Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (216)

Search Parameters:
Keywords = pulmonary vascular dysfunction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4051 KiB  
Review
Right Heart Evaluation: A Tough Challenge for Clinicians
by Martina Pucci, Luca Maria Capece, Mariateresa Pontoriero, Daniele Paoletta, Marina Iacono, Francesca La Rocca, Roberto Luise and Roberta Esposito
Life 2025, 15(8), 1194; https://doi.org/10.3390/life15081194 - 27 Jul 2025
Viewed by 277
Abstract
The right heart–pulmonary circulation unit (RH-PCU) constitutes an integrated anatomo-functional system characterized by high-volume blood flow, low intravascular pressure, and minimal pulmonary vascular resistance. The RH-PCU dysfunction is a challenge for clinicians, as it can result from numerous pathological conditions, each with different [...] Read more.
The right heart–pulmonary circulation unit (RH-PCU) constitutes an integrated anatomo-functional system characterized by high-volume blood flow, low intravascular pressure, and minimal pulmonary vascular resistance. The RH-PCU dysfunction is a challenge for clinicians, as it can result from numerous pathological conditions, each with different clinical presentations. The pathophysiological changes underlying the hemodynamic alterations in the pressure and volume affecting the right ventricle can lead the patient to present with the primary symptom: dyspnea. We review the clinical presentation, the laboratory test, and the role of multimodality imaging in the evaluation of the disfunction of the RHPCU, including echocardiography, stress echocardiography, computed tomography, magnetic resonance imaging, nuclear imaging, and invasive pressure measurement through catheterization. We therefore aimed to describe the various diagnostic options available to clinicians, evaluating their effectiveness and limitations of use. Full article
Show Figures

Figure 1

22 pages, 5657 KiB  
Article
SUL-150 Limits Vascular Remodeling and Ventricular Failure in Pulmonary Arterial Hypertension
by Lysanne M. Jorna, Dalibor Nakládal, Johannes N. van Heuveln, Diederik E. van der Feen, Quint A. J. Hagdorn, Guido P. L. Bossers, Annemieke van Oosten, Michel Weij, Ludmila Tkáčiková, Soňa Tkáčiková, Robert H. Henning, Martin C. Harmsen, Rolf M. F. Berger and Guido Krenning
Int. J. Mol. Sci. 2025, 26(15), 7181; https://doi.org/10.3390/ijms26157181 - 25 Jul 2025
Viewed by 200
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis of PAH and secondary right ventricular failure, and its targeting may offer therapeutic benefit. In this study, we provide proof-of-concept for the use of the mitochondrially active drug SUL-150 to treat PAH. PAH was induced in rats by monocrotaline, followed by the placement of an aortocaval shunt one week later. The mitoprotective compound SUL-150 (~6 mg·kg−1·day−1) or vehicle was administered intraperitoneally via osmotic minipump for 28 days, implanted at the time of aortocaval shunt placement. Vehicle-treated PAH rats had dyspnea and showed pulmonary artery remodeling with increased responsiveness to phenylephrine, in addition to remodeling of the intrapulmonary arterioles. SUL-150 administration mitigated the dyspnea and the remodeling responses. Vehicle-treated PAH rats developed right ventricular hypertrophy, fibrosis, and failure. SUL-150 administration precluded cardiomyocyte hypertrophy and inhibited ventricular fibrogenesis. Right ventricular failure in vehicle-treated PAH rats induced mitochondrial loss and dysfunction associated with a decrease in mitophagy. SUL-150 was unable to prevent the mitochondrial loss but improved mitochondrial health in the right ventricle, which culminated in the preservation of right ventricular function. We conclude that SUL-150 improves PAH-associated morbidity by the amelioration of pulmonary vascular remodeling and right ventricular failure and may be considered a promising therapeutic candidate to slow disease progression in pulmonary arterial hypertension and secondary right ventricular failure. Full article
Show Figures

