Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,794)

Search Parameters:
Keywords = proteins extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2319 KiB  
Review
Biopharming of Lactoferrin: Current Strategies and Future Prospects
by Rajaravindra Konadaka Sri, Parthasarathi Balasamudram Chandrasekhar, Architha Sirisilla, Qudrathulla Khan Quadri Mohammed, Thejasri Jakkoju, Rajith Reddy Bheemreddy, Tarun Kumar Bhattacharya, Rajkumar Ullengala and Rudra Nath Chatterjee
Pharmaceutics 2025, 17(8), 1023; https://doi.org/10.3390/pharmaceutics17081023 (registering DOI) - 7 Aug 2025
Abstract
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge [...] Read more.
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge for economic mass production. Recombinant protein expression systems offer a solution to overcome this challenge and efficient production of LF. This review discusses recent progress in the translational research of LF gene transfer and biopharming, focusing on different expression systems such as bacteria, yeast, filamentous fungi, transgenic crops, and animals as well as purification methods. The optimization of expression yields, prospects for genetic engineering, and biotechnology to enhance LF production for biomedical applications are emphasized. This review systematically sourced the literature from 1987 to 2025 from leading scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar. Despite ongoing debates, progress in this field indicates a viable path towards the effective use of LF in therapeutic settings. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

20 pages, 2559 KiB  
Article
Anticancer Activity of Vitex agnus-castus Seed Extract on Gastric Cancer Cells
by Özlem Türksoy-Terzioğlu, Feyza Tosya, Ayşe Büşranur Çelik, Sibel Bölek, Levent Gülüm, Gökhan Terzioğlu and Yusuf Tutar
Nutrients 2025, 17(15), 2564; https://doi.org/10.3390/nu17152564 - 6 Aug 2025
Abstract
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus [...] Read more.
Background/Objectives: Vitex agnus-castus has been traditionally used to treat hormonal disorders, and recent evidence suggests its potential anticancer properties. However, its effects on gastric cancer remain unclear. Methods: This study examined the cytotoxic, apoptotic, and anti-metastatic effects of hydroalcoholic Vitex agnus-castus seed extract in gastric cancer cells. Antioxidant capacity (DPPH, ABTS) and total phenolic and flavonoid contents were analyzed. Cytotoxicity was assessed using the MTT assay in HGC27, MKN45, and AGS gastric cancer cell lines and CCD-1072Sk fibroblasts. Apoptosis, mitochondrial membrane potential (MMP), and cell cycle changes were evaluated via Annexin V-FITC/PI, Rhodamine 123, and PI staining, respectively. RT-qPCR and gene enrichment analyses were conducted to investigate the molecular mechanisms. Apoptosis-related protein expression was analyzed through enzyme-linked immunosorbent assay (ELISA). Results: The extract exhibited high antioxidant activity and a significant phenolic content. It reduced cell viability in a dose-dependent manner in gastric cancer cells, while exerting low toxicity in fibroblasts. It significantly increased apoptosis, induced G0/G1-phase cell cycle arrest, upregulated pro-apoptotic genes (CASP3, CASP7, TP53, BCL2L11), and downregulated anti-apoptotic genes (XIAP, NOL3). Gene enrichment analysis highlighted pathways like apoptosis, necrosis, and cysteine endopeptidase activity. The extract also disrupted MMP, inhibited migration and spheroid formation, suppressed EMT markers (SNAIL, SLUG, TWIST1, N-CADHERIN), and upregulated E-CADHERIN. The expression of Caspase 3 and Bax proteins increased and Bcl2 protein decreased. Conclusions: These findings suggest that Vitex agnus-castus seed extract exerts strong anticancer effects in gastric cancer cells by promoting apoptosis, reducing proliferation, and inhibiting migration. Further studies are warranted to explore its clinical relevance. Full article
(This article belongs to the Section Phytochemicals and Human Health)
17 pages, 3330 KiB  
Article
Valorization of Coffee Silverskin via Integrated Biorefinery for the Production of Bioactive Peptides and Xylooligosaccharides: Functional and Prebiotic Properties
by Thanongsak Chaiyaso, Kamon Yakul, Wilasinee Jirarat, Wanaporn Tapingkae, Noppol Leksawasdi and Pornchai Rachtanapun
Foods 2025, 14(15), 2745; https://doi.org/10.3390/foods14152745 - 6 Aug 2025
Abstract
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional [...] Read more.
Coffee silverskin (CS), a by-product generated during coffee roasting, contains high levels of xylan hemicellulose and protein, making it a promising substrate for functional ingredient production. This study developed an integrated bioprocess to simultaneously produce bioactive peptides and xylooligosaccharides (CS-XOS) from CS. Conventional alkaline extraction (CAE) under optimized conditions (1.0 M NaOH, 90 °C, 30 min) yielded 80.64 mg of protein per gram of CS and rendered the solid residue suitable for XOS production. Enzymatic hydrolysis of the extracted protein using protease_SE5 generated low-molecular-weight peptides (0.302 ± 0.01 mg/mL), including FLGY, FYDTYY, and FDYGKY. These peptides were non-toxic, exhibited in vitro antioxidant activity (0–50%), and showed ACE-inhibitory activities of 60%, 26%, and 79%, and DPP-IV-inhibitory activities of 19%, 18%, and 0%, respectively. Concurrently, the alkaline-treated CS solid residue (ACSS) was hydrolyzed using recombinant endo-xylanase, yielding 52.5 ± 0.08 mg of CS-XOS per gram of ACSS. The CS-XOS exhibited prebiotic effects by enhancing the growth of probiotic lactic acid bacteria (μmax 0.100–0.122 h−1), comparable to commercial XOS. This integrated bioprocess eliminates the need for separate processing lines, enhances resource efficiency, and provides a sustainable strategy for valorizing agro-industrial waste. The co-produced peptides and CS-XOS offer significant potential as functional food ingredients and nutraceuticals. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

