Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (223)

Search Parameters:
Keywords = quantum heterostructure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4770 KiB  
Article
Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor
by Shan-Diao Xu, Li-Cheng Wu, Muhammad Adil, Lin-Feng Sheng, Zi-Yue Zhao, Kui Xu and Xin Chen
Batteries 2025, 11(8), 289; https://doi.org/10.3390/batteries11080289 (registering DOI) - 1 Aug 2025
Abstract
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. Full article
Show Figures

Graphical abstract

10 pages, 1855 KiB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 130
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

13 pages, 5624 KiB  
Article
Identification of Hexagonal Boron Nitride Thickness on SiO2/Si Substrates by Colorimetry and Contrast
by Elena Blundo, Niklas H. T. Schmidt, Andreas V. Stier and Jonathan J. Finley
Appl. Sci. 2025, 15(15), 8400; https://doi.org/10.3390/app15158400 - 29 Jul 2025
Viewed by 102
Abstract
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat [...] Read more.
Hexagonal boron nitride (hBN) is a layered material with a wide variety of excellent properties for emergent applications in quantum photonics using atomically thin materials. For example, it hosts single-photon emitters that operate up to room-temperature, it can be exploited for atomically flat tunnel barriers, and it can be used to form high finesse photonic nanocavities. Moreover, it is an ideal encapsulating dielectric for two-dimensional (2D) materials and heterostructures, with highly beneficial effects on their electronic and optical properties. Depending on the use case, the thickness of hBN is a critical parameter and needs to be carefully controlled from the monolayer to hundreds of layers. This calls for quick and non-invasive methods to unambiguously identify the thickness of exfoliated flakes. Here, we show that the apparent color of hBN flakes on different SiO2/Si substrates can be made to be highly indicative of the flake thickness, providing a simple method to infer the hBN thickness. Using experimental determination of the colour of hBN flakes and calculating the optical contrast, we derived the optimal substrates for the most reliable hBN thickness identification for flakes with thickness ranging from a few layers towards bulk-like hBN. Our results offer a practical guide for the determination of hBN flake thickness for widespread applications using 2D materials and heterostructures. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

10 pages, 1762 KiB  
Article
Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots
by Si-Yuan Ma, Ying Wang, Yuriy I. Mazur, Morgan E. Ware, Gregory J. Salamo and Bao Lai Liang
Optics 2025, 6(3), 33; https://doi.org/10.3390/opt6030033 - 23 Jul 2025
Viewed by 238
Abstract
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting [...] Read more.
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting the interplay between carrier localization in the WL and carrier relaxation from the WL to the QDs. Carrier dynamics related to localization, injection, and recombination are further validated by time-resolved photoluminescence (TRPL). These findings highlight the necessity of carefully optimizing GaSb/GaAs QD structures to mitigate the impact of carrier localization, thereby enhancing the ultimate performance of devices utilizing these QDs as active region materials. Full article
Show Figures

Graphical abstract

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 308
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 272
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

22 pages, 2603 KiB  
Review
Core–Shell Engineering of One-Dimensional Cadmium Sulfide for Solar Energy Conversion
by Rama Krishna Chava and Misook Kang
Nanomaterials 2025, 15(13), 1000; https://doi.org/10.3390/nano15131000 - 27 Jun 2025
Viewed by 368
Abstract
Fabricating efficient photocatalysts that can be used in solar-to-fuel conversion and to enhance the photochemical reaction rate is essential to the current energy crisis and climate changes due to the excessive usage of nonrenewable fossil fuels. To attain high photo-to-chemical conversion efficiency, it [...] Read more.
Fabricating efficient photocatalysts that can be used in solar-to-fuel conversion and to enhance the photochemical reaction rate is essential to the current energy crisis and climate changes due to the excessive usage of nonrenewable fossil fuels. To attain high photo-to-chemical conversion efficiency, it is important to fabricate cost-effective and durable catalysts with high activity. One-dimensional cadmium sulfides (1D CdS), with higher surface area, charge carrier separation along the linear direction, and visible light harvesting properties, are promising candidates for converting solar energy to H2, reducing CO2 to commodity chemicals, and remediating environmental pollutants. The main disadvantage of CdS is photocorrosion due to the leaching of S2− ions during the photochemical reactions, and further charge recombination rate leads to low quantum efficiency. Therefore, the implementation of core–shell heterostructured morphology, i.e., the growth of the shell on the surface of the 1D CdS, which offers unique features such as protection of CdS from photocorrosion, a tunable interface between the core CdS and shell, and photogenerated charge carrier separation via heterojunctions, provides additional active sites and enhanced visible light harvesting. Therefore, the viability of the core–shell synthesis strategy and synergetic effects offer a new way of designing photocatalysts with enhanced stability and improved charge separation in solar energy conversion systems. This review highlights some critical aspects of synthesizing 1D CdS core–shell heterostructures, underlying reaction mechanisms, and their performance in photoredox reactions. Finally, some challenges and considerations in the fabrication of 1D CdS-based core–shell nanostructures that can overcome the current barriers in industrial applications are discussed. Full article
Show Figures