Figure 1

17 pages, 896 KiB  
Review
Analysis of Phosphodiesterase-5 (PDE5) Inhibitors in Modulating Inflammatory Markers in Humans: A Systematic Review and Meta-Analysis
by Cassandra Cianciarulo, Trang H. Nguyen, Anita Zacharias, Nick Standen, Joseph Tucci and Helen Irving
Int. J. Mol. Sci. 2025, 26(15), 7155; https://doi.org/10.3390/ijms26157155 - 24 Jul 2025
Viewed by 331
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. [...] Read more.
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. A systematic review and meta-analysis were conducted to evaluate the impact of PDE5 inhibitors on inflammatory and endothelial markers in adult humans. Randomized controlled trials comparing PDE5 inhibition to placebo were identified through electronic database searches. Outcomes included pro-inflammatory markers (TNF-α, IL-6, IL-8, CRP, VCAM-1, ICAM-1, P-selectin) and anti-inflammatory or signalling markers (IL-10, NO, cGMP), assessed at short-term (≤1 week), intermediate-term (4–6 weeks), or long-term (≥12 weeks) follow-up. Risk of bias was assessed using the Cochrane RoB 2 tool. A total of 20 studies comprising 1549 participants were included. Meta-analyses showed no significant short-term effects of PDE5 inhibition on TNF-α, IL-6, or CRP. Long-term treatment was associated with reduced IL-6 (SMD = −0.64, p = 0.002) and P-selectin (SMD = −0.57, p = 0.02), and increased cGMP (SMD = 0.87, p = 0.0003). Effects on IL-10 and nitric oxide were inconsistent across studies. Most trials had low risk of bias. PDE5 inhibitors may exert anti-inflammatory effects in long-term use by reducing vascular inflammation and enhancing cGMP signalling. These findings support further investigation of PDE5 in chronic inflammatory conditions. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Viewed by 325
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

9 pages, 418 KiB  
Review
The Occult Cascade That Leads to CTEPH
by Charli Fox and Lavannya M. Pandit
BioChem 2025, 5(3), 22; https://doi.org/10.3390/biochem5030022 - 23 Jul 2025
Viewed by 157
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, [...] Read more.
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare, progressive form of pre-capillary pulmonary hypertension characterized by persistent, organized thromboemboli in the pulmonary vasculature, leading to vascular remodeling, elevated pulmonary artery pressures, right heart failure, and significant morbidity and mortality if untreated. Despite advances, CTEPH remains underdiagnosed due to nonspecific symptoms and overlapping features with other forms of pulmonary hypertension. Basic Methodology: This review synthesizes data from large international registries, epidemiologic studies, translational research, and multicenter clinical trials. Key methodologies include analysis of registry data to assess incidence and risk factors, histopathological examination of lung specimens, and molecular studies investigating endothelial dysfunction and inflammatory pathways. Diagnostic modalities and treatment outcomes are evaluated through observational studies and randomized controlled trials. Recent Advances and Affected Population: Research has elucidated that CTEPH arises from incomplete resolution of pulmonary emboli, with subsequent fibrotic transformation mediated by dysregulated TGF-β/TGFBI signaling, endothelial dysfunction, and chronic inflammation. Affected populations are typically older adults, often with prior venous thromboembolism, splenectomy, or prothrombotic conditions, though up to 25% have no history of acute PE. The disease burden is substantial, with delayed diagnosis contributing to worse outcomes and higher societal costs. Microvascular arteriopathy and PAH-like lesions in non-occluded vessels further complicate the clinical picture. Conclusions: CTEPH is now recognized as a treatable disease, with multimodal therapies—surgical endarterectomy, balloon pulmonary angioplasty, and targeted pharmacotherapy—significantly improving survival and quality of life. Ongoing research into molecular mechanisms and biomarker-driven diagnostics promises earlier identification and more personalized management. Multidisciplinary care and continued translational investigation are essential to further reduce mortality and optimize outcomes for this complex patient population. Full article
(This article belongs to the Special Issue Feature Papers in BioChem, 2nd Edition)
Show Figures