16 pages, 931 KiB  
Article
Evaluation of the Effects of Drying Techniques on the Physical and Nutritional Characteristics of Cricket (Gryllus bimaculatus) Powder for Use as Animal Feedstuff
by Warin Puangsap, Padsakorn Pootthachaya, Mutyarsih Oryza, Anusorn Cherdthong, Vibuntita Chankitisakul, Bundit Tengjaroensakul, Pheeraphong Phaengphairee and Sawitree Wongtangtintharn
Insects 2025, 16(8), 814; https://doi.org/10.3390/insects16080814 - 6 Aug 2025
Abstract
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color [...] Read more.
This study aimed to evaluate the effects of three drying methods, namely sun drying, microwave–vacuum drying, and hot-air-oven drying, on the physical and nutritional properties of cricket powder for use in poultry feed. The results showed that the drying method significantly affected color parameters (L*, a*, and b*; p < 0.05), and particle size distribution at 850 µm and 250 µm (p = 0.04 and p = 0.02, respectively). Microwave–vacuum drying produced the lightest powder with a higher proportion of coarse particles, while sun drying resulted in a darker color and greater particle retention at 850 µm. Hot-air-oven drying yielded the lowest moisture content (1.99%) and the highest gross energy (6126.43 kcal/kg), with no significant differences observed in crude protein (p = 0.61), ether extract (p = 0.08), crude fiber (p = 0.14), ash (p = 0.22), or amino acid profiles (p > 0.05). These findings indicate that all drying methods preserved the nutritional value of cricket powder, and based on the overall results, hot-air-oven drying is the most suitable method for producing high-quality cricket meal with optimal physical properties and feed value, while also providing a practical balance between drying efficiency and cost. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