Figure 1

16 pages, 3258 KiB  
Article
Breaking the Efficiency–Quality Tradeoff via Temperature–Velocity Co-Optimization: Multiscale Calculations and Experimental Study of Epitaxial Growth of Iridium on MgO(100)
by Yang Wang, Junhao Chen, Shilin Yang and Jiaqi Zhu
Crystals 2025, 15(6), 580; https://doi.org/10.3390/cryst15060580 - 19 Jun 2025
Viewed by 257
Abstract
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the [...] Read more.
The precise control of thermal–kinetic parameters governs epitaxial perfection in functional oxide heterostructures. Herein, using Iridium/MgO(100) as a model system, the traditional “low-speed/high-temperature” paradigm is revolutionized through the combination of ab initio calculations, multiscale simulations, and subsequent deposition experiments. First-principles modeling reveals the mechanisms of Volmer–Weber (VW, island growth mode) nucleation at low coverage and Stranski–Krastanov (SK, layer-plus-island growth) transitions driven by interface metallization, stress release, and energy reduction, which facilitates coherent monolayer formation by lowering the energy barrier by ~34%. Molecular dynamics simulations demonstrate that the strategic co-optimization of substrate temperature (Tsub) and deposition rate (Vdep) induces an abrupt cliff-like drop in mosaic spread. Experimental validations confirm that this T-V synergy achieves unprecedented interfacial coherence, whereby AFM roughness reaches 0.34 nm (RMS) and the XRC-FWHM of 0.13° approaches single-crystal benchmarks. Notably, our novel “accelerated heteroepitaxy” protocol reduces growth time without compromising quality, addressing the efficiency–quality paradox in industrial-scale diamond substrate fabrication. These findings establish universal thermal–kinetic design principles applicable to refractory metal/oxide heterostructures for next-generation quantum sensors and high-power electronic devices. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

13 pages, 1877 KiB  
Article
Enhanced C3H6O and CO2 Sensory Properties of Nickel Oxide-Functionalized/Carbon Nanotube Composite: A Comprehensive Theoretical Study
by Evgeniy S. Dryuchkov, Sergey V. Boroznin, Irina V. Zaporotskova, Natalia P. Boroznina, Govindhasamy Murugadoss and Shaik Gouse Peera
J. Compos. Sci. 2025, 9(6), 311; https://doi.org/10.3390/jcs9060311 - 19 Jun 2025
Viewed by 388
Abstract
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications [...] Read more.
Carbon nanotubes (CNTs) functionalized with metal oxides exhibit synergistic properties that enhance their performance across various applications, particularly in electrochemistry. Recent advancements have highlighted the potential of CNT–metal oxide heterostructures, with a specific focus on their electrochemical properties, which are pivotal for applications in sensors, supercapacitors, batteries, and catalytic systems. Among these, nickel oxide (NiO)-modified CNTs have garnered significant attention due to their cost-effectiveness, facile synthesis, and promising gas-sensing capabilities. This study employs quantum-chemical calculations within the framework of density functional theory (DFT) to elucidate the interaction mechanisms between CNTs and NiO. The results demonstrate that the adsorption process leads to the formation of stable CNT-NiO complexes, with detailed analysis of adsorption energies, equilibrium distances, and electronic structure modifications. The single-electron spectra and density of states (DOS) of the optimized complexes reveal significant alterations in the electronic properties, particularly the modulation of the energy gap induced by surface and edge functionalization. Furthermore, the interaction of CNT-NiO composites with acetone (C3H6O) and carbon dioxide (CO2) is modeled, revealing a physisorption-dominated mechanism. The adsorption of these gases induces notable changes in the electronic properties and charge distribution within the system, underscoring the potential of CNT-NiO composites for gas-sensing applications. This investigation provides a foundational understanding of the role of metal oxide modifications in tailoring the sensory activity of CNTs toward trace amounts of diverse substances, including metal atoms, inorganic molecules, and organic compounds. The findings suggest that CNT-NiO systems can serve as highly sensitive and selective sensing elements, with potential applications in medical diagnostics and environmental monitoring, thereby advancing the development of next-generation sensor technologies. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Figure 1