Figure 1

15 pages, 785 KiB  
Review
Systemic Sclerosis: A Key Model of Endothelial Dysfunction
by Vincenzo Zaccone, Lorenzo Falsetti, Silvia Contegiacomo, Serena Cataldi, Devis Benfaremo and Gianluca Moroncini
Biomedicines 2025, 13(7), 1771; https://doi.org/10.3390/biomedicines13071771 - 19 Jul 2025
Viewed by 371
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by vascular alterations, immune dysregulation, and fibrosis. Solid evidence supports the hypothesis that endothelial dysfunction is the key player in SSc vascular injury and a critical factor concurring to the initiation of SSc pathogenesis. This [...] Read more.
Systemic sclerosis (SSc) is a heterogeneous disease characterized by vascular alterations, immune dysregulation, and fibrosis. Solid evidence supports the hypothesis that endothelial dysfunction is the key player in SSc vascular injury and a critical factor concurring to the initiation of SSc pathogenesis. This narrative review reports on persistent endothelial dysfunction, resulting from oxidative stress, autoimmunity, and impaired vascular repair, in the course of SSc, and how it can trigger and sustain fibrotic remodeling of various organs. In this paper, we also analyze the impact on SSc of impaired angiogenesis and vasculogenesis, diminished endothelial progenitor cell function, and endothelial-to-mesenchymal transition, which can collectively disrupt vascular homeostasis and promote myofibroblast activation. These pathologic events underlie the hallmark clinical manifestations, i.e., Raynaud’s phenomenon, digital ulcers, pulmonary arterial hypertension, and scleroderma renal crisis. The review highlights how recognizing SSc as a paradigm of systemic endothelial dysfunction may reframe our understanding of its physiopathology, modify current therapeutic strategies, and unveil new therapeutic targets. Full article
(This article belongs to the Special Issue Role of Endothelial Cells in Cardiovascular Disease—2nd Edition)
Show Figures

Figure 1

22 pages, 2627 KiB  
Review
Pulmonary Hypertension: Let’s Take Stock!
by Michele Cacia, Egidio Imbalzano, Vincenzo Antonio Ciconte and Marco Vatrano
Life 2025, 15(7), 1137; https://doi.org/10.3390/life15071137 - 18 Jul 2025
Viewed by 272
Abstract
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH [...] Read more.
Pulmonary hypertension (PH) encompasses a group of conditions characterized by elevated pulmonary arterial pressure, with pulmonary arterial hypertension (PAH) representing a distinct and severe subset. This review provides a comprehensive overview of the current classification system, highlighting the five clinical groups of PH and the specific hemodynamic criteria defining PAH. We discuss the complex pathophysiological mechanisms underlying PAH, including vascular remodeling, endothelial dysfunction, and genetic predisposition. Advances in diagnostic approaches are explored. Current treatment strategies targeting key molecular pathways such as endothelin, nitric oxide, and prostacyclin are reviewed alongside novel and investigational therapies. Prognostic indicators and risk stratification tools are evaluated to guide clinical management. Finally, we underscore the critical role of expert centers in accurate diagnosis, multidisciplinary care, and enrollment in clinical trials, which collectively improve patient outcomes in this challenging disease spectrum. Full article
Show Figures

