kruskal–Wallis,
Fisher’s exact,

and KM
syngo.via;

V50B; Siemens SUVmax

SUVmax was an
independent predictor for
early PSA response in the

treatment course

Higher PSMA
expression was

related to a better
early biochemical

response

6 Gafita et al.,
2021 [44]

[68Ga]Ga-PSMA-11
PET/CT 414

463 metastatic
LNs, bone, and

liver lesions
OS and PFS
prediction

First order
(intensity)

LASSO,
Wilcoxon, and

Mann–
Whitney

qPSMA V.1.0 SUVmean
PSM SUV: correlated

significantly with tumor
PSMA expression

- Higher PSMA
expression

correlated with
longer OS and

PSA-PFS
- Patients with
metastatic bone

disease had shorter
OS and PSA-PFS
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7 Khreish et al.,
2021 [45]

[68Ga]Ga-PSMA-11
PET/CT 51

322 primary
prostate and

metastatic LNs,
bone, liver, and

soft tissue
lesions

PFS prediction First order
(intensity)

KM, Cox
proportional-

hazards
modeling,

Spearman, and
Cohen’s κ

NM TLR

∆TLR and ∆SUV significantly
correlated with ∆PSA.

Univariate analysis:
SUVpeak failed to predict

survival
Multivariable analysis: TLR

was independently
associated with PFS

TLR (normalization
of the total lesion

PSMA over healthy
liver tissue uptake)
biomarker can be a
predictor of PFS in

RPT

8
Moazemi
et al., 2021

[46]
[68Ga]Ga-PSMA-11

PET/CT 83

2070 primary
prostate and

metastatic
lesions

Therapy
response

prediction

First order
(inten-

sity)/second
order (texture)

5 ML classifiers
(linear, RBF,

and polynomial
kernel SVMs),

ET, and
random forest)

InterView
Fusion (V.
3.08.005)

Task I: PET
(Min and

Correlation)
and CT (Min,
Coarseness,

and Busyness)

Strong correlations
between ML SVM

classifier (RBF kernel) on a
selection of RFs and

clinical parameters with
∆PSA (with AUC = 80%,
SE = 75%, and SP = 75%)

RFs were superior
to clinical

parameters in terms
of correlation with

∆PSA

9
Moazemi
et al., 2021

[47]
[68Ga]Ga-PSMA-11

PET/CT 100 2067 pathological
hotspots

Therapy
response pre-
diction/auto

Seg

First order
(shape and

inten-
sity)/second

order (texture)

UNet and 6 ML
classifiers
(logistic

regression,
SVM (linear,
polynomial,

RBF kernels),
ET, and

random forest)

PyRadiomics
Library

14 features
from both PET

and CT
modalities

Seg. task (0.88 precision,
0.77 recall, and 0.82 Dice).
In predicting the response

task, logistic regression
performed the best (with

AUC = 0.73, SE = 0.81, and
SP = 0.58)

In 177Lu-PSMA RPT,
the facilitated

automated decision
support tool has an
assistant potential

for patient
screening

10
Moazemi
et al., 2021

[48]
[68Ga]Ga-PSMA-11

PET/CT 83

2070 primary
prostate and

metastatic
lesions

OS predic-
tion/restaging

First order
(shape and

inten-
sity)/second

order (texture)

LASSO
regression and
KM estimator

InterView
Fusion (V.
3.08.005)

PET kurtosis
and SUVmin

The relevant RFs
significantly correlated

with OS (r = 0.2765,
p = 0.0114)

68Ga-PSMA-
PET/CT scans and

patient-specific
clinical parameters
have the potential

for the prediction of
OS in advanced PC

patients under
177Lu-PSMA RPT

11 Roll et al.,
2021 [49]

[68Ga]Ga-PSMA-11
PET/MRI 21

49 metastatic
lesions in bone,
LNs, liver, and

lung

Biochemical
response and
OS prediction

First order
(intensity)

KM analysis
and log-rank

test

3D slicer,
V.4.11.2

T2-weighted
(interquartile

range)

The logistic regression
model revealed the highest

accuracy (AUC = 0.83)

There was a high
survival for patients
with a biochemical
response and higher

T2 interquartile
range values
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12 Rosar et al.,
2022 [50]

[68Ga]Ga-PSMA-11
PET/CT 66

139 metastatic
lesions in bone,
LNs, liver, and
other soft tissue

OS prediction
First order
(shape and
intensity)

Spearman’s
rank

correlation and
KM

Syngo.
Via (Enterprise

VB 40B,
Siemens,
Erlangen,
Germany)

TLP
There was a strong

correlation between ∆PSA
and ∆TLP (r = 0.702)

TLP (summed
products of

volume × uptake
(SUVmean) of all

lesions) biomarker
independently and
strongly predicted

OS

13 Gafita et al.,
2022 [51]

[68Ga]Ga-PSMA-11
PET/CT 406

normal liver,
spleen, salivary

gland and
kidney, and
metastatic

lesions in bone,
LNs, and

visceral organs

Therapy
response
predic-

tion/restaging

First order
(shape and
intensity)

Spearman CC
and

Kruskal–Wallis
testing

qPSMA PSMA-VOL

Salivary glands, kidneys,
and liver: a moderate and

negative correlation
between PSMA-VOL and

SUVmean
Spleen: a weak correlation
between PSMA-VOL and

SUVmean

Decreasing the
activity

concentration in
OARs due to the

tumor sequestration
affecting the

biodistribution of
68Ga-PSM showed

the tumor sink
effect

14
Hartrampf
et al., 2022

[52]
[68Ga]Ga-PSMA-11

PET/CT 65

144 primary
prostate and

metastatic bone,
LNs, liver, and

lung lesion

Therapy
response

assessment

First order
(shape and
intensity)

Shapiro–Wilk
tests and

Spearman’s
rank
CC

FIJI (ImageJ) ∆PSMA-TV

∆PSA was correlated with
∆SUVmaxall (r = 0.51),

∆PSMA-TVall (r ≥ 0.59),
∆PSMA-TV10 (r ≥ 0.57),

and
∆PSMA-TV5 (r ≥ 0.53)

The RPT response
assessment was

possible through
PSMA-TV

15
Pathmanandav

et al., 2022
[53]

[68Ga]Ga-PSMA-11
PET/CT/[18F]FDG

PET/CT
56

92 metastatic
lesions in bone,

LNs, and
visceral organs

Therapy
response

prediction

First order
(shape and
intensity)

KM, Cox
proportional-

hazards
regression,

logistic
regression, and

LASSO

MIM PSMA_TV and
SUVmean

PSMA SUVmean was an
independent predictor of
treatment response, but

SUVmax was not

A higher SUVmean
correlated with

treatment response,
but a higher

PSMA_TV was
associated with

worse OS

16 Giesel et al.,
2017 [54]

[18F]FDG PET/CT,
[68Ga]Ga-PSMA-11

PET/CT, and
[68Ga]Ga-DOTA-

TOC PET/CT

148 (40 PCa) 254 metastatic
LNs Restaging

First order
(shape and
intensity)

2-sided
paired-sample
t-test, 2-sided

Wilcoxon
signed-rank

testing

In-house
(developed at
the Fraunhofer

Institute for
Medical Image

Computing)

PET (SUVmax)
CT (short-axis

diameter (SAD)
and Histogram)

CT densities correlated
with the PET uptake (with

a 7.5 HU threshold to
discriminate between

malignant and benign LNs
infiltration) and 20 HU to

exclude benign LN

CT density
measurements and
PET uptake analysis

increased the
differentiation

between malignant
and benign LN

17
Moazemi
et al., 2020

[55]
[68Ga]Ga-PSMA-11

PET/CT 72

2419 hotspots
in normal

kidney, bladder
and salivary
glands, and
metastatic

lesions

Restaging

First order
(shape and

inten-
sity)/second

order (texture)

5 ML classifiers
(SVM (linear,

RBF, and
polynomial
kernels), ET,
and random

forest)

InterView
FUSION

(V3.08.005)

PET (kurtosis;
busyness, and

coarseness)

AUC = 0.98, (SE = 0.94 and
SP = 0.89)

ET and RF showed the
best results

Using ML and
considering features

from both the CT
and PET images

outperformed using
either separately
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18 Erle et al.,
2021 [56]

[68Ga]Ga-PSMA-11
PET/CT 87

2452 hotspots
in normal liver,

kidney,
lacrimal and

salivary glands,
and metastatic

lesions

Restaging

First order
(inten-

sity)/second
order (texture)

SVM (linear
kernel), ET, and
random forest

InterView
FUSION 77 RFs

The ET classifier resulted
in (AUC = 0.95, SE = 0.95,

and SP = 0.80)

Combining manual
and ML-based

diagnoses has the
potential to predict
hotspot labels with

high sensitivity

19
Hinzpeter
et al., 2021

[57]
[68Ga]Ga-PSMA-11

PET/CT 67 205 bone
metastases Restaging

First order
(intensity)/

second order
(texture)

Gradient-
boosted tree 3D Slicer, V.4.11

11 most
important and
independent

features2

Model classification
AUC = 0.85 (with

SE = 78% and SP = 93%)

The distinction of
healthy bone from

metastatic bone
accurately using
PET/CT texture
analysis and ML

20
Hammes

et al., 2018
[58]

[68Ga]Ga-PSMA-11
PET/CT 38 100 metastatic

bone lesions

Staging/therapy
response

prediction/Seg

First order
(intensity)

Linear
regression and

ANOVA
NA SUVmax and

SUVmean

SUVmax, r2 = 0.97;
SUVmean, r2= 0.88; lesion

count, r2 = 0.97;
HU threshold: not

significant

EBONI has the
potential to

semi-automatically
quantify TVs in

PSMA PET/CT in a
fast (3 min per

scan), robust, and
reproducible

manner

21 Zhao et al.,
2019 [59]

[68Ga]Ga-PSMA-11
PET/CT 193

1756 primary
prostate and

metastatic
lesions in bone

and LNs

Staging/restaging/Seg NA 2.5DU-Net NA NA

Bone lesion detection
(precision = 99%,
recall = 99%, and
F1 score = 99%),

LN lesion detection
(precision = 94%,
recall = 89%, and
F1 score = 92%)

CNN has the
potential to

automatically
segment disease

sites on 68Ga-PSMA
PET/CT images to
confirm whether a

voxel is a
lesion or not

22 Seifert et al.,
2020 [60]

[68Ga]Ga-PSMA-11
PET/CT 40

100 metastatic
lesions in the

bone, LNs,
liver, and lung

Seg/OS
prediction

First order
(shape and
intensity)

Seg: GAN
t-tests, log-rank

tests, Cox
regression, ICC,

Pearson
correlation

MIWBAS, V.1.0 PET_TV50
PSMATV50: R2 = 1.000

and
SUVmax: R2 = 0.988

PSMATV50 was a
significant predictor

of OS

23 Xue et al.,
2020 [61]

[68Ga]Ga-PSMA-11
PET/CT 30

Main organs
and tumor

lesions
Dose prediction NA GAN NA NA

The dual-input-model is
able to synthesize dose

maps with MAPE of
18.94% ± 5.65%

AI is capable of
estimating
voxel-wise

posttherapy
dosimetry both

qualitatively and
quantitatively



Diagnostics 2024, 14, 181 11 of 39

Table 2. Cont.