18 pages, 9120 KiB  
Review
Atomic Manipulation of 2D Materials by Scanning Tunneling Microscopy: Advances in Graphene and Transition Metal Dichalcogenides
by Tingting Wang, Lingtao Zhan, Teng Zhang, Yan Li, Haolong Fan, Xiongbai Cao, Zhenru Zhou, Qinze Yu, Cesare Grazioli, Huixia Yang, Quanzhen Zhang and Yeliang Wang
Nanomaterials 2025, 15(12), 888; https://doi.org/10.3390/nano15120888 - 8 Jun 2025
Viewed by 727
Abstract
This review provides a comprehensive overview of recent advances in atomic-scale manipulation of two-dimensional (2D) materials, particularly graphene and transition metal dichalcogenides (TMDs), using scanning tunneling microscopy (STM). STM, originally developed for high-resolution imaging, has evolved into a powerful tool for precise manipulation [...] Read more.
This review provides a comprehensive overview of recent advances in atomic-scale manipulation of two-dimensional (2D) materials, particularly graphene and transition metal dichalcogenides (TMDs), using scanning tunneling microscopy (STM). STM, originally developed for high-resolution imaging, has evolved into a powerful tool for precise manipulation of 2D materials, enabling translational, rotational, folding, picking, and etching operations at the nanoscale. These manipulation techniques are critical for constructing custom heterostructures, tuning electronic properties, and exploring dynamic behaviors such as superlubricity, strain engineering, phase transitions, and quantum confinement effects. We detail the fundamental mechanisms behind STM-based manipulations and present representative experimental results, including stress-induced bandgap modulation, tip-induced phase transformations, and atomic-precision nanostructuring. The versatility and cleanliness of STM offer unique advantages over conventional transfer methods, paving the way for innovative applications in nanoelectronics, quantum devices, and 2D material-based systems. Finally, we discuss current challenges and future prospects of integrating STM manipulation with advanced computational techniques for automated nanofabrication. Full article
Show Figures

Figure 1

63 pages, 12842 KiB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1012
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