Figure 1

27 pages, 1136 KiB  
Review
Metabolic Disturbances Involved in Cardiovascular Diseases: The Role of Mitochondrial Dysfunction, Altered Bioenergetics and Oxidative Stress
by Donatella Pietrangelo, Caroline Lopa, Margherita Litterio, Maria Cotugno, Speranza Rubattu and Angela Lombardi
Int. J. Mol. Sci. 2025, 26(14), 6791; https://doi.org/10.3390/ijms26146791 - 15 Jul 2025
Viewed by 342
Abstract
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart [...] Read more.
The study of metabolic abnormalities regarding mitochondrial respiration and energy production has significantly advanced our understanding of cell biology and molecular mechanisms underlying cardiovascular diseases (CVDs). Mitochondria provide 90% of the energy required for maintaining normal cardiac function and are central to heart bioenergetics. During the initial phase of heart failure, mitochondrial number and function progressively decline, causing a decrease in oxidative metabolism and increased glucose uptake and glycolysis, leading to ATP depletion and bioenergetic starvation, finally contributing to overt heart failure. Compromised mitochondrial bioenergetics is associated with vascular damage in hypertension, vascular remodeling in pulmonary hypertension and acute cardiovascular events. Thus, mitochondrial dysfunction, leading to impaired ATP production, excessive ROS generation, the opening of mitochondrial permeability transition pores and the activation of apoptotic and necrotic pathways, is revealed as a typical feature of common CVDs. Molecules able to positively modulate cellular metabolism by improving mitochondrial bioenergetics and energy metabolism and inhibiting oxidative stress production are expected to exert beneficial protective effects in the heart and vasculature. This review discusses recent advances in cardiovascular research through the study of cellular bioenergetics in both chronic and acute CVDs. Emerging therapeutic strategies, specifically targeting metabolic modulators, mitochondrial function and quality control, are discussed. Full article
(This article belongs to the Special Issue Molecular Research in Cardiovascular Disease, 3rd Edition)
Show Figures

Figure 1

14 pages, 1167 KiB  
Article
Role of Extracellular Vesicles in Chronic Post-Embolic Pulmonary Hypertension: Data from an Experimental Animal Model and Patients
by Elva Mendoza-Zambrano, Verónica Sánchez-López, Belén Gómez-Rodríguez, Inés García-Lunar, Daniel Pereda-Arnau, Luis Jara-Palomares, Teresa Elías-Hernández, Ana García-Álvarez and Remedios Otero-Candelera
Biomedicines 2025, 13(6), 1499; https://doi.org/10.3390/biomedicines13061499 - 18 Jun 2025
Viewed by 461
Abstract
Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) involves a multifaceted interplay of factors, including incomplete thrombus resolution, endothelial dysfunction, and vascular remodeling. Recent studies have highlighted the role of extracellular vesicles (EVs) in vascular diseases, suggesting their potential involvement in [...] Read more.
Background: The pathogenesis of chronic thromboembolic pulmonary hypertension (CTEPH) involves a multifaceted interplay of factors, including incomplete thrombus resolution, endothelial dysfunction, and vascular remodeling. Recent studies have highlighted the role of extracellular vesicles (EVs) in vascular diseases, suggesting their potential involvement in CTEPH progression. This study aims to investigate the role of EVs from various cellular sources in the development of CTEPH. Methods: An experimental study was conducted using 11 male three-month-old Large-White pigs. The EVs of endothelial origin (EEVs; CD146+), leukocyte-derived EVs (LEVs; CD45+, CD44+), and consistent with mesenchymal-origin EVs (CD90+, CD105+) were quantified. Measurements were taken at baseline, after the first embolization, and