# First Author,
Year [Ref]

Radiopharmaceutical,
Modality

#
Pats Site Utility Feature Class Stats, ML/DL

Algorithms Software Finding RFs Result Conclusion

24 Xue et al.,
2021 [62]

[68Ga]Ga-PSMA-11
PET/CT 34

Main organs
and tumor

lesions
Dose Prediction NA GAN NA NA

DVH: MAE = 21.2 ± 10.8%
(=24.0 ± 10.0% without

pre-training) to the ground
truth

Using the PBRK
model along with a

pre-therapeutic
PET/CT image may

improve the
development of AI
for dose prediction

25 Xue et al.,
2022 [63,64]

[68Ga]Ga-PSMA-11
PET/CT 23

WB, kidney,
liver, spleen,
and salivary

gland

Dose prediction
First order
(shape and
intensity)

RFR and ANN NA SUVmax and
TV

The dose prediction based
on the literature population
means had a significantly

larger MAPE for each organ
compared to the optimal

ML methods
Average prediction error for

kidneys = 15.76%

It is possible to
estimate the dose
before RPT, which
may support the

treatment planning
role

ACU: accuracy; HR: hazard ratio; NA: not applicable; NM: not mentioned; RBF: radial basis function; Resp: respectively; SE: sensitivity; Seg: segmentation; SP: specificity.

Table 3. Summary of radiomics studies on 68Ga-SSTR/177Lu-SSTR radiotheranostic pairs.

# First Author,
Year [Ref]

Radiopharmaceutical,
Modality

#
pats Site Utility Feature Class Stats, ML/DL

Algorithms Software Finding RFs Result Conclusion

1 Werner et al.,
2017 [65]

[68Ga]Ga-DOTA-
TATE PET/CT 142

872 primary
tumors of
GEP-NETs
(pancreatic,

stomach, and
intestine), lung
and metastatic
lesions in LNs,
bone, liver, and

lung

OS and PFS
prediction

First order
(inten-

sity)/second
order (texture)

Cox
multi-parametric

regression, Youden
index, and KM

Interview
FUSION

Entropy,
correlation,
short zone

emphasis and
homogeneity

Eight statistically
independent TFs for

time-to-progression and
time-to-death were
identified with Cox

analysis, among which it
was entropy that predicted

both PFS and OS

The prognostic
performance of

intratumoral TFs
analysis

outperformed
conventional PET

parameters

2 Werner et al.,
2018 [66]

[68Ga]Ga-DOTA-
TATE/DOTA-
TOC PET/CT

31
162 metastatic
lesions in LNs,
bone, liver, and

lung
OS prediction

First order
(inten-

sity)/second
order (texture)

Youden index, KM,
multivariate Cox
hazard analysis,

and relative risks

Interview
Fusion Entropy

SUVmean/max was not able
to

prognosticate
Entropy was a significant
RF to distinct high- and

low-risk groups

Unlike
conventional PET

parameters,
higher entropy (a
texture feature)

values were
associated with
more prolonged

survival
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3 Önner et al.,
2020 [67]

[68Ga]Ga-DOTA-
TATE PET/CT 22

326 primary
tumors of the

pancreas,
stomach,

intestine, and
metastatic

lesions in LNs,
bone, liver, and

lung

Treatment
response

prediction

First order
(inten-

sity)/second
order (texture)

Kolmogorov–
Smirnov,

Mann–Whitney U,
and Youden index

LIFEx Skewness and
kurtosis

AUC: for skewness and
kurtosis (0.619 and 0.518,

resp.)

Skewness and
kurtosis

predicted PRRT
response

4 Weber et al.,
2020 [68]

[68Ga]Ga-DOTA-
TOC PET/MRI 9 PRRT 80 metastatic

liver lesions

Treatment
response

prediction

First order
(inten-

sity)/second
order (texture)

Mann–Whitney
test LIFEx

ADC maps
(lesion vol and

entropy)

No PET parameter values
predicted PRRT response

In the treatment
responders group: a

significant decrease in
ADCmaps_lesion volumes

and ADCmaps_entropy

No parameters of
PET or ADC

maps predicted
PRRT response.
However, the

study sample size
was small, so

further research is
suggested

5 Ortega et al.,
2021 [69]

[68Ga]Ga-DOTA-
TATE PET/CT 91

872 primary
tumors of
GEP-NETs
(pancreatic,

intestine, and
stomach), lung
and metastatic
lesions in LNs,
bone, liver, and

lung

PFS prediction

First order
(inten-

sity)/second
order (texture)

2-sided Wilcoxon
rank sum test and
Cox proportional

hazards model

PACS system
with fusion

software
(Mirada
Medical)

Multivariate
analysis: mean

SUVmax and
mean lesion

SUVmax/liver
SUVmax

Significantly higher mean
SUVmax in responders

than that in
non-responders

A higher mean SUVmax
and mean SUVmax

tumor-to-liver ratio was
associated with therapy

response
- Higher kurtosis values

were observed in
non-responders than in
responders (mean 8.6 vs.

5.8)

SSTR expression
and tumor

heterogeneity
metrics

associated with
PFS

6
Atkinson
et al., 2021

[70]
[68Ga]Ga-DOTA-
TATE PET/CT 44

GEP-NETs
primary tumors

(pancreatic,
stomach,

intestine), lung,
thyroid and

phaeochromo-
cy-

toma/paraganglioma
and metastatic
lesions in LNs,

bone, liver,
lung,

peritoneum,
and brain

OS and PFS
prediction

First order
(inten-

sity)/second
order (texture)

Univariate KM and
multivariate Cox

regression
TexRAD,

Cambridge, UK

CT-coarse
kurtosis,

PET_entropy,
and

PET_skewness

SUVmax and SUVmean
were not significant in

outcome prediction
Higher kurtosis, higher

entropy, and lower
skewness: predict shorter

PFS
CT-TA (coarse kurtosis):

independently predicates
PFS (HR = 2.57 and

CI = 1.22–5.38)
PET-TA (unfiltered

skewness): independently
predicates OS (HR = 9.05,

95% CI = 1.19–68.91)

Texture analysis
yielded

prognostic
biomarkers that

had the potential
to assess

outcomes in NETs
patients with

more aggressive
diseases
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7 Liberini et al.,
2021 [71]

[68Ga]Ga-DOTA-
TATE PET/CT
and [18F]FDG

PET/CT

2
22 metastatic

lesions in LNs,
bone, and liver

Prognosis
prediction

First order
(inten-

sity)/second
order (texture)

Mann–Whitney,
Pearson correlation

matrix, and PCA

LIFE
xV.5.10

(IMIV/CEA,
Orsay, France)

TLSREwb-50
and

SRETVwb-50

Mann–Whitney test: 28
RFs showed significant
differences between the

two patients
Pearson correlation matrix:

identified seven
second-order RFs, with
poor correlation with
SUVmax and PET vol.

Defining
inter-patient

heterogeneity and
therapy response
prediction may be

possible using
RFs

8
Laudicella
et al., 2022

[72]
[68Ga]Ga-DOTA-

TOC PET/CT 38

324 metastatic
lesions in LNs,
bone, liver, and

other soft
tissues

Treatment
response

prediction

First order
(inten-

sity)/second
order (texture)

t-test, Mann–
Whitney U, and
Youden index

LIFEx
HISTO_Skewness

and
HISTO_Kurtosis

HISTO_Skewness and
HISTO_Kurtosis: able to

predict the response (AUC
ROC, SE., and SP. of 0.745,

80.6%, 67.2% and 0.722,
61.2%, 75.9%, resp.)

SUVmax was not able to
predict the response

(AUC= 0.523)

The developed
theragnomics

(THERAGNOs-
tics + radiOMICS)
predictive model
was superior to

conventional
quantitative

parameters to
predict the

GEP-NET lesion’s
response to 177Lu-

DOTA-TOC
PRRT

9 Giesel et al.,
2017 [54]

[18F]FDG
PET/CT,

[68Ga]Ga-PSMA-
11 PET/CT, and
[68Ga]Ga-DOTA-

TOC PET/CT

148 (35
GEP-NET)

217 metastatic
LNs Restaging

First order
(shape and
intensity)

2-sided
paired-sample

t-testing, 2-sided
Wilcoxon

signed-rank testing

In-house
(developed at
the Fraunhofer

Institute for
Medical Image

Computing)

PET (SUVmax),
CT (short-axis

diameter (SAD)
and histogram)

CT densities correlated
with the PET uptake (with

a 7.5 HU threshold to
discriminate between

malignant and benign LNs
infiltration and 20 HU to

exclude benign LN)

CT density
measurements

and PET uptake
analysis increased
the differentiation

between
malignant and

benign LNs

10 Liberini et al.,
2021 [73]

[68Ga]Ga-DOTA-
TOC PET/CT 49

60 primary
tumors of
GEP-NETs
(pancreatic,

stomach,
intestine) and

metastatic
lesions in LNs,
liver, and other

soft tissues

Prognosis pre-
diction/seg./

restaging

First order
(inten-

sity)/second
order (texture)

Pearson’s
CCs, DSC, ICC, and

coefficient of
variance

LifeX V.4.81
(IMIV/CEA,

Orsay, France)

GLZLM (also
called GLSZM)

features and
zones with low

gray-level
(SZLGE and
LZLGE), and

SUVmax thresh.
of 40%

SAEB seg. and operators:
DSC mean= 0.75 ± 0.11

(0.45–0.92),
SAEB seg. and 4 manual

segs.= 0.78 ± 0.09
(0.36–0.97)

Superior RFs
stability among
operators was

provided using
SUVmax

thresholds of 40%
but led to a

possible
biological

information loss
SAEB performed

better than
manual

segmentation;
however, further

validation is
suggested
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11
Wehrend

et al., 2021
[74]

[68Ga]Ga-DOTA-
TATE PET/CT 125 223 liver lesions Seg NA CNN: 2D U-Net

Stats: F1 score MIM (V. 7.03) NA

Highest precision-recall
AUC (0.73 ± 0.03): using a

noise filter (15-pixel)
Highest mean PPV

(0.94 ± 0.01): 20-pixel
filter

Highest mean F1 score
(0.79 ± 0.01): 20-pixel filter

Highest mean SE.
(0.74 ± 0.02): 5-pixel filter

DNN can
automatically
facilitate the
detection of

hepatic
metastases
For further

validation, it
suggested the
need for more
studies with

larger sample
sizes

12
Akhavanallaf

et al., 2023
[75]