30 pages, 4446 KiB  
Review
Electrical Transport Interplay with Charge Density Waves, Magnetization, and Disorder Tuned by 2D van der Waals Interface Modification via Elemental Intercalation and Substitution in ZrTe3, 2H-TaS2, and Cr2Si2Te6 Crystals
by Xiao Tong, Yu Liu, Xiangde Zhu, Hechang Lei and Cedomir Petrovic
Nanomaterials 2025, 15(10), 737; https://doi.org/10.3390/nano15100737 - 14 May 2025
Viewed by 667
Abstract
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay [...] Read more.
Electrical transport in 2D materials exhibits unique behaviors due to reduced dimensionality, broken symmetries, and quantum confinement. It serves as both a sensitive probe for the emergence of coherent electronic phases and a tool to actively manipulate many-body correlated states. Exploring their interplay and interdependence is crucial but remains underexplored. This review integratively cross-examines the atomic and electronic structures and transport properties of van der Waals-layered crystals ZrTe3, 2H-TaS2, and Cr2Si2Te6, providing a comprehensive understanding and uncovering new discoveries and insights. A common observation from these crystals is that modifying the atomic and electronic interface structures of 2D van der Waals interfaces using heteroatoms significantly influences the emergence and stability of coherent phases, as well as phase-sensitive transport responses. In ZrTe3, substitution and intercalation with Se, Hf, Cu, or Ni at the 2D vdW interface alter phonon–electron coupling, valence states, and the quasi-1D interface Fermi band, affecting the onset of CDW and SC, manifested as resistance upturns and zero-resistance states. We conclude here that these phenomena originate from dopant-induced variations in the lattice spacing of the quasi-1D Te chains of the 2D vdW interface, and propose an unconventional superconducting mechanism driven by valence fluctuations at the van Hove singularity, arising from quasi-1D lattice vibrations. Short-range in-plane electronic heterostructures at the vdW interface of Cr2Si2Te6 result in a narrowed band gap. The sharp increase in in-plane resistance is found to be linked to the emergence and development of out-of-plane ferromagnetism. The insertion of 2D magnetic layers such as Mn, Fe, and Co into the vdW gap of 2H-TaS2 induces anisotropic magnetism and associated transport responses to magnetic transitions. Overall, 2D vdW interface modification offers control over collective electronic behavior, transport properties, and their interplays, advancing fundamental science and nanoelectronic devices. Full article
Show Figures

Figure 1

20 pages, 5614 KiB  
Article
Heterostructures of CdSe Quantum Dots and g-C3N4 Applied as Electrochemiluminescent Probes for the Detection of Hydrogen Peroxide in Human Serum
by Roodney Alberto Carrillo Palomino, Aylén Di Tocco, Gastón Darío Pierini, Gabriela Valeria Porcal and Fernando Javier Arévalo
Chemosensors 2025, 13(5), 171; https://doi.org/10.3390/chemosensors13050171 - 7 May 2025
Viewed by 551
Abstract
In this work, we developed a highly sensitive and reproducible electrochemiluminescent sensor based on a heterostructure of cadmium selenide quantum dots capped with 3-mercaptopropionic acid (MPA) + 3-morpholinoethanesulfonic acid (MES) (QDs CdSe) and carbon nitride nanosheets (g-C3N4) for the [...] Read more.
In this work, we developed a highly sensitive and reproducible electrochemiluminescent sensor based on a heterostructure of cadmium selenide quantum dots capped with 3-mercaptopropionic acid (MPA) + 3-morpholinoethanesulfonic acid (MES) (QDs CdSe) and carbon nitride nanosheets (g-C3N4) for the detection of H2O2 in lyophilized serum samples. To enhance the sensor sensitivity, g-C3N4 nanosheets were utilized as a platform to immobilize the QDs CdSe. An exhaustive characterization of the heterostructure was conducted, elucidating the interaction mechanism between QDs CdSe and g-C3N4. It was revealed that g-C3N4 acts as a hole (h+) donor, while QDs CdSe act as energy acceptors in a resonance energy transfer process, with the electrochemiluminescence emission originating from the QDs CdSe. The electrochemiluminescence intensity decreases in the presence of H2O2 due to the deactivation of the excited states of the QDs CdSe. This electrochemiluminescent sensor demonstrates exceptional performance for detecting H2O2 in aqueous systems, achieving a remarkably low limit of detection (LOD) of 1.81 nM, which is more sensitive than most reported sensors to detect H2O2. The applicability of the sensor was successfully tested where sub-µM levels of H2O2 were accurately quantified. These results highlight the potential of this electrochemiluminescent sensor as a reliable and pre-treatment-free tool for H2O2 detection in biochemical studies and human health applications. Full article
Show Figures