prior to each subsequent weekly embolization. Embolizations were repeated until chronic pulmonary hypertension (PH) was generated. Based on these findings, a clinical case-control study was performed involving nine patients previously diagnosed with CTEPH and 18 patients with pulmonary embolism who did not develop CTEPH after two years of follow-up. Results: The experimental study, consistent with the mesenchymal-origin EVs, exhibited a progressive decrease below baseline levels; LEVs decreased after PH was established, while EEVs remained elevated throughout the study. Subsequently, in the clinical case-control study, CD45+ LEVs emerged as a significant association of CTEPH, with an odds ratio (OR) of 21.25 (95% CI: 1.91–236.00; p = 0.013). Conclusions: Inflammation involving LEVs and EEVs plays a crucial role in sustaining the vascular alterations leading to pulmonary vasculature remodeling in CTEPH. Full article
(This article belongs to the Special Issue Molecular and Translational Research in Cardiovascular Disease)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
The Role of Ventricular Assist Devices in Patients with Ischemic vs. Non-Ischemic Cardiomyopathy
by Eglė Rumbinaitė, Dainius Karčiauskas, Grytė Ramantauskaitė, Dovydas Verikas, Gabrielė Žūkaitė, Liucija Rancaitė, Barbora Jociutė, Gintarė Šakalytė and Remigijus Žaliūnas
J. Pers. Med. 2025, 15(6), 241; https://doi.org/10.3390/jpm15060241 - 10 Jun 2025
Viewed by 855
Abstract
Background: The HeartMate 3 (HM3) left ventricular assist device (LVAD) has demonstrated improved clinical outcomes in patients with advanced heart failure (HF). However, the influence of underlying HF etiology—ischemic cardiomyopathy (ICM) versus dilated cardiomyopathy (DCM)—on post-implantation outcomes remains insufficiently characterized. Objectives: This [...] Read more.
Background: The HeartMate 3 (HM3) left ventricular assist device (LVAD) has demonstrated improved clinical outcomes in patients with advanced heart failure (HF). However, the influence of underlying HF etiology—ischemic cardiomyopathy (ICM) versus dilated cardiomyopathy (DCM)—on post-implantation outcomes remains insufficiently characterized. Objectives: This paper aims to evaluate early postoperative outcomes following HM3 LVAD implantation in patients with ICM versus DCM and to identify the preoperative hemodynamic and clinical predictors of early mortality and hemodynamic instability. Methods: We conducted a retrospective single-center cohort study of 30 patients who underwent HM3 LVAD implantation between 2017 and 2024. Patients were stratified by HF etiology (ICM, n = 17; DCM, n = 13), and preoperative clinical, echocardiographic, and right heart catheterization data were analyzed. The primary endpoint was 30-day postoperative survival. Secondary endpoints included postoperative hemodynamic stability and the need for vasopressor support. Results: Non-survivors (n = 13) demonstrated elevated central venous pressure (>16.5 mmHg), mean right ventricular pressure (>31.5 mmHg), and pulmonary vascular resistance (>7.5 Wood units), in addition to higher preoperative creatinine levels and longer cardiopulmonary bypass times. Vasopressor requirement postoperatively was associated with elevated pre-implant systolic pulmonary artery pressure. Conclusions: Preoperative right-sided pressures and renal dysfunction are strong predictors of early mortality following HM3 LVAD implantation. Patients with ICM exhibit greater early left ventricular recovery compared to those with DCM. These findings underscore the importance of comprehensive and personalized preoperative risk stratification—particularly in patients with DCM and pulmonary hypertension—to optimize postoperative outcomes and guide patient selection for durable LVAD support. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