14 pages, 1669 KiB  
Article
Guinea Pig X Virus Is a Gammaherpesvirus
by Vy Ngoc Yen Truong, Robert Ellis and Brent A. Stanfield
Viruses 2025, 17(8), 1084; https://doi.org/10.3390/v17081084 - 5 Aug 2025
Abstract
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus [...] Read more.
The Guinea Pig X Virus (GPXV), a newly identified gammaherpesvirus, provides an opportunity to study viral evolution and host–virus dynamics. This study characterizes the GPXV genome and investigates its phylogenetic relationships and divergence from related viruses through comparative genomic and phylogenetic analyses. Virus propagation was conducted in Vero cells, followed by genomic DNA extraction and pan-herpesvirus nested PCR. Sanger sequencing filled gaps in the initial genome assembly, and whole-genome sequencing was performed using the Illumina MiSeq platform. Phylogenetic analyses focused on ORF8 (glycoprotein B), ORF9 (DNA polymerase catalytic subunit), ORF50 (RTA: replication and transcription activator), and ORF73 (LANA: latency-associated nuclear antigen). Results showed that GPXV ORFs showed variable evolutionary relationships with other gammaherpesviruses, including divergence from primate-associated viruses and clustering with bovine and rodent viruses. In addition to phylogenetics, a comprehensive comparative analysis of protein-coding genes between GPXV and the previously described Guinea Pig Herpes-Like Virus (GPHLV) revealed divergence. Twenty-four non-ORF genomic features were unique to GPXV, while 62 shared ORFs exhibited low to high sequence divergence. These findings highlight GPXV’s distinct evolutionary trajectory and its potential role as a model for studying host-specific adaptations and gammaherpesvirus diversity. Full article
(This article belongs to the Special Issue Animal Herpesvirus 2025)
Show Figures

Graphical abstract

13 pages, 857 KiB  
Article
Orange Allergy Beyond LTP: IgE Recognition of Germin-like Proteins in Citrus Fruits
by M. Soledad Zamarro Parra, Montserrat Martínez-Gomaríz, Alan Hernández, Javier Alcover, Isabel Dobski, David Rodríguez, Ricardo Palacios and Antonio Carbonell
Curr. Issues Mol. Biol. 2025, 47(8), 621; https://doi.org/10.3390/cimb47080621 - 5 Aug 2025
Abstract
Orange allergy is estimated to account for up to 3–4% of food allergies. Major allergens identified in orange (Citrus sinensis) include Cit s 1 (germin-like protein) and Cit s 2 (profilin), while Cit s 3 (non-specific lipid transfer protein, nsLTP) and [...] Read more.
Orange allergy is estimated to account for up to 3–4% of food allergies. Major allergens identified in orange (Citrus sinensis) include Cit s 1 (germin-like protein) and Cit s 2 (profilin), while Cit s 3 (non-specific lipid transfer protein, nsLTP) and Cit s 7 (gibberellin-regulated protein) have also been described. The objective of this study was to investigate the presence and IgE-binding capacity of germin-like proteins in citrus fruits other than oranges. We describe five patients with immediate allergic reactions after orange ingestion. All patients underwent skin prick tests (SPT) to aeroallergens and common food allergens, prick-by-prick testing with orange, lemon, and mandarin (pulp, peel, seeds), total IgE, specific IgE (sIgE), anaphylaxis scoring (oFASS), and the Food Allergy Quality of Life Questionnaire (FAQLQ-AF). Protein extracts from peel and pulp of orange, lemon, and mandarin were analyzed by Bradford assay, SDS-PAGE, and IgE immunoblotting using patient sera. Selected bands were identified by peptide mass fingerprinting. A 23 kDa band was recognized by all five patients in orange (pulp and peel), lemon (peel), and mandarin (peel). This band was consistent with Cit s 1, a germin-like protein already annotated in the IUIS allergen database for orange but not for lemon or mandarin. Peptide fingerprinting confirmed the germin-like identity of the 23 kDa bands in all three citrus species. Germin-like proteins of approximately 23 kDa were identified as IgE-binding components in peel extracts of orange, lemon, and mandarin, and in orange pulp. These findings suggest a potential shared allergen across citrus species that may contribute to allergic reactions independent of LTP sensitization. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