[68Ga]Ga-DOTA-
TATE PET/CT 25

90 NETs: 75
liver, 11 LNs, 3

primary
pancreas

tumors, and 1
chest tumor

Dose prediction
First order
(shape and
intensity)

Spearman rank
correlation,

univariate linear
regression model,

ElasticNet and
permutation-based

RF variable-
importance feature

selection

NM

SUVmean,
TLSUVmean
(SUVmean of
total-lesion-

burden), and
SUVpeak

Tumor dose prediction
using an optimal trivariate

RF model composed of
SUVmean, TLSUVmean,
and total liver SUVmean:

R2 = 0.64,
MAE = 0.73 Gy/GBq, and

MRAE = 0.20

PET-based
metrics combined
with ML models
can improve dose
prediction, which
may be useful for

stratifying
patients and

personalizing
treatment

13
Plachouris
et al., 2023

[76]
[68Ga]Ga-DOTA-

TOC PET/CT 20

3412
features from 4

OARs (liver,
spleen, and left-

and right
kidneys)

Dose prediction

First order
(inten-

sity)/second
order (texture)

+ dosiomic
features

Multivariate
analysis and nine
supervised linear

and
non-linear-based

ML regression
algorithms: linear,
ridge, extra tree,

AdaBoost, gradient
boost, random

forest, decision tree,
SVR, and XGBoost

regression
algorithms trained

for every OAR

PyRadiomics
Library

Differed for
each OAR

(Table 3 in [76])

Wavelet-based features
had highly correlated

predictive value
More precise prediction
using non-linear-based

ML regression algorithms
than linear-based ones

The combination
of radiomics and
dosiomics may be

useful for
individualized

molecular
radiotherapy

response
assessment and

OAR dose
prediction

ACU: accuracy, Stats: statistics; ANOVA = analysis of variance; DSC: dice similarity coefficient; NA: not applicable; NM = not mentioned; Seg: segmentation; Resp: respectively.
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3.1. RPT Response Assessment

Therapy response prediction is critical in managing cancerous patients, including early
response and biochemical response assessment, recurrence prediction, overall survival (OS),
and progression-free survival (PFS). These areas significantly guide clinicians in optimizing
treatment strategies during the disease course [39–41]. In particular, several studies have
investigated the role of RFs in baseline pre-therapeutic [68Ga]Ga-SSTR and PSMA PET/CT
or PET/MRI to predict patient response to [177Lu]Lu-SSTR and PSMA RPT. In some cases,
ML methods are applied to different combinations of RFs and clinical parameters to predict
therapeutic response.

3.1.1. 68Ga/177Lu-SSTR

In a multicentric cohort, Werner et al. [65] evaluated the prognostic value of RFs
extracted from [68Ga]Ga-DOTA-TOC PET/CT before RPT. The authors showed that four
heterogeneity features significantly outperform conventional PET parameters in distin-
guishing responders from non-responders. Moreover, the authors found that “entropy”
correlates independently with post-therapeutic PFS and OS in patients who underwent
[177Lu]Lu-SSTR-analogues, while skewness correlates directly with OS. Furthermore, con-
ventional PET parameters failed to predict these outcomes (see row 1 in Table 3).

In a later study, the same researchers, in a smaller, more homogenous pancreatic NETs
(pNET) cohort of patients, found that an intratumoral textural features (TF) analysis of
a baseline 68Ga-SSTR PET has prognostic value in pNET patients undergoing PRRT [66].
Based on the receiver operating characteristic curve (ROC) analysis, conventional PET
parameters like SUVs failed to predict patient outcomes, demonstrating the need for
alternative predictors. The results indicated 71% accuracy for entropy values predicting OS.
The higher the entropy (with a cut-off > 6.7), the longer the survival (area under the curve
(AUC = 0.71) (see row 2 in Table 3) [66].

Önner et al. [67] showed that the evaluation of tumor heterogeneity using two param-
eters on pretreatment [68Ga]Ga-DOTA-TATE PET/CT, namely, skewness and kurtosis, can
predict the response of patients with GEP NETs to [177Lu]Lu-DOTA-TATE treatment. The
researchers reported that these two features were significantly higher in non-responder
patients (see row 3 in Table 3).

In 2020, Weber et al. [68] statistically examined the role of a subset of TFs derived from
pre-therapeutic [68Ga]Ga-DOTA-TOC PET/MRI and apparent diffusion coefficient (ADC)
maps to predict PRRT response. The lesion volume on ADC maps and the entropy of the
lesions both decreased significantly in the responder patients. No parameters extracted
from PET or ADC maps could predict PRRT response. However, these results should be
interpreted cautiously due to the small sample size with different treatments (PRRT and
conventional therapies) (see row 4 in Table 3).

Ortega et al. [69] utilized parameters of baseline [68Ga]Ga-DOTA-TATE PET/CT
to predict PFS and the treatment response of patients with NETs who received PRRT.
Additionally, an interim PET scan was obtained before the second therapy cycle. The
authors used several metrics in their assessment to measure tumor heterogeneity and SSTR
expression level, which demonstrated predictive capabilities for PFS. However, changes in
these parameters after the first cycle of PRRT did not align with clinical results (see row 5
in Table 3).

Atkinson et al. [70] conducted a pilot study to evaluate the role of texture analysis
(TA) applied to baseline [68Ga]Ga-DOTA-TATE PET/CT regarding the prognostic potential
of tumor heterogeneity and pharmaceutical avidity in patients with NETs who received
[177Lu]Lu-DOTA-TATE RPT. As a result, tumor textural heterogeneity correlated with
shorter PFS. Moreover, kurtosis, skewness, and entropy values derived from PET TA
were all positively correlated with survival rates. In the univariate analysis, a larger
[68Ga]Ga-DOTA-TATE PET uptake tumor area (a newly proposed term by the authors) was
substantially related to poor PFS and OS (see row 6 in Table 3).
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Liberini et al. [71] reported a pilot study to predict RPT response using RFs of lesions
extracted via the [68Ga]Ga-DOTA-TOC PET/CT of two patients with NET. The authors
showed that two parameters might be applied to RPT response assessment and predic-
tion: whole-body (WB) total-lesion somatostatin receptor expression (TLSREwb-50) and
somatostatin receptor-expressing tumor volume (TV) (SRETVwb-50) (see row 7 in Table 3).

Laudicellaet al. [72], in 2022, developed the “theragnomics” (THERAGNOstics +ra-
diOMICS) model, a more robust radiomics model to predict the [177Lu]Lu-DOTA-TOC RPT
response of metastatic patients with GEP NET. The authors analyzed [68Ga]Ga-DOTA-TOC
PET/CT images before and after RPT. Their findings proved that the “theragnomics” model
was superior to conventional quantitative PET parameters in the [177Lu]Lu-DOTA-TOC
RPT response prediction of patients with GEP-NET lesions. Moreover, skewness and
kurtosis were significantly higher in non-responder patients, similar to Önner et al. [67].
Furthermore, compared to Werner et al. [65], SUVmax was not significant in the response
prediction of RPT and only marginally significant for distinguishing bone lesions in RPT
responders and non-responders (see row 8 in Table 3).

3.1.2. 68Ga/177Lu-PSMA

In univariable survival analysis, Grubmüller et al. [39] showed that after administering
two cycles of PSMA-RPT, total tumor volume (TTV) as a first-order RF on PSMA PET had
the potential to assess response in mCRPC patients. There was a significant correlation
between TTV change and OS (see row 1 in Table 2).

In another study in 2020, Seifert et al. [60] evaluated the role of TTV from PSMA-
PET in mCRPC patients’ OS prognosis before [177Lu]Lu-PSMA-617 RPT. For each pa-
tient, the authors quantified three parameters: TTV (PSMA-TV), total lesion uptake
(PSMA-TLU = PSMA-TV × SUVmean), and total lesion quotient (PSMA-TLQ = PSMA-
TV/SUVmean). The results showed a statistically significant negative correlation between
PSMA-TV and OS. Also, OS was better predicted by PSMA-TLQ than PSMA-TV indepen-
dently (see row 4 in Table 2).

Another retrospective study in 2021 by Widjaja et al. [43] reported that 68Ga-PSMA
PET/CT pre-therapeutic imaging parameters could predict the early biochemical response
in patients who underwent [177Lu]Lu-PSMA-617 therapy. In this study, SUVmax signifi-
cantly correlated with a PSA change after two cycles, while neither the PSMA-TV nor WB
total lesion (TL) PSMA correlated (see row 5 in Table 2).

Khreish et al. [45] evaluated the PFS prediction outcome of [177Lu]Lu-PSMA-617 RPT
employing [68Ga]Ga-PSMA-11 PET-derived parameters (SUVpeak and tumor-to-liver ratio
(TLR)). In the univariate analysis, responders with partial remission had significantly longer
PFS than non-responders (either stable or progressive disease). Also, the assessment of
response to TLR in the multivariable analysis was independently associated with PFS (see
row 7 in Table 2).

Rosar et al. [50] explored the role of total viable tumor burden from a [68Ga]Ga-
PSMA-11 PET/CT scan in OS prediction. The researchers semi-automatically determined
total lesion PSMA (TLP) through the segmentation of WB tumor and calculated it as the
summed products of the volume and SUVmean of all lesions. As a result, early TLP changes
independently predicted OS in mCRPC patients who received [177Lu]Lu-PSMA-617 RPT
(see row 12 in Table 2).

Gafita et al. [51] showed the tumor sink effect on [68Ga]Ga-PSMA-11 PET imaging
employing quantitative measurements. The result showed that [177Lu]Lu-PSMA-617 RPT
candidates with high TTV on pre-therapeutic [68Ga]Ga-PSMA-11 PET scan without exceed-
ing organ at risks (OARs) radiation dose limit might benefit from increased RPT activity
(see row 13 in Table 2).

Due to the time-consuming WB PSMA-TV calculation obtained from PSMA PET scans,
in 2022, Hartrampf et al. [52] considered only a limited number of representative lesions.
The study showcased the feasibility of RPT response assessment, using the PSMA-TV and
SUVmax, (of fewer tumor lesions than usual) indicators (see row 14 in Table 2).
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Pathmanandav et al. [53] utilized clinical, blood-sample, and imaging biomarkers
to report the final safety and efficacy results of a phase I/II study. The study was the
combination of [177Lu]Lu-PSMA-617 RPT and a radio-sensitizer called idronoxil (NOX66)
in mCRPC patients. The results showed that PSMA SUVmax was not a treatment response
predictor. In contrast, PSMA SUVmean, PSMA-avid TV, and treatment duration with
an androgen signaling inhibitor were independently correlated with treatment response
outcome (see row 15 in Table 2).