20 pages, 993 KiB  
Review
Anticoagulation in Patients with End-Stage Renal Disease: A Critical Review
by FNU Parul, Tanya Ratnani, Sachin Subramani, Hitesh Bhatia, Rehab Emad Ashmawy, Nandini Nair, Kshitij Manchanda, Onyekachi Emmanuel Anyagwa, Nirja Kaka, Neil Patel, Yashendra Sethi, Anusha Kavarthapu and Inderbir Padda
Healthcare 2025, 13(12), 1373; https://doi.org/10.3390/healthcare13121373 - 8 Jun 2025
Viewed by 1858
Abstract
Background: Chronic kidney disease (CKD) and its advanced stage, end-stage renal disease (ESRD), affect millions worldwide and are associated with a paradoxical hemostatic imbalance—marked by both increased thrombotic and bleeding risks—which complicates anticoagulant use and demands clearer, evidence-based clinical guidance. Design: This study [...] Read more.
Background: Chronic kidney disease (CKD) and its advanced stage, end-stage renal disease (ESRD), affect millions worldwide and are associated with a paradoxical hemostatic imbalance—marked by both increased thrombotic and bleeding risks—which complicates anticoagulant use and demands clearer, evidence-based clinical guidance. Design: This study is a critical review synthesizing the current literature on anticoagulant therapy in CKD and ESRD, with emphasis on altered pharmacokinetics, clinical complications, and therapeutic adjustments. Data Sources: PubMed, Scopus, and Google Scholar were searched for articles discussing anticoagulation in CKD/ESRD, focusing on pharmacokinetics, clinical outcomes, and dosing recommendations. Study Selection: Studies examining the safety, efficacy, and pharmacokinetics of anticoagulants—including heparin, low-molecular-weight heparin (LMWH), warfarin, and direct oral anticoagulants (DOACs)—in CKD and ESRD populations were included. Data Extraction and Synthesis: Key findings were summarized to highlight the dose modifications, therapeutic considerations, and clinical challenges in managing anticoagulation in CKD/patients with ESRD. Emphasis was placed on balancing thrombotic and bleeding risks and identifying gaps in existing guidelines. Results: Patients with CKD and ESRD exhibit a paradoxical hypercoagulable state marked by platelet dysfunction, altered coagulation factors, and vascular endothelial damage. This condition increases the risk of thrombotic events, such as deep vein thrombosis (DVT) and pulmonary embolism (PE), while simultaneously elevating bleeding risks. Hemodialysis and CKD-associated variables further complicate the management of coagulation. Among anticoagulants, unfractionated heparin (UFH) is preferred due to its short half-life and adjustability based on activated partial thromboplastin time (aPTT). Low-molecular-weight heparins (LMWHs) offer predictable pharmacokinetics but require dose adjustments in CKD stages 4 and 5 due to reduced clearance. Warfarin necessitates careful dosing based on the estimated glomerular filtration rate (eGFR) to maintain an international normalized ratio (INR) ≤ 4, minimizing bleeding risks. Direct oral anticoagulants (DOACs), particularly Apixaban, are recommended for patients with eGFR < 15 mL/min or those on dialysis, although data on other DOACs in CKD remain limited. The lack of comprehensive guidelines for anticoagulant use in CKD and ESRD highlights the need for individualized, patient-centered approaches that account for comorbidities, genetics, and clinical context. Conclusions: Managing anticoagulation in CKD/ESRD is challenging due to complex coagulation profiles and altered pharmacokinetics. Judicious dosing, close monitoring, and patient-centered care are critical. High-quality randomized controlled trials are needed to establish clear guidelines and optimize therapy for this vulnerable population. Full article
Show Figures