Graphical abstract

15 pages, 7924 KiB  
Article
Strain Engineering of Anisotropic Electronic, Transport, and Photoelectric Properties in Monolayer Sn2Se2P4
by Haowen Xu and Yuehua Xu
Nanomaterials 2025, 15(9), 679; https://doi.org/10.3390/nano15090679 - 30 Apr 2025
Viewed by 447
Abstract
In this study, we demonstrate that the Sn2Se2P4 monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium [...] Read more.
In this study, we demonstrate that the Sn2Se2P4 monolayer exhibits intrinsic anisotropic electronic characteristics with the strain-synergistic modulation of carrier transport and optoelectronic properties, as revealed by various levels of density functional theory calculations combined with the non-equilibrium Green’s function method. The calculations reveal that a-axis uniaxial compression of the Sn2Se2P4 monolayer induces an indirect-to-direct bandgap transition (from 1.73 eV to 0.97 eV, as calculated by HSE06), reduces the hole effective mass by ≥70%, and amplifies current density by 684%. Conversely, a-axis uniaxial expansion (+8%) boosts ballistic transport (a/b-axis current ratio > 105), rivaling black phosphorus. Notably, a striking negative differential conductance arises with the maximum Ipeak/Ivalley in the order of 105 under the 2% uniaxial compression along the b-axis of the Sn2Se2P4 monolayer. Visible-range anisotropic absorption coefficients (~105 cm−1) are achieved, where −4% a-axis strain elevates the photocurrent density (6.27 μA mm−2 at 2.45 eV) and external quantum efficiency (39.2%) beyond many 2D materials benchmarks. Non-monotonic strain-dependent photocurrent density peaks at 2.00 eV correlate with hole effective mass reduction patterns, confirming the carrier mobility of the Sn2Se2P4 monolayer as the governing parameter for photogenerated charge separation. These results establish Sn2Se2P4 as a multifunctional material enabling strain-tailored anisotropy for logic transistors, negative differential resistors, and photovoltaic devices, while guiding future investigations on environmental stabilization and heterostructure integration toward practical applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

35 pages, 5269 KiB  
Article
The Quantum Transport of Dirac Fermions in Selected Graphene Nanosystems Away from the Charge Neutrality Point
by Adam Rycerz
Materials 2025, 18(9), 2036; https://doi.org/10.3390/ma18092036 - 29 Apr 2025
Viewed by 616
Abstract
The peculiar electronic properties of graphene, including the universal dc conductivity and the pseudodiffusive shot noise, are usually found in a small vicinity close to the charge neutrality point, away from which the electron’s effective mass raises, and nanostructures in graphene start to [...] Read more.
The peculiar electronic properties of graphene, including the universal dc conductivity and the pseudodiffusive shot noise, are usually found in a small vicinity close to the charge neutrality point, away from which the electron’s effective mass raises, and nanostructures in graphene start to behave similarly to familiar Sharvin contacts in semiconducting heterostructures. Recently, it was pointed out that as long as abrupt potential steps separate the sample area from the leads, some graphene-specific features can be identified relatively far from the charge neutrality point. These features include greater conductance reduction and shot noise enhancement compared to the standard Sharvin values. The purpose of this paper is twofold: First, we extend the previous analysis based on the effective Dirac equation, and derive the formulas that allow the calculation of the arbitrary charge transfer cumulant for doped graphene. Second, the results of the analytic considerations are compared with numerical simulations of quantum transport on the honeycomb lattice for selected nanosystems for which considerations starting from the Dirac equation cannot be directly adapted. For a wedge-shaped constriction with zigzag edges, the transport characteristics can be tuned from graphene-specific (sub-Sharvin) values to standard Sharvin values by varying the electrostatic potential profile in the narrowest section. A similar scenario is followed by the half-Corbino disk. In contrast, a circular quantum dot with two narrow openings showing a mixed behavior appears: the conductance is close to the Sharvin value, while the Fano factor approaches the value characterizing the symmetric chaotic cavity. Carving a hole in the quantum dot to eliminate direct trajectories between the openings reduces the conductance to sub-Sharvin value, but the Fano factor is unaffected. Our results suggest that experimental attempts to verify the predictions for the sub-Sharvin transport regime should focus on systems with relatively wide openings, where the scattering at the sample edges is insignificant next to the scattering at the sample–lead interfaces. Full article
(This article belongs to the Special Issue Quantum Transport in Novel 2D Materials and Structures)
Show Figures

Figure 1

Back to TopTop