In 2018, Khurshid et al. [40], for the first time, examined the potential of tumor textural
heterogeneity RFs from pre-therapeutic [68Ga]Ga-PSMA PET for [177Lu]Lu-PSMA RPT
response prediction. Their findings indicated a correlation between increasing PSMA
heterogeneity and an enhanced response to PSMA RPT. This contributes to better patient
selection, treatment planning, and improved diagnosis (see row 2 in Table 2).

By employing CT texture analysis and ML technique (Weighted KNN algorithm), Acar
et al. [41] accurately distinguished metastatic and thoroughly responded lesions in patients
imaged through [68Ga]Ga-PSMA-11 PET/CT with previous treatment (chemotherapy,
radiotherapy, hormonotherapy, [177Lu]Lu-PSMA RPT) and known bone metastases. The
authors reported that GLZLM_SZHGE and histogram-based kurtosis RFs are imperative in
separating metastatic and responding sclerotic lesions (see row 3 in Table 2).

Gafita et al. [44], for the first time, developed nomograms with a combination of
clinical and imaging biomarkers via baseline [68Ga]Ga-PSMA-11 PET/CT scans to predict
[177Lu]Lu-PSMA treatment outcome. Nomograms were computed using Cox regression
models with the LASSO penalty for parameter selection. The researchers reported that
higher PSMA expression was correlated with longer OS and PSA-PFS. Moreover, their
nomograms showed that the bone disease was controlled adequately with ¹77Lu with a
limited chance; patients suffering from bone disease had shorter OS and PSA-PFS (see row
6 in Table 2).

As a proof-of-principle, Moazemi et al. [46] conducted a study using RFs on [68Ga]Ga-
PSMA PET/CT and clinical parameters to examine their correlation with the difference in
prostate-specific antigen levels (∆PSA) in pre- and post-therapy using linear regression.
Moreover, the authors employed the ML approach to predict the treatment response of
mCRPC patients who received [177Lu]Lu-PSMA-617 RPT and divided them into responders
and non-responders. The authors proposed the most effective correlating sets of RFs and
clinical parameters with PSA level differences. These sets were further used as surrogate
markers for treatment response analyses. Applying ML classifiers to the response prediction
task showed that RFs were superior to clinical parameters in correlation with the ∆PSA
(see row 8 in Table 2).

Moazemi et al. [47] developed a fully automated clinical decision support tool based
on DL methods for mCRPC patients who underwent [177Lu]Lu-PSMA RPT. The researchers
used a multi-channel UNet to segment 2067 pathological hotspots automatically. Moreover,
the authors predicted the response of [177Lu]Lu-PSMA RPT based on RFs in [68Ga]Ga-
PSMA-PET/CT using supervised ML methods. The authors applied the RFE technique to
the classification problem to identify the most relevant features. As a result, 14 features
were selected. For both automated segmentation and responder prediction tasks, significant
results were achieved. Therefore, the results showed that the facilitated automatic decision
support tool had the potential to screen mCRPC patients under the RPT (see row 9 in
Table 2).

In another study by Moazemi et al. [48], OS prediction in mCRPC patients scheduled
for [177Lu]Lu-PSMA RPT was investigated. The authors employed RFs from [68Ga]Ga-
PSMA PET/CT imaging and patient-specific clinical parameters from 2070 delineated
hotspots. Using a LASSO regression feature selection method, the results showed that PET
kurtosis and SUVmin were significantly correlated with OS (see row 10 in Table 2).

As initial evidence, Roll et al. [49] analyzed the predictive and prognostic value of RFs
from pre-therapeutic [68Ga]Ga-PSMA-11 PET-MRI imaging in 21 mCRPC patients who
underwent [177Lu]Lu-PSMA RPT. After feature selection, the ten most significant inde-
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pendent RFs discriminated responders from non-responders. Moreover, for biochemical
response prediction after RPT, the logistic regression model revealed the highest accuracy.
Furthermore, patients with a biochemical response and higher values of T2 interquartile
range in their PSMA PET imaging showed significantly longer OS (see row 11 in Table 2).

3.2. Restaging

Even though [68Ga]Ga-SSTR and PSMA PET/CT derived RFs have proven to be a
noninvasive tool in primary staging to classify tumors into different groups, some studies
have investigated their pivotal role in the restaging of high-risk patients, leading to en-
hancing the accuracy of the recurrence detection and discrimination of malignancy, and
providing profound prognostic information. Moreover, ML, along with RFs, may predict
disease progression.

Giesel et al. [54], in 2017, showed that CT lymph node (LN) density measurements cor-
related with SUVmax in [68Ga]Ga-DOTA-TOC, [68Ga]Ga-PSMA-11, and F-fluorodeoxyglucose
(FDG)-PET. The authors found a 7.5 HU threshold to differentiate between malignant and
benign infiltration and a 20 HU threshold to exclude benign LN (see rows 16 and 9 in
Tables 2 and 3, respectively). Moazemi et al. [55] employed five ML algorithms on RFs
extracted from 2419 hotspots of [68Ga]Ga-PSMA-11 PET/CT and classified them as benign
(physiologic) or malignant (pathologic) with the same accuracy as the human reader. The
authors achieved better performance using PET and CT than PET or CT alone (see row 17
in Table 2).

In 2021, Erle et al. [56] reported that the radiomics decision-tree classification algo-
rithm has a suitable accuracy in classifying the M and N staging of 2452 hotspots of PCa
patients on the [68Ga]Ga-PSMA-11 PET/CT. The authors showed that combining manual
and automated diagnosis has the potential to predict hotspot labels with high sensitivity.
However, the liver, kidneys, genitourinary (GU) tract, lacrimal, and salivary glands are the
sites where their algorithm had poor performance with a high percentage of false positives
(see row 18 in Table 2).

In mCRPC patients, as the naked eye could not detect metastatic bone disease,
Hinzpeter et al. [57], as a proof of concept, investigated the role of CT RFs from [68Ga]Ga-
PSMA-11 PET/CT in bone metastases discrimination. A gradient-boosted tree was trained
on the 11 most prominent selected features by employing multi-step dimension reduction
and feature selection. The results demonstrated a significant improvement in differentiating
unaffected bone from metastatic bone (see row 1 in Table 2).

3.3. Segmentation

The accurate detection and segmentation of lesions on [68Ga]Ga-SSTR and PSMA
PET/CT images is a prerequisite step for individual-treatment planning with [177Lu]Lu-
SSTR and PSMA to optimize treatment outcomes. Typically, patients with mCRPC and
NETs present with an advanced stage of the disease, characterized by a significant number
of metastatic lesions distributed throughout their body. Therefore, manual segmentation is
not a practical solution in clinical practice because it takes time and effort. In this regard,
several authors developed semi-automatic or automatic segmentation methods [38]. The
semi-automatic segmentation strategy uses [68Ga]Ga-PSMA-SSTR and PSMA PET/CT
imaging biomarkers.

Hammes et al. [58], in 2018, proposed a software tool called EBONI for the evaluation
of bone involvement that semi-automatically quantifies bone metastasis in [68Ga]Ga-PSMA-
11 PET/CT. Their software tool produced results in a rapid (3 min/scan), robust, and
reproducible way. The results indicated a high correlation between the visual and automatic
quantification of bone lesions (see row 20 in Table 2). Zhao et al. [59] developed a triple-
combined 2.5D U-NET architecture to detect and segment disease sites automatically on
[68Ga]Ga-PSMA-11 PET/CT images. The researchers reported that their proposed network
achieved higher accuracy in segmenting bone and lymph node metastases (LNM) than
local lesions detection (see row 21 in Table 2).
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Seifert et al. [42], in 2020, developed and evaluated a software tool to quantify [68Ga]Ga-
PSMA-11 PET/CT biomarkers semi-automatically. The authors applied percental thresh-
olding of PSMA foci in their proposed software; a SUVmax 50% for each focus was used
automatically. Additionally, a NN was utilized to semi-automatically exclude physio-
logic PSMA foci. Moreover, the results indicated that among PSMA PET biomarkers,
PSMA_TV50 was reproducible and quantified easily with the proposed software. Further-
more, PSMA_TV50 significantly predicted OS in patients who received [177Lu]Lu-PSMA-617
RPT (see row 22 in Table 2).

In patients with NETs, Liberini et al. [73] extracted RFs from [68Ga]Ga-DOTA-TOC PET
images and evaluated them according to segmentation methods and intensity discretization.
The authors developed semi-automatic edge-based segmentation (SAEB) and applied three
fixed SUVmax thresholds (20, 30, and 40%). As a result, a SUVmax threshold of 40% provides
superior RF stability among operators, but biological information may be lost. Due to
its superiority over manual segmentation, SAEB segmentation seems to be a promising
alternative, but further validation is needed (row 10 in Table 3).

In NETs, hepatic lesions are prominent sites. However, the identification of these sites
in [68Ga]Ga-DOTA-TATE PET/CT images is challenging due to the high activity of the
normal liver background. Wehrend et al. [74] developed a 2D U-Net CNN for the same pur-
pose, automatically detecting hepatic metastases in [68Ga]Ga-DOTA-TATE PET/CT images.
The authors applied a gradient edge detection method and a pixel noise filter to modify
the boundary definition. The researchers showed that the DL algorithm performance was
improved when the criteria for lesion boundaries more accurately reflected the true lesion
boundary (see row 11 in Table 3).

3.4. Dose Prediction

In molecular radiotherapy, dosimetry-based treatment planning is not yet practicable
for clinical routines, as it has been performed for external beam radiotherapy. Estimating
patient-specific post-therapy dosimetry based on pre-treatment imaging is required to
provide a plan before commencing treatment [77,78]. In this regard, different studies show
that, for example, pre-treatment [68Ga]Ga-SSTR- and [68Ga]Ga-PSMA PET/CT imaging is
not only used to select appropriate candidates for Lu-177-labeled SSTR and PSMA therapies
but also to predict individual post-therapy dosimetry.

Ezziddin et al. [78], in 2012, as a proof of concept, showed that [68Ga]Ga-DOTA-TOC
PET/CT SUV values (SUVmean or SUVmax) of tumor lesions in 21 patients significantly
correlated with the [177Lu]Lu-SSTR AD and treatment response based on serial planar
177Lu imaging. Therefore, SSTR PET uptake may predict the therapeutic dose.