Graphical abstract

19 pages, 7883 KiB  
Article
Differential Effects of Human Immunodeficiency Virus Nef Variants on Pulmonary Vascular Endothelial Cell Dysfunction
by Amanda K. Garcia, Noelia C. Lujea, Javaria Baig, Eli Heath, Minh T. Nguyen, Mario Rodriguez, Preston Campbell, Isabel Castro Piedras, Edu Suarez Martinez and Sharilyn Almodovar
Infect. Dis. Rep. 2025, 17(3), 65; https://doi.org/10.3390/idr17030065 - 6 Jun 2025
Viewed by 710
Abstract
Background: Human Immunodeficiency Virus (HIV) infections remain a source of cardiopulmonary complications among people receiving antiretroviral therapy. Still to this day, pulmonary hypertension (PH) severely affects the prognosis in this patient population. The persistent expression of HIV proteins, even during viral suppression, has [...] Read more.
Background: Human Immunodeficiency Virus (HIV) infections remain a source of cardiopulmonary complications among people receiving antiretroviral therapy. Still to this day, pulmonary hypertension (PH) severely affects the prognosis in this patient population. The persistent expression of HIV proteins, even during viral suppression, has been implicated in vascular dysfunction; however, little is known about the specific effects of these proteins on the pulmonary vasculature. This study investigates the impact of Nef variants derived from HIV-positive pulmonary hypertensive and normotensive donors on pulmonary vascular cells in vitro. Methods: We utilized well-characterized Nef molecular constructs to examine their effects on cell adhesion molecule gene expression (ICAM1, VCAM1, and SELE), pro-apoptotic gene expression (BAX, BAK), and vasoconstrictive endothelin-1 (EDN1) gene expression in endothelial nitric oxide synthase (eNOS) nitric oxide and the production and secretion of pro-inflammatory cytokines over 24, 48, and 72 h post-transfections with Nef variants. Results: HIV Nef variants SF2, NA7, and PH-associated Fr17 and 3236 induced a significant increase in adhesion molecule gene expression of ICAM1, VCAM1, and SELE. Pulmonary normotensive Nef 1138 decreased ICAM1 gene expression, but had increased VCAM1. PH Nef ItVR showed a consistent decrease in ICAM1 and no changes in SELE and VCAM1 expression. Further gene expression analyses of pro-apoptotic genes BAX and BAK demonstrated that Nef NA7, SF2, normotensive Nef 1138, and PH Nef Fr8, Fr9, Fr17, and 3236 variants significantly increased gene expression for apoptosis. Normotensive Nef 1138, as well as PH Nef Fr9 and ItVR, all displayed a statistically significant decrease in BAX expression. The expression of EDN1 had a statistically significant increase in samples treated with Nef NA7, SF2, normotensive Nef 2044 and PH Nef 3236, Fr17, and Fr8. Notably, PH-associated Nef variants sustained pro-inflammatory cytokine production, including IL-2, IL-4, and TNFα, while anti-inflammatory cytokine levels remained insufficient. Furthermore, eNOS was transiently upregulated by all Nef variants except for normotensive Nef 2044. Conclusions: The distinct effects of Nef variants on pulmonary vascular cell biology highlight the complex interplay between Nef, host factors, and vascular pathogenesis according to the variants. Full article
(This article belongs to the Special Issue Pulmonary Vascular Manifestations of Infectious Diseases)
Show Figures

Figure 1

21 pages, 4980 KiB  
Review
The Interplay Between Pulmonary Hypertension and Atrial Fibrillation: A Comprehensive Overview
by Danish Sultan, Bianca J. J. M. Brundel and Kondababu Kurakula
Cells 2025, 14(11), 839; https://doi.org/10.3390/cells14110839 - 4 Jun 2025
Viewed by 1646
Abstract
Pulmonary hypertension (PH) is a progressive lung disease characterized by abnormal pulmonary vascular pressure and right ventricular (RV) dysfunction. Atrial arrhythmias, including atrial fibrillation (AF) and atrial flutter, are common in patients with PH and significantly contribute to disease progression and mortality. A [...] Read more.
Pulmonary hypertension (PH) is a progressive lung disease characterized by abnormal pulmonary vascular pressure and right ventricular (RV) dysfunction. Atrial arrhythmias, including atrial fibrillation (AF) and atrial flutter, are common in patients with PH and significantly contribute to disease progression and mortality. A bidirectional pathophysiological link exists between PH and AF, encompassing shared mechanisms such as endothelial dysfunction, DNA damage, autophagy, inflammation, and oxidative stress, as well as mutual risk factors, including diabetes, obesity, heart disease, and aging. Despite these shared pathways, limited research has been conducted to fully understand the intertwined relationship between PH and AF, hindering the development of effective treatments. In this review, we provide a comprehensive overview of the epidemiology of PH, the molecular mechanisms underlying the development of AF in PH, and the overlap in their pathophysiology. We also identify novel druggable targets and propose mechanism-based therapeutic approaches to treat this specific patient group. By shedding light on the molecular connection between PH and AF, this review aims to fuel the design and validation of innovative treatments to address this challenging comorbidity. Full article
Show Figures