17 pages, 7024 KiB  
Article
Proteomic Analysis of Differentially Expressed Plasma Exosome Proteins in Heat-Stressed Holstein cows
by Shuwen Xia, Yingying Jiang, Wenjie Li, Zhenjiang An, Yangyang Shen, Qiang Ding and Kunlin Chen
Animals 2025, 15(15), 2286; https://doi.org/10.3390/ani15152286 - 5 Aug 2025
Abstract
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed [...] Read more.
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed Holstein cows. In this study, we extracted exosomes from three heat-stressed (HS) cows and three non-heat-stressed (Ctr) cows and employed proteomics to analyze plasma exosomes. We identified a total of 28 upregulated and 18 downregulated proteins in the HS group compared to the control group. Notably, we observed a significant upregulation of key protein groups, including cytoskeletal regulators, signaling mediators, and coagulation factors, alongside the downregulation of HP-25_1. These differentially expressed proteins demonstrate strong potential as heat stress biomarkers. GO and KEGG analyses linked the differentially expressed proteins to actin cytoskeleton regulation and endoplasmic reticulum pathways. Additionally, protein–protein interaction (PPI) analysis revealed the PI3K-Akt signaling pathway as a central node in the cellular response to heat stress. These findings establish plasma exosomes as valuable biospecimens, provide valuable insights into the molecular mechanisms of heat stress response, and may contribute to the development of precision breeding strategies for enhanced thermal resilience in dairy herds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 1622 KiB  
Article
Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages
by Kainar Bukarbayev, Sholpan Abzhanova, Lyazzat Baibolova, Gulshat Zhaksylykova, Talgat Kulazhanov, Vitalii Vasilenko, Bagila Jetpisbayeva, Alma Katasheva, Sultan Sabraly and Yerkin Yerzhigitov
Foods 2025, 14(15), 2730; https://doi.org/10.3390/foods14152730 - 5 Aug 2025
Abstract
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. [...] Read more.
Modern meat processing faces several challenges, including high resource consumption, environmental impact, and the need to enhance the nutritional and biological value of finished products. In this context, interest is growing in functional plant-based ingredients capable of improving the quality of meat products. The aim of this study was to evaluate the effect of adding 0.01% hemp protein powder and 0.01% sea buckthorn extract (based on the weight of unsalted raw material) on the nutritional, technological, and microbiological characteristics of cooked-smoked sausages. The results demonstrated an increase in total protein content, a 2.5-fold rise in tocopherol levels, as well as a 17.9% improvement in the Amino Acid Score of threonine and a 2.48% increase in the biological value of protein. Samples enriched with plant-based components exhibited enhanced organoleptic properties and greater storage stability over 36 days. In addition, extrusion parameters for the production of the protein additive were optimized, resulting in a stable functional ingredient. Full article
Show Figures

Figure 1

18 pages, 1684 KiB  
Article
Data Mining and Biochemical Profiling Reveal Novel Biomarker Candidates in Alzheimer’s Disease
by Annamaria Vernone, Ilaria Stura, Caterina Guiot, Federico D’Agata and Francesca Silvagno
Int. J. Mol. Sci. 2025, 26(15), 7536; https://doi.org/10.3390/ijms26157536 - 4 Aug 2025
Abstract
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of [...] Read more.
The search for the biomarkers of Alzheimer’s disease (AD) may prove essential in the diagnosis and prognosis of the pathology, and the differential expression of key proteins may assist in identifying new therapeutic targets. In this proof-of-concept (POC) study, a new approach of data mining and matching combined with the biochemical analysis of proteins was applied to AD investigation. Three influential online open databases (UniProt, AlzGene, and Allen Human Brain Atlas) were explored to identify the genes and encoded proteins involved in AD linked to mitochondrial and iron dysmetabolism. The databases were searched using specific keywords to collect information about protein composition, and function, and meta-analysis data about their correlation with AD. The extracted datasets were matched to yield a list of relevant proteins in AD. The biochemical analysis of their amino acid content suggested a defective synthesis of these proteins in poorly oxygenated brain tissue, supporting their relevance in AD progression. The result of our POC study revealed several potential new markers of AD that deserve further molecular and clinical investigation. This novel database search approach can be a valuable strategy for biomarker search that can be exploited in many diseases. Full article
Show Figures