The original cohort study by Violet et al. [79] pointed out that SUV values on [68Ga]Ga-
PSMA PET/CT correlated with the AD of [177Lu]Lu-PSMA RPT and PSA response. The
results showed that SUVmean correlates better with AD in tumor lesions than SUVmax.
These two initial findings and others [80–83] should be further validated on more datasets,
different therapies, and clinical situations. AI models play a critical role in personalized
RPT planning. In this regard, Xue et al. [61] employed the previously developed DoseGAN
software, originally designed for stereotactic body radiation therapy (SBRT), to predict
voxel-wise absorbed dose in [177Lu]Lu-PSMA RLT. This prediction took into considera-
tion pre-therapeutic images from [68Ga]Ga-PSMA PET/CT. The authors trained a GAN
as a dual-input model based on PET/CT information, utilizing 3D absorbed-dose maps
acquired through Hermes Voxel Dosimetry (see row 23 in Table 2). To pre-train their GAN
model, they further generated 266 digital phantoms using the extended cardiac-torso or
XCAT phantoms, employing a physiologically based pharmacokinetic (PBPK) model for
phantom generation [62]. This approach allowed them to simulate diverse PET images
and the spatiotemporal distribution of therapy ligands, ultimately improving dose pre-
diction accuracy (see row 24 in Table 2). In a complementary investigation underscoring
the significance of 3D-kinetic models for dosimetry, Kassar et al. [84] explored data aug-
mentation with a PBPK model in a conditional GAN or cGAN to improve organ-specific
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RLT prediction. Using virtual patient data from realistic simulations, they demonstrated
significant enhancements in dose accuracy when incorporating the PBPK constraint. The
results suggest that aligning network predictions with mechanistic, patient-specific models
addresses limitations in DL for personalized RLT treatment planning.

As a proof of concept, Xue et al. [63,64] investigated the feasibility of the individual
dose prediction of [177Lu]Lu-PSMA-I&T based on pre-therapy [68Ga]Ga-PSMA PET/CT
imaging employing ML techniques (ANN and RFR). The authors compared the accuracy
of their dose prediction results with population-based estimation and found a significant
error in the latter. Nevertheless, their findings should be proved for lesions (see row 25 in
Table 2).

Recently, Akhavanallaf et al. [75] developed ML models to predict therapeutic tumor
dose using pre-therapy 68Ga PET and clinicopathological biomarkers for patients with
metastatic NETs treated with PRRT. This study retrospectively analyzed 90 segmented
metastatic NETs from 25 patients who underwent pre-therapy [68Ga]Ga-DOTA-TATE
PET/CT and SPECT/CT at four time points after 177Lu-DOTA-TATE administration.
SUVmean, TLSUVmean, (SUVmean of total-lesion-burden), and total liver SUVmean were
found to be the most reliable predictors of tumor dose. A trivariate RF model combining
these metrics provided the highest performance in tumor dose prediction. The study
demonstrates the feasibility of using baseline PET images for absorbed dose prediction
prior to 177Lu-PRRT. It forms the groundwork for 68Ga-PET’s role in personalized treatment
planning and patient stratification in the era of precision medicine (see row 12 in Table 3).

In a ground-breaking retrospective study, Plachouris et al. [76] employed the power
of cutting-edge ML regression algorithms to predict OARs absorbed doses in patients
suffering from NETs, sourced from two clinical centers. Their innovative approach involved
integrating radiomic features from [68Ga]Ga-DOTA-TOC PET/CT scans with dosiomic
features extracted from dose maps of [177Lu]Lu-DOTATATERPT treatment cycles. These
radiodosimetric features have the potential to offer insights into the potential recurrence of
any disease and could prove valuable in clinical decision-making, particularly in addressing
dose escalation concerns (see row 13 in Table 3).

4. Application of Radiomics and AI in [18F]PSMA PET/CT Image-Guided RPTS

Pears and pitfalls associated with 68Ga compared to Fluorine-18 (18F) are compre-
hended. 68Ga intrinsic characteristics contribute to image noise. For example, the positron
yield of the 68Ga radioisotope is low, which increases the number of counts and adds
more noise to a scan. Moreover, 68Ga has a significantly higher range and positron energy,
increasing noise and contributing to the partial volume effect. This issue can influence small
lesions’ detectability [85]. Therefore, in recent years, there has been a demand for PSMA
ligand imaging using 18F-labeled radiopharmaceuticals instead of 68Ga compounds due to
their inherent advantages, such as less noise and less urinary bladder activity [85–87].

18F is the most commonly used radioisotope for PET imaging. 18F is produced using a
cyclotron with a high positron emission yield (97%), short half-life (109.7 min), and low
positron energy (0.635 MeV), resulting in high-resolution images because of the short diffu-
sion range. Due to its longer half-life than 68Ga and its ability to be manufactured centrally
and delivered to satellite sites, 18F is more suitable for commercial applications [85].

The first generation of 18F-labeled PSMA ligands is [18F]DCFBC. The drawback of this
radiopharmaceutical is its high background activity, which is addressed by the second-
generation compound [18F]DCFPyL. This PSMA ligand is characterized by its fast urinary
excretion, which could affect the pelvic lesion’s detectability [85]. Recently, [18F]DCFPyL
received FDA approval and was marketed as Pylarifly® [88]. It is difficult to visualize
metastases adjacent to the prostate gland with this radiopharmaceutical [86]. Furthermore,
there is no chelator present in either [18F]DCFBC or [18F]DCFPyL that can bind therapeu-
tic nuclides. Therefore, at different stages of clinical evaluation, alternative [18F]PSMA
ligand pharmaceuticals were employed, and all showed impressive image quality, e.g.,
[18F]PSMA-1007, [18F]AlF-PSMA-1, and [18F]JK-PSMA-7 [85,86]. These ligands have been
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used for many purposes, such as prostate cancer imaging, initial diagnosis, biochemical
recurrence [89], and restaging metastatic lesions [85–87,89].

In the case of [18F]PSMA-1007, structurally related to PSMA-617 (18F is labeled to
DKFZ-PSMA-617 initially developed for 68Ga-ligand), the liver metabolizes the PSMA-
1007 ligand pharmaceutical instead of urinary excretion [87]. Moreover, in a metaphor
for the chemical structure, the uptake of tumors and normal organs are very similar to
[18F]PSMA-1007 and [177Lu]Lu-PSMA-617 compounds [90,91]. Therefore, [18F]PSMA-1007
can be viewed as a well-suited diagnostic equivalent to PSMA-617, which may help guide
the choice of patients referred to PSMA-617 therapy. Also, it can be used for staging and
the detection of PCa recurrence.

Additional investigation with large cohorts must be conducted to demonstrate if
[18F]PSMA-1007 can be used as a theranostics pair for PSMA-617 instead of [68Ga]Ga-PSMA-
11 in the future [85,87,90,92]. Despite having several advantages over [68Ga]Ga-PSMA-11,
[18F]PSMA-1007 also has a major drawback as occasional unspecific bone uptake [57,93].

PSMA is expressed in prostate tissue but is also found in inflammatory and neovascular
tissue. Therefore, activated bone marrow granulocytes and islands, especially in the rips
and extremities, which are favored locations for bone metastases from prostate cancer, may
be a rationale for UBU. Additionally, UBU has been linked to other bone abnormalities
such as fibrous dysplasia or Paget’s disease [94].

One potential areas of research is applying the radiomics concept into the analysis of
clinical [18F]PSMA-1007 PET/CT images. This strategy will provide a better understanding
of the lesion features that accurately depict prostate malignancy and those that show benign
uptake. It will also distinguish bone metastases from non-specific PSMA uptake.

4.1. RPT Response Assessment

PET-derived assessments of TTV imaging biomarkers are expected to play an increas-
ingly significant role in assessing RPT response in mCRPC patients [95,96]. For the first
time, Unterrainer et al. [97], in a pilot study, evaluated baseline or interim TTV in compari-
son to the clinical course of RPT with [225Ac]Ac-PSMA-I&T in thirteen mCRPC patients
with available pre-therapeutic 18F-PSMA-1007 PET/CT. The authors concluded that most
patients qualified for ≥2 cycles of [225Ac]Ac-PSMA-RPT exhibited rapid TTV declines
that were not correlated directly with changes in other indicators, such as serum PSA.
Since TTV reflects the current tumor load without considering the development of newly
formed lesions, evaluating changes in TTV may enhance response assessment compared to
standard response classifiers like RECIST 1.1 and mPERCIST.

4.2. Segmentation

Various approaches and settings for [18F]PSMA-PET/CT have been proposed to
address tumor delineation issues and obtain the accurate representations of lesions that
require functional contours for metabolic quantification in routine clinical practice [98,99].

In a study, Mittlmeier et al. [100] assessed the correlation of different PET-based
delineation thresholds on [18F]PSMA-1007 PET with CT-based large, non-bulky LNM
volume measurements for 50 patients with metastatic prostate cancer. The Shapiro–Wilk
test was used to establish whether the data had a normal distribution, and the results were
then evaluated using Spearman and Pearson correlation coefficients (CC). Irrespective of
potential alterations in PSMA-avidity in background tissues such as parotids, a simple
SUV threshold of 4.0 for the delineation of nodal PCa lesions showed the most substantial
relationship with the volumetric reference standard.

Lau et al. [101] included 275 lesions in 68 patients diagnosed with biochemical recur-
rence after total prostatectomy. The authors measured metabolic parameters on [18F]PSMA-
1007 dual time point PET/CT images using threshold-based and slope-based methods
under different acquisition times. Functional contours were obtained, and prostate cancer
lesions with minimal uptake time fluctuation were quantified. The authors recommended
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the gradient-based method with a high completion rate for segmenting and quantifying
prostate cancer lesions on [18F]PSMA-1007 PET/CT imaging.

Trägårdh et al. [102] developed a freely available, fully automated AI-based method
to detect and quantify suspected prostate tumor/local recurrence, lymph node metastases,
and bone metastases from [18F]PSMA-1007 PET/CT images of 660 patients. A CNN was
trained, validated, and tested on 420, 120, and 120 patients’ datasets, respectively. The
network results were compared with ground truth segmentation accomplished by several
nuclear medicine physicians. The authors assessed tumor burden, including total lesion
volume (TLV) and TLU. The average sensitivity of the AI technique was 79% for detecting
bone metastases, 79% for lymph node metastases, and 79% for prostate tumor recurrence.
The comparable average sensitivities for nuclear medicine physicians were 78%, 78%, and
59%. The TLV and TLU correlations between AI and nuclear medicine physicians ranged
from R = 0.53 to R = 0.83 and were all statistically significant.

One of the main areas of research in the future is employing radiomics and/or AI ap-
proaches to appropriately delineate and quantify the lesions on pre-therapeutic [18F]PSMA-
1007 PET/CT of mCRPC patients for different applications such as RPT monitoring, re-
sponse assessment, and dose prediction. [18F]PSMA-1007 has the potential for a drastic
impact on precision medicine in the coming years.

5. Application of Radiomics and AI in 64Cu SSTR and PSMA Image-Guided RPTS

Somatostatin analogues labeled with 64Cu have been developed, and a head-to-head
comparison of [64Cu]Cu-DOTA-TATE and [68Ga]Ga-DOTA-TOC revealed the former’s
advantages in identifying lesions in patients with NETs [103]. For centers lacking 68Ge/68Ga
generators, 64Cu ligands with a half-life of 12.7 h offer practical benefits because these
ligands can be efficiently delivered from other production facilities. Moreover, the high
target-to-background contrast obtained and the high detection rate of suspected lesions
in NETs patients hold promise for the secure administration of [64Cu]Cu-DOTA-TOC for
NETs patients [104].

64Cu has a superior spatial resolution to 68Ga due to its lower positron range, which
could aid in diagnosing small lesions [103]. Furthermore, a 100% sensitivity and 96.8%
specificity were discovered with no side effects in the phase III clinical trial assessing
[64Cu]Cu-DOTA-TATE PET/CT imaging for NETs [105]. Therefore, considering all of these
advantages, the FDA-approved [64Cu]Cu-DOTA-TOC (also named Detectnet®) can be
implemented for pre-therapy dosimetry or any other logistical concerns in the routine
clinical setting [103,104].

The increased radiation load of 64Cu-DOTA-TATE is a potential issue. The injection
of 180–220 Megabecquerel (MBq) per patient results in a radiation dose of 5.8–8.9 mSv,
roughly two times more than the standard dosage of [68Ga]Ga-DOTA-TOC (120–200 MBq,
2.8–4.6 mSv radiation dose) [103]. Moreover, the inadequate lesion uptake of the radio-
pharmaceutical at late time points is another drawback of [64Cu]Cu-DOTA-TATE PET/CT
imaging. The cause could be that DOTA is not the best chelating agent for Cu-64 since
copper DOTA complexes are too unstable in acidic environments [106].

PSMA-617 was labeled with 64Cu [107] and imaged in first-in-human clinical experi-
ments [108]. There was a high uptake (SUVmax) in metastatic lesions with low background
activity. According to the study’s findings, PET imaging with [64Cu]Cu-PSMA-617 has
a significant role in the primary staging of some patients and patients with recurrent
disease, particularly in centers without access to [68Ga]Ga-PSMA ligands. Following the
theranostics model, [64Cu]Cu-PSMA-617 can be used to choose patients for 177Lu RPT. It
opens the door to pre-therapeutic radiation dosimetry in the context of patient-specific and
individualized RPT in the future [108].

5.1. RPT Response Assessment

In two prospective studies, Carlsen et al. [109,110] evaluated 164 patients with neu-
roendocrine neoplasms (NENs) who underwent [64Cu]Cu-DOTA-TATE PET/CT SSTR
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imaging. According to the first study’s results, the OS and PFS of patients with NETs were
estimated using [64Cu]Cu-DOTA-TATE PET images. Kaplan–Meier (KM) analysis with
log-rank was used to calculate the predictive value of [64Cu]Cu-DOTA-TATE SUVmax for
OS and PFS. Despite not identifying a cut-off to predict OS, the results showed that patients
with a tumor SUVmax value greater than 43.3 had half the chance of disease progression
than those with values of 43.3 or less. The authors reported that, with this cut-off of 43.3 for
SUVmax, PFS could be predicted after 24 months of follow-up with a moderate accuracy
of 57%. It is simple to determine a patient’s maximum tumor SUVmax, but as it repre-
sents the highest somatostatin receptor density, the prediction is likely based on the most
differentiated and least aggressive tumor area [109].

In a later study, Carlsen et al. [110] developed a standardized semi-automated tumor
delineation approach to find the lesion with the lowest uptake. Moreover, the authors
also evaluated the TTV obtained from the semiautomatic tumor delineation. If there was
any association between OS and PFS, it was found using the KM and Cox regression
methods. Compared to the previous technique based on SUVmax [109], 64Cu]Cu-DOTA-
TATE PET/CT significantly improved the prognostic value by assessing the lowest lesion
uptake rather than the highest. Therefore, an improved prognostic classification method
for patients with NENs was created by combining lesion uptake and TTV [110]. In these
two studies, there was no specific matching comparison of the prognostic significance of
68Ga-labeled imaging in the same population. However, it was previously evident that
SUVmax was higher for [64Cu]Cu-DOTA-TATE than [68Ga]Ga-DOTATATE in liver lesions,
lymph nodes, pancreatic lesions, intestinal tumors, and carcinomatosis lesions [103].

5.2. Segmentation

In 2022, Carlsen et al. [111] developed a U-net architecture using the nnU-Net frame-
work for the tumor segmentation of NENs in [64Cu]Cu-DOTA-TATE PET. Among three
[64Cu]Cu-DOTA-TATE datasets (including 127, 31, and 10 PET/CT images), a randomly
selected subset of 117 from dataset (I) was implemented for training and validation. The
test cohort comprised 31 patients from dataset (II) and the remaining ten from dataset
(I). Patients from datasets (I) and (II) were tested to account for any potential effects of
using various PET/CT systems. The authors also tested the AI model on patients from
dataset (III) or patients who had radical surgery and showed no evidence of NEN on
PET/CT. The volume and number of segmentations (if any) were used to evaluate these
patients. A standardized semi-automatic method for tumor segmentation by a physician
produced ground truth segmentations. The proposed AI model had a pixel and lesion-wise
dice score of 0.850 and 0.801 in the test cohort, without manual adjustments. As a result,
their approach produced substantially faster tumor segmentation while maintaining high
concordance with ground truth segmentation. Total tumor segmentation may become more
practical in daily clinical practice with AI.

6. Dosimetry Workflow and Treatment Planning

In current RPT practice, a fixed-dose activity administration based on patient charac-
teristics has been used. This strategy eventually leads to an under-dosage of tumoral lesions
and over-dosage of OARs because the essential rule of patient-specific characteristics, such
as anatomical and functional variations, not to mention variations in the radiation beam
properties, is not considered [112].

The most promising remedy to overcome these limitations is integrating dosimetry-
guided treatment planning into RPT practice [113]. Dosimetry-based treatment takes
rational decisions for dose delivery based on earlier variations to maximize tumor AD
while preventing toxicity to critical organs [114]. Therapeutic radionuclides such as Y-
90, Lu-177, and Ac-225 can be imaged quantitatively, enabling personalized dosimetry
calculations [115–117].

The dosimetry workflow, from image acquisition to absorbed dose calculation, is
shown in Figure 5A. The workflow begins with accurate scanner calibration and the accu-
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rate measurement of administered activity to determine a calibration factor. Serial image
acquisitions are acquired at least at three-time points in order to measure the activity distri-
bution in lesions and target organs. Three imaging protocols are proposed for dosimetry
based on scanner availability: whole-body 2D or planar, 3D, and 2.5D or hybrid acquisitions,
as shown in Figure 5B.
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Medical Internal Radiation Dose (MIRD) pamphlet 16 provides general recommenda-
tions for optimal imaging time points [118]. MIRD pamphlet 23 guides SPECT quantifi-
cation based on patient-specific dosimetry [119]. Moreover, MIRD pamphlet 26 considers
177Lu SPECT quantification in RPT dosimetry [120].

The next step is image correction for adverse effects, such as artifacts, distortions, and
noise. Time-integrated activity (TIA) or cumulative activity is essential for dosimetry in the
next step. Analytical methods are applied to plot the time–activity curve (TAC) of activities
related to the first to last time points. The TIA for each delineated tissue is estimated via the
TAC time integral [22]. The last step is the absorbed dose calculation to convert cumulative
activities into absorbed doses. In this regard, there are two principal methodologies: (I)
organ or phantom-based, and (II) voxel or patient-based.

The organ or phantom-based dosimetry approach is based on a formalism provided by
the MIRD committee that calculates the mean AD of target-source organs per radioactive
decay. This approach employs computational phantoms to model the TIAs and physical
features of the radionuclides, called S-values [121,122]. These models consist of three
approaches: local energy deposition (LED); dose point kernel, voxel S-value; and Monte
Carlo (MC) simulation (Figure 5C).

The gold standard and the most accurate personalized dosimetry method is the direct
MC simulation of radiation transport. This can consider both heterogeneous activities
and medium distributions. However, extensive computational time, effort, and resources
provide this level of accuracy, precluding its application in clinical routines [22,123].

Although a magic bullet for fast and accurate internal dosimetry is not recommended,
researchers are progressing slowly. Recently, the EANM committee provided recommenda-
tions for the dosimetry of [177Lu]Lu-SSTR and [177Lu]Lu-PSMA [5].

7. Role of AI in Dosimetry Workflow of 177Lu-SSTR and PSMA RPT

AI has the potential to be used in the internal dosimetry workflow to make it more
efficient, qualified, reproducible, and feasible in daily clinical practice [124]. In this regard,
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AI can be applied to different dosimetry steps: image acquisition, image quantification,
image registration, image segmentation, kinetic modeling, dose assessment, and dose
prediction, to name but a few. The following is a summary of studies that applied AI in
different steps of [177Lu]Lu-SSTR and [177Lu]Lu-PSMARPT dosimetry procedures.

7.1. Image Acquisition and Quantification

AI-based image quantification algorithms are increasing gradually for different modal-
ities and applications to ease clinical decision-making [125]. In the dosimetry practice,
the quantification process has the potential to be enhanced by AI. Serial PET or SPECT
acquisitions of 2–3 bed positions to cover the critical organs with attenuation, scatter, and
collimator–detector response corrected ordered subset expectation maximization (OSEM)
reconstructions are necessary for image quantification and for enabling accurate 177Lu
kinetics. This step is complicated, time-consuming, and modality-dependent. It can take 30
to 60 min for each time point. However, the available camera time is limited and requires
restricted acquisition times per bed position for patient comfort, reducing motion artifacts
and image noise [126,127].

AI is an ideal tool to streamline this step, according to a recent study by Rydén
et al. [128], which successfully reduced SPECT/CT acquisition time by reducing projection
numbers. In this effort, the authors developed a U-shaped CNN to generate synthetic inter-
mediate projections (SIPs) of [177Lu]Lu-DOTA-TATE SPECT to avoid image degradation. A
total of 352, 37, and 15 SPECT images, each consisting of 30 projections (selected as every
fourth projection out of 120), were employed for the training, validation, and testing of
three separate CNN models. During the training phase, the researchers utilized In-111 and
Lu-177 data, whereas for the testing phase, only Lu-177 data were employed.

The output was 30 SIPs. The authors evaluated their network through raw data
of SPECT/CT images from both a Jaszczak cylinder phantom with six hot spheres and
15 patients treated with [177Lu]Lu-DOTA-TATE. Activity concentrations of kidneys were
determined through different SPECT images to compare. The results indicated that kidney
activity concentration is comparable using different projection sets. The statistical results
revealed that the quality of SPECT images was improved by adding SIPs to sparsely
sampled projection data. Their proposed approach reduced scan-time duration on the one
hand and avoided image degradation on the other.

7.2. Image Segmentation

The most challenging task in dosimetry workflow is the manual segmentation of OARs
and tumors. The estimated absorbed radiation dose of delineated OARs and tumors highly
depends on segmentation accuracy. Manual segmentation methods such as threshold,
shape-based, watershed, and region-grow are error-prone, time-consuming, operator-
dependent, and susceptible to intra- [129,130] and inter-operator variability [131,132].