Figure 1

33 pages, 637 KiB  
Review
Molecular Pathogenesis of Connective Tissue Disease-Associated Pulmonary Arterial Hypertension: A Narrative Review
by Fu-Chiang Yeh, I-Ting Tsai and I-Tsu Chyuan
Biomolecules 2025, 15(6), 772; https://doi.org/10.3390/biom15060772 - 27 May 2025
Viewed by 873
Abstract
Pulmonary arterial hypertension (PAH) is a lethal condition marked by the proliferation and remodeling of small pulmonary arteries, ultimately leading to right ventricular hypertrophy and right heart failure. PAH secondary to connective tissue diseases (CTDs) is a progressive complication with a complex pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a lethal condition marked by the proliferation and remodeling of small pulmonary arteries, ultimately leading to right ventricular hypertrophy and right heart failure. PAH secondary to connective tissue diseases (CTDs) is a progressive complication with a complex pathogenesis that results in the reduced efficacy of vasodilation-based therapies and poor clinical outcomes. Systemic sclerosis is the most commonly associated CTD with PAH in Western countries and has been most extensively investigated. Systemic lupus erythematosus and other CTDs may also be associated with PAH; however, they are less studied. In this review, we explore the general pathobiology of PAH, with a particular emphasis on recent advances in the molecular pathogenesis of CTD-PAH, including endothelial cell dysfunction, dysregulated cell proliferation and vascular remodeling, extracellular matrix remodeling, in situ thrombosis, right ventricular dysfunction, genetic aberrations, and immune dysregulation. We also conduct a thorough investigation into the potential serum biomarkers and immune dysregulation associated with CTD-PAH, summarizing the associated autoantibodies, cytokines, and chemokines. Furthermore, relevant animal models that may help unravel the pathogenesis and contribute to the development of new treatments are also reviewed. Full article
(This article belongs to the Special Issue Molecular Basis of Pathogenesis in Autoimmune Diseases)
Show Figures

Figure 1

9 pages, 1563 KiB  
Case Report
High Profile Transvalvular Pump Assisted Recovery for Takotsubo Cardiomyopathy: A Case Series
by Jordan Young, Patrick McGrade, Jaime Hernandez-Montfort and Jerry Fan
J. Clin. Med. 2025, 14(9), 3225; https://doi.org/10.3390/jcm14093225 - 6 May 2025
Viewed by 592
Abstract
Background: Stress-induced cardiomyopathy (SI-CM) is a transient left ventricular dysfunction triggered by emotional or physical stress, often resolving with supportive care. However, severe cases may progress to cardiogenic shock (CS), requiring mechanical circulatory support (MCS). High-profile transvalvular pumps (HPTP), a form of percutaneous [...] Read more.
Background: Stress-induced cardiomyopathy (SI-CM) is a transient left ventricular dysfunction triggered by emotional or physical stress, often resolving with supportive care. However, severe cases may progress to cardiogenic shock (CS), requiring mechanical circulatory support (MCS). High-profile transvalvular pumps (HPTP), a form of percutaneous ventricular assist device, offer promising hemodynamic support in acute heart failure. This report explores HPTP use in SI-CM-related CS through two complex clinical cases. Case Summary: Two elderly female patients presented with severe CS secondary to apical-variant SI-CM. Case 1 involved a 67-year-old woman with sepsis, colonic perforation, and recurrent SI-CM, leading to profound low-output shock despite multiple vasopressors and inotropes. HPTP was implanted via the axillary artery, allowing for surgical management of intra-abdominal pathology and eventual cardiac recovery. Case 2 featured a 77-year-old woman with multifocal pneumonia, severe mitral regurgitation, and complete heart block. HPTP implantation stabilized her hemodynamics, facilitated extubation, and led to full recovery of ventricular function. Results: Both patients showed marked improvement in cardiac output and systemic perfusion following HPTP insertion. Echocardiograms post-device removal revealed normalization of left ventricular ejection fraction (55–64%). Hemodynamic data confirmed reduced pulmonary capillary wedge pressure and systemic vascular resistance. Conclusion: These cases highlight the potential of HPTP in managing SI-CM-related CS, especially when traditional therapies are inadequate or contraindicated. HPTP can rapidly restore hemodynamic stability and support myocardial recovery. While current data are limited, these observations underscore the need for broader investigation into the role of HPTP in this setting. Full article
Show Figures

Figure 1

Back to TopTop