Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extrusion of Hemp Protein Concentrate
2.2.1. Determination of Moisture Content (Gravimetric Method)
2.2.2. Determination of Composite Quality Index and Expansion Ratio of Hemp Protein Extrudate
2.3. Recipe and Technology of Production of Cooked-Smoked Sausages
2