The SNMMI Dosimetry Task Force “challenge” conducted an international project
to identify, understand, and characterize variations in dosimetry workflow [133]. For the
same imaging data from two patients administered with [177Lu]Lu-DOTA-TATE, different
radiation dose estimates were reported from different centers worldwide, indicating varia-
tions in methods used in each dosimetry step. Variations in curve fitting and segmentation
of the region of interest (ROI) or volume of interest (VOI) play crucial roles [133].

Automated tumor segmentation has emerged in most research areas to address all
the shortcomings of manual or semiautomatic segmentation procedures [38]. A review by
Brosch-Lenz et al. [124] discussed prominent and emerging segmentation methods and
their possible applications in RPT dosimetry. The following are just a few studies that
applied DL segmentation algorithms accurately and relatively fast to [177Lu]Lu-PSMA or
[177Lu]Lu-SSTR dosimetry.

Jackson et al. [134] showed how to detect and segment kidneys automatically on non-
contrast CT images with a 3D U-Net model. The authors trained a model on 89 manually
segmented cases and tested it on patients who underwent [177Lu]Lu-PSMA-617 RPT. The
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authors achieved accurate contours in around 90 s with mean dice coefficients of 0.91 and
0.86 for the left and right kidneys, respectively. Although results for three patients with
cystic regions in their kidneys showed poor performance, their manual and automated
algorithms revealed moderately similar mean radiation AD results.

Another proposed study on automated kidney segmentation by Ryden et al. [135]
aimed at the dosimetry of Lu-177-based SPECT/CT images. The researchers developed a
3-D UNet dual-input model trained on 119 SPECT/CT images and validated on 13 images.
Their results showed that incorporating both SPECT and CT is necessary to obtain accurate
and precise segmentation. SPECT quantification failings are sometimes due to organ
movements between SPECT and CT images. The results of both studies were promising;
however, the application of 3D DL algorithms, which are computationally expensive and
not suitable for daily clinical practice, should be considered.

Nazari et al. resolved this issue [136] by developing a modified 2.5D CNN model
to automatically delineate the organ borders using post-treatment CT images of patients
treated with [177Lu]Lu-DOTATOC. The authors developed a CNN model based on the
mask-rcnn structure, capable of segmenting kidneys and liver, with dice scores of 94% and
93%, respectively. Moreover, the authors estimated the kidney dosimetry results of eight
patients with automated segmentation. The results showed a 7% difference from manual
segmentation by two medical physicists.

7.3. Dose Estimation

MC simulation, as the gold standard for voxel-level patient-specific dosimetry, suffers
from extensive computational time and resources, so its application is limited in daily
clinical practice [137]. AI is one of the first proposed solutions to improve patient-specific
dosimetry accuracy and computational efficacy.

Lately, DL methods have been employed to generate accurate 3D absorbed dose maps
or dose rate maps with a considerable reduction in computation time. In light of this idea,
Lee et al. [138] were the first group to prove the feasibility of the DL method in estimating
the voxel dose. To assess angiogenesis, the authors applied U-Net deep neural architecture
to the 3D PET/CT image patch of 68Ga-NOTA-RGD with the matrix and voxel sizes of 48
× 48 × 24 and 2.6 × 2.67 × 5 mm3, respectively. Their results showed comparable results
with MC simulation but significantly lower computation time.

Gotz et al. [139] applied a hybrid modified U-Net/empirical mode decomposition
method to estimate individual dose rate maps for patients who received the [177Lu]Lu-
PSMA RPT. The authors used SPECT and CT images as dual inputs for training to provide
a MIRD-based voxelized dose map and a patient-specific tissue density map, respectively.

Melodia et al. [140] employed CNN to estimate dose voxel kernels (DVKs) using CT
density maps for the first time. The authors verified their network on an actual patient
SPECT/CT and assumed that the decay distribution was known. Gotz et al. [141] applied
the same approach and trained a NN with MC simulations of WB CT as inputs to predict
DVK for kidney dosimetry of 26 patients undergoing therapy with [177Lu]Lu-PSMA or
[177Lu]Lu-DOTA-TOC.

Most of the mentioned works feed their networks using MC simulation to provide
ground-truth data. Although this simulation was performed only once, providing a full-
scale training dataset is challenging due to expensive MC computation. In this regard,
Ahavanallaf et al. [142] extended the voxel-wise MIRD strategy from a single S-value kernel
into specific S-value kernels based on patient-specific anatomy. The authors predicted the
distribution of deposited energy in the whole-body organ-level dosimetry of [18F]FDG
PET imaging. Also, the authors compared their network performance against direct MC
practice. It should also be mentioned that the proposed strategy has not, thus far, been
implemented for RLT or PRRT dosimetry.

One of the network training limitations in the mentioned studies is the inaccurate
ground truth dose distributions derived from SPECT-based activity maps because of a
poor SPECT imaging resolution. Li et al. [143] trained and tested a deep residual CNN
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using MC-generated dose-rate maps of virtual patient phantoms to overcome this issue
and generate reliable dose-rate maps. The phantoms corresponded to the activity/density
maps of 13 patients who underwent [68Ga]Ga-DOTA-TATE PET/CT scans. Moreover, the
authors verified their network on 42 SPECT/CT scans of patients who underwent [177Lu]Lu
-DOTA-TATE. Compared to DVK and MC approaches, their model called “DblurDoseNet”
improved accuracy, resolution, noise reduction, and speed across multiple regions (kidneys,
lumbar vertebra, and lesions in soft tissues and lung), making it possible to be used in
clinical treatment planning.

To overcome the computational burden of MC simulations, Dewaraja et al. developed
an automated voxel dosimetry pipeline. Essential steps in their PRRT dosimetry workflow
included organ (but not tumor) segmentation, registration, dose-rate estimation, and curve
fitting, which were automated using an integrated workflow. Using CNN, organs on CT
were automatically segmented through SPECT/CT images. The authors employed the fast
dose-planning method MC code to estimate the dose rate using explicit MC. A function
was selected automatically for each voxel, which was more optimal to fit the dose rate.
Data from four time-point SPECT/CT images of 20 patients with 77 NETs, who underwent
[177Lu]Lu-SSTR PRRT, was utilized.

The entire automated dosimetry, including CNN organ segmentation, co-registration,
MC dosimetry, and voxel curve fitting, was processed on a desktop computer in 25 min.
Their state-of-the-art tool could be implemented in clinical dosimetry-guided RPTs. To
establish generalizability, more training/testing datasets are needed.

8. Role of AI in Dosimetry Workflow of 90Y SSTR and PSMA RPT

Yttrium-90 (90Y), a theranostic agent with a physical half-life of 64.1 h, can be used in
PRRT and RLT [116,144,145]. The pure emission of high-energy β− particles from 90Y pro-
duces a continuous spectrum of Bremsstrahlung radiation. In dosimetry, Bremsstrahlung
emissions or very low positron emissions can quantify 90Y. Therefore, the post-administration
activity quantification of 90Y becomes challenging due to internal photon scattering and
high additional background from the Bremsstrahlung radioactivity [146].

There is a growing concern and effort in developing specialized reconstruction tech-
niques to optimize 90Y quantification and promote its accuracy. In this regard, methods
based on MC simulation modeling [146,147] and NNs [148–150] have been proposed, al-
though the latter is preferred due to computationally intensive MC-based simulations.
Using AI for SPECT image reconstruction was explored and showed better quantification
results than conventional SPECT reconstruction methods, such as OSEM [151].

Xiang et al. [148] developed a deep CNN (DCNN) with 13 layers for fast scattering
projection estimation from 90Y SPECT/CT images. The training dataset was from high-
count MC-simulated anthropomorphic and non-anthropomorphic digital phantom data.
The three testing data included a simulated sphere phantom, a liver phantom measurement,
and patients. The estimated scatter projections were fed into the OSEM reconstruction
algorithm to compensate for scattering [148]. Regarding accuracy and computation time,
the DCNN for test data that involved patient investigations was in reasonable agreement
with MC simulation results at a fraction of the time. Using a single desktop processor, the
DCNN generated a patient scatter projection for 128 views in 1 min. This was approximately
three orders of magnitude faster than MC’s Bremsstrahlung scattering estimation.

9. Clinical Perspectives on Radiomics and AI

The complexity of patient-specific dosimetry poses challenges for implementation and
puts a substantial burden on medical physicists, technologists, and physicians. A prerequi-
site for personalizing RPTs is not only accuracy and reliability but also practicality. Routine
development of personalized medicine will become more likely through developments
that automate, simplify, or accelerate the dosimetry workflow steps. A key component of
personalized RPT in the future will involve the use of radiomics and AI methods in the
field of radiotheranostics. Personalized therapies can be easily implemented in clinical set-
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tings with the assistance of emerging AI research and applications in quantitative imaging,
segmentation, absorbed dose estimation, absorbed dose prediction, and outcome model-
ing. Nevertheless, this transition is not without its challenges, and the implementation of
personalized RPTs requires careful consideration of limitations and uncertainties [152].

Currently, patient-specific RPTs are not routinely implemented in clinical settings [113].
In recent years, the emergence of radiomics and AI has provided a means to streamline these
tasks, with the possibility of integrating them into clinical practice. In this work, possible
applications of radiomics and AI in the clinical radiotheranostics scenario are highlighted.
The intention is to inspire the community to broaden and align efforts to achieve routine
and reliable RPTs personalization. In this regard, comprehensive validation and fine-
tuning on larger patient cohorts are necessary to refine personalized RPT strategies and
facilitate clinical translation. Furthermore, radiomics and AI applications in clinical practice
remain challenging and remain to emerge. Image reconstruction algorithms, gray-level
intensity discretization, and tumor segmentation methods all influence the measurement
of quantitative imaging biomarkers [26,153]. These factors may affect the robustness,
repeatability, and reproducibility of the variables and their outcomes. As such, there is a
need to increase the robustness of these tools. For instance, the radiomics quality score
(RQS) and the imaging biomarker standardization initiative (IBSI) have been introduced to
enhance radiomics robustness, offering methodological guidance and standardization for
high-throughput image analysis [26,154]. By improving the understanding of the technical
aspects of radiomics and AI, these instruments contribute to gradual harmonization and
standardization. With this advancement, radiomics and AI will have more tangible and
less hypothetical applications in clinical settings in the future.

10. Discussion and Future Directions

Recent advances in AI have gained considerable attention in the nuclear medicine
field. Recently, the SNMMI AI task force published “best practices for algorithm devel-
opment” and “best practices for evaluation (the RELIANCE guidelines)” and provided
recommendations for developing AI algorithms in nuclear medicine, likewise principally
concerned radiomic investigations [32,155].

Saboury et al. [156] proposed a roadmap toward trustworthy AI ecosystems in nuclear
medicine. The authors referred to the twelve key elements of trustworthiness in AI systems
entitled “human agency”, “oversight”, “technical robustness”, “safety”, “privacy”, “prede-
termined change control plan”, “security”, “diversity and bias awareness”, “stakeholder
participation”, “transparency and explainability”, “sustainability of societal well-being”,
and the last but not least, “fairness and supportive context of implementation”. In massive
imaging or biological datasets associated with patient results, modern AI methods uncover
hidden but meaningful patterns. AI can, therefore, supplement radiomics [157].

The traditional radiomics methodology extracts hand-crafted or engineered features
from a segmented ROI or VOI. However, DL’s recent advancements have led to a trend
for DL-based radiomics. In light of the advantages of these two methods, hybrid solutions
were created to take advantage of different data sources. Moreover, ML algorithms may
be employed for mining large quantities of radiomic features. These features may be
augmented with additional clinical data or omics to find associations, eliminate redundancy,
build tractable representations in low-dimension spaces, or develop prediction models.
Furthermore, unsupervised ML can be used to select pertinent features for a task or combine
associated input features into a more manageable set of elements [32,157].

To the best of our knowledge, this paper is the first review of the current applications of
radiomics and AI methods, in both pre-therapeutic radiolabeled-SSTR and PSMA PET/CT
or PET/MR images for different tasks. Our primary focus is on studies that extracted
image parameters from radiolabeled-SSTR and PSMA PET/CT images for different tasks,
such as predicting treatment response, restaging, segmentation, and dose prediction using
various analysis methods, including univariate and multivariate statistical analyses and
ML approaches.
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This paper also addresses the application of DL in PRRT and RLT dosimetry. The
OS of patients with NETs and mCRPC treated with [177Lu]Lu-SSTR and PSMA RPTs was
significantly improved. However, this improvement was not observed in all patients [15,21].
As such, one of the underlying approaches to providing better performance for all patients
undergoing RPTs is personalized treatment plans, which are made possible through precise
and reliable dosimetry calculations. At the same time, the dosimetry workflow for RPT
needs to be improved and facilitated in routine clinical practice. In this respect, DL-based
methods contribute more to RPT dosimetry workflows.

The pivotal subject of the included radiomics studies was RLT and PRRT response
prediction. Several studies extracted RFs from radioisotopes labeled-SSTR and PSMA
PET/CT to predict treatment response/outcomes. Even though most of the literature is
focused on [68Ga]Ga-SSTR and PSMA PET/CT, there are a few studies on [64Cu]Cu-DOTA-
TATE [109,110] and [18F]PSMA-1007 [97].

Since conventional PET parameters, such as SUV and volume, showed controversial
results regarding dose prediction or PRRT response or outcomes [66,72], several studies
employed texture features and obtained promising results for response prediction. Interest-
ingly, Laudicellaet et al.’s [72] and Önner et al.’s [67] results in PRRT response prediction
were similar in the best-obtained RFs, skewness, and kurtosis.

Employing [68Ga]Ga-SSTR and PSMA PET/MRI RFs for RPT purposes is scarce in the
literature, and the results are controversial. Weber et al. [68] utilized TFs from [68Ga]Ga-
SSTR PET/MRI and obtained no parameters from either PET or ADC maps that could
predict PRRT response [68]. However, the results of extracting RFs from [68Ga]Ga-PSMA
PET/MRI by Roll et al. [49] are promising.

In the case of extracting RFs from [68Ga]Ga-PSMA PET, some works highlighted
the importance of employing ML models to predict RLT outcomes/responses [41,46–49].
The implementation of RFs from [68Ga]Ga-SSTR and PSMA PET/CT provided profound
prognostic information regarding the restaging of patients with high-risk NETs or mCRPC
through different studies. In some cases, ML algorithms were employed to differentiate
benign from malignant [54], to classify M- and N-stages [56], or to discriminate bone
metastases [57] with significant results.

Some studies focused on implementing RFs from radiolabeled-SSTR and PSMA
PET/CT for semi-automatic segmentation. The authors used different methods, such as
threshold-based [60,100], edge-based [73], and gradient edge [74], to increase the delineated
targets’ robustness. Some authors proposed practical solutions to quantify [68Ga]Ga-PSMA
and [64Cu]Cu-DOTA-TATE PET/CT biomarkers semi-automatically [58–60,109,110].

Several studies have been dedicated to predicting ADs before PRRT and RLT using
extracted RFs from pre-therapeutic [68Ga]Ga-SSTR and PSMA PET/CT scans. This idea was
first proposed in 2012 to find a correlation between conventional parameters of pre-therapy
[68Ga]Ga-DOTA-TOC PET scan with the dose distribution of post-RPT and has continued
until now [78]. As a preliminary study, Xue et al. [63,64] recently used ML techniques
with RFs extracted from [68Ga]Ga-PSMA PET/CT imaging and proved the feasibility of
pre-therapeutic RLT dosimetry estimation.

To date, the scientific literature lacks studies that specifically address the pre-therapy
dose prediction of 90Y and 225Ac RPTs. Furthermore, in the context of 177Lu RPT, no study
employed other radioisotopes-labeled-SSTR and PSMA than 68Ga for this task.

Finally, a notable advancement in RLT and PRRT is the integration of DL techniques
into the dosimetry workflow. Image-based dosimetry workflow from image acquisition
to dose estimation is very complicated, takes significant time and effort, and is prone to
human errors. Accordingly, DL-based methods have been introduced to alleviate dosimetry
complexity in each step. In [177Lu]Lu-SSTR–or PSMA RPT dosimetry, a few studies imple-
mented DL methods in image quantification [128], image segmentation [134–136], and dose
estimation [139–141,143]. Furthermore, Dewaraja et al. [158] developed fully automated
voxel dosimetry in PRRT, including automated organ segmentation, registration, dose-rate
estimation, and curve-fitting steps in the internal dosimetry workflow.
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There is missing research in the literature, to our knowledge, on the use of AI-based
methods in the dosimetry workflow at 225Ac and 90Y RPT. Considering the quantitative
imaging challenges associated with 225Ac and 90Y RPT, AI emerges as a promising solution
to address this issue, thereby presenting a potential avenue for future research [148–151].
Despite the significant and promising results of the studies that employed DL in the
dosimetry workflow, the literature body is inadequate, especially in the case of 90Y and
225Ac. Further investigation is required, emphasizing clinical applications.

Different studies showed that RFs extracted from radiolabeled-SSTR and PSMA PET
scans can play an essential role in various tasks. However, there were several variations,
such as variability in study design, scanner setup, patient selection, sample size, patient
movement, injected activity, segmentation methods, RFs computation, image reconstructive
procedures, and data analysis methodologies.

In terms of ML analysis, the variability in the distribution of the dataset, training
and validation methods, optimization process, and the choice of hyperparameters and ML
algorithms has an enormous impact on the interpretation of the final results. Furthermore,
the presence of variabilities significantly hampers the robustness, reproducibility, and
repeatability of the extracted RFs. Consequently, the current feasibility of applying RFs
derived from radiolabeled-SSTR and PSMA PET/CT or PET/MRI in clinical PRRT or RLT
practice remains limited.

Non-Gallium-68 radiopharmaceuticals, such as [18F]PSMA-1007, [64Cu]Cu-PSMA-617,
[64Cu]Cu-DOTA-TATE, and [44Sc]Sc-PSMA-617, with a longer half-life than gallium-68
and ability to detect small lesions, can potentially be used further for different tasks, such
as RPT response monitoring and pre-therapeutic dose prediction, to improve accuracy
and speed.

Radiomics has shown its capability for response prediction, restaging, segmentation,
and dose prediction in theranostics radiolabeled-SSTR and PSMA pairs. Therefore, in the
future, more radiomics studies should be conducted with large sample sizes. Moreover,
the robustness, standardization, harmonization, repeatability, and reproducibility of RFs
should be considered. In this sense, independent datasets for model validation are a
practical solution. For more valuable results in the future, combining imaging RFs with
clinical features and imaging phenotypes would be essential.

Another issue to consider in future research is data sharing for more investigations
into radiomics’ usefulness in improving results close to routine clinical practice. Moreover,
developing more AI methods for dosimetry estimation and prediction is recommended.
There are measures computed from 3D absorbed dose maps called dosiomic features that
can be used to train AI models in outcome prediction and enable further personalized
therapies. DL approaches possess the inherent capability to identify reliable predictors
of outcome and can aid in the development of models for tumor control probability and
radiation-induced normal tissue toxicity.

Furthermore, augmenting AI models with additional information, such as radiobi-
ological parameters and physical equations, holds the potential to yield more reliable
and accurate results. By incorporating these factors into the AI modeling process, we
can enhance the understanding of the underlying radiobiology and physical interactions
involved in PRRT and RLT. This integrated approach has the potential to improve treatment
planning, optimize dose predictions, and ultimately enhance the overall efficacy and safety
of PRRT and RLT procedures.

In precision medicine, digital twin models as virtual representations of a patient use
real-time data along with simulation and ML to help decision-making [159]. Similarly,
in precision oncology, by using digital twins, a disease and its suitable treatments can
be accurately modeled [160]. In this regard, Rahmim et al. [161] envisioned theranostic
digital twins (TDTs) as a way of overcoming one-size-fits-all therapeutic schemes in the
future. TDTs can efficiently and accurately design personalized RPTs, including optimized
intervention parameters. Examples are optimizing injected radioactivities, injection sites,
injection intervals and profiles, and combining therapies. As a result of the use of all avail-
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able patient-specific information, such as multimodal, multiscale images, combined with
other data and assisted using AI techniques, it is possible to simulate different treatment
scenarios. Patients are often digitally twinned in this manner, allowing clinicians to provide
a higher level of care and select more effective RPTs (e.g., individualized injected radioactiv-
ity). In addition, TDTs can be continuously updated with new patient data (see Figure 2 in
reference [161]) to ensure personalized treatment toward more optimal outcomes [161–164].

11. Conclusions

We have provided an elaborate overview of state-of-the-art radiomics and AI ap-
plications for theranostic applications of radioligands targeting SSTR and PSMA. Such
applications have the significant potential to improve diagnosis and treatment monitoring
by adding quantitative information to an expert’s visual analysis. Considering the promis-
ing results in the presented studies, it will be necessary for future researchers to reproduce
and validate these findings with a sufficient population of patients. This will pave the way
for generating significant scientific evidence to translate potential applications of radiomics
and AI into clinical practice. It will also expand the use of dosimetry-based therapies in
managing patients undergoing RPTs. To overcome the difficulties in the reproducibility
and generalization of radiomics and AI studies, conducting multi-center studies through
data sharing and harmonization seems indispensable. It is important to focus on the use of
radiomic signatures, biological properties, and physical models in network architecture
training. Overall, such applications have the tremendous potential to further enhance
patient outcomes.
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