Figure 1

28 pages, 2282 KiB  
Article
From Hue to Health: Exploring the Therapeutic Potential of Plant-Pigment-Enriched Extracts
by Azza SalahEldin El-Demerdash, Amira E. Sehim, Abeer Altamimi, Hanan Henidi, Yasmin Mahran and Ghada E. Dawwam
Microorganisms 2025, 13(8), 1818; https://doi.org/10.3390/microorganisms13081818 - 4 Aug 2025
Abstract
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. [...] Read more.
The escalating global challenges of antimicrobial resistance (AMR) and cancer necessitate innovative therapeutic solutions from natural sources. This study investigated the multifaceted therapeutic potential of pigment-enriched plant extracts. We screened diverse plant extracts for antimicrobial and antibiofilm activity against multidrug-resistant bacteria and fungi. Hibiscus sabdariffa emerged as the most promising, demonstrating potent broad-spectrum antimicrobial and significant antibiofilm activity. Sub-inhibitory concentrations of H. sabdariffa robustly downregulated essential bacterial virulence genes and suppressed aflatoxin gene expression. Comprehensive chemical profiling via HPLC identified major anthocyanin glucosides, while GC-MS revealed diverse non-pigment bioactive compounds, including fatty acids and alcohols. Molecular docking suggested favorable interactions of key identified compounds (Cyanidin-3-O-glucoside and 1-Deoxy-d-arabitol) with E. coli outer membrane protein A (OmpA), indicating potential antiadhesive and antimicrobial mechanisms. Furthermore, H. sabdariffa exhibited selective cytotoxicity against MCF-7 breast cancer cells. These findings establish H. sabdariffa pigment-enriched extract as a highly promising, multi-functional source of novel therapeutics, highlighting its potential for simultaneously addressing drug resistance and cancer challenges through an integrated chemical, biological, and computational approach. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

16 pages, 1991 KiB  
Article
Antihypertensive Effects of Lotus Seed (Nelumbo nucifera Gaertn.) Extract via eNOS Upregulation and Oxidative Stress Reduction in L-NAME-Induced Hypertensive Rats
by Anjaree Inchan, Tippaporn Bualeong, Worasak Kaewkong, Nitra Nuengchamnong, Phapada Apaikawee, Pakaporn Sa-Nguanpong, Wiriyaporn Sumsakul, Natthawut Charoenphon, Usana Chatturong, Watcharakorn Deetud and Krongkarn Chootip
Pharmaceuticals 2025, 18(8), 1156; https://doi.org/10.3390/ph18081156 - 4 Aug 2025
Abstract
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. [...] Read more.
Background/Objectives: Nelumbo nucifera Gaertn. (lotus) seeds have traditionally been used to treat hypertension, though their mechanisms remain unclear. This study investigated the antihypertensive effects of lotus seed extract (LSE) and its mechanisms in rats with Nω-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Methods: Male Sprague Dawley rats received L-NAME (40 mg/kg/day) in drinking water and were treated orally with LSE (5, 10, or 100 mg/kg/day), captopril (5 mg/kg/day), or a combination of LSE and captopril (2.5 mg/kg/day each) for 5 weeks. Hemodynamic parameters and histological changes in the left ventricle and aorta were assessed. Mechanistic studies included measurements of plasma nitric oxide (NO) metabolites, malondialdehyde (MDA), superoxide dismutase (SOD) activity, angiotensin II (Ang II), angiotensin-converting enzyme (ACE) activity, and protein expression via western blot. Results: L-NAME elevated systolic blood pressure and induced cardiovascular remodeling, oxidative stress, and renin-angiotensin system activation. LSE treatment reduced blood pressure, improved antioxidant status, increased NO bioavailability, and downregulated gp91phox and AT1R expression. The combination of low-dose LSE and captopril produced stronger effects than LSE alone, with efficacy comparable to captopril. Conclusions: These findings suggest that LSE exerts antihypertensive effects via antioxidant activity and inhibition of the renin-angiotensin system, supporting its potential as an adjunct therapy for hypertension. Full article
Show Figures

Graphical abstract

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 15
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

29 pages, 3037 KiB  
Review
Methods for GC/MS Analysis of the Most Commonly Seized Drugs of Abuse and Their Metabolites in Biological Samples
by Ivan Kojić, Violeta M. Đurović, Yulia A. Smyatskaya, Nemanja Brkljača, Angi E. Skhvediani, Andrey V. Vasin, Ksenija Stojanović and Saša D. Đurović
Chemosensors 2025, 13(8), 286; https://doi.org/10.3390/chemosensors13080286 (registering DOI) - 4 Aug 2025
Viewed by 18
Abstract
Gas chromatography with mass spectrometry (GC-MS) is a common analytical technique used for identifying and quantifying drugs of abuse, as well as their metabolites, extracted from biological samples. Depending on the properties of the analyzed compounds, particularly in the case of metabolites, derivatization [...] Read more.
Gas chromatography with mass spectrometry (GC-MS) is a common analytical technique used for identifying and quantifying drugs of abuse, as well as their metabolites, extracted from biological samples. Depending on the properties of the analyzed compounds, particularly in the case of metabolites, derivatization is often necessary. In this article, we will address the definition, properties, sample preparation, and GC-MS analysis of the most common drugs of abuse in their native (seized) form and their metabolites in biological samples (urine, blood, hair, and tissue). Drugs that will be described are: amphetamines and their derivatives, cannabinoids, cocaine, opioids, lysergide (LSD), benzodiazepines, gamma-hydroxybutyric acid (GHB), phencyclidine (PCP), mescaline, psilocin, and psilocybin. The literature review showed that the analysis of the drugs of abuse requires a simple extraction procedure and analysis with or without derivatization. However, the analysis of the metabolites requires removing the interferences from the matrix (proteins, other compounds, water, and other species that may interfere with the analysis or contaminate the GC-MS). This review article will provide insights into the available procedures for sample preparation and analytical methods, helping authors gain the necessary information and select the desired procedure for analysis. Full article
Show Figures

Figure 1

22 pages, 2988 KiB  
Article
Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
by Alessio Vincenzo Tallarita, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale and Gianluca Caruso
Appl. Sci. 2025, 15(15), 8620; https://doi.org/10.3390/app15158620 (registering DOI) - 4 Aug 2025
Viewed by 24
Abstract
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant [...] Read more.
Perennial wall rocket (Diplotaxis tenuifolia L.—DC.) exhibits genotype-dependent responses to biostimulant applications, which have not yet been deeply investigated. A two-year greenhouse factorial experiment was carried out to assess the interactions between five cultivars (Mars, Naples, Tricia, Venice, and Olivetta), three biostimulant formulations (Cystoseira tamariscifolia L. extract; a commercial legume-derived protein hydrolysate, “Dynamic”; and Spirulina platensis extract) plus an untreated control, and three crop cycles (autumn, autumn–winter, and winter) on leaf yield and dry matter, organic acids, colorimetric parameters, hydrophilic and lipophilic antioxidant activities, nitrate concentration, nitrogen use efficiency, and mineral composition, using a split plot design with three replicates. Protein hydrolysate significantly enhanced yield and nitrogen use efficiency in Mars (+26%), Naples (+25.6%), Tricia (+25%), and Olivetta (+26%) compared to the control, while Spirulina platensis increased the mentioned parameters only in Venice (+36.2%). Nitrate accumulation was reduced by biostimulant application just in Venice, indicating genotype-dependent nitrogen metabolism responses. The findings of the present research demonstrate that the biostimulant efficacy in perennial wall rocket is mainly ruled by genotypic factors, and the appropriate combinations between the two mentioned experimental factors allow for optimization of leaf yield and quality while maintaining nitrate concentration under the regulation thresholds. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

Back to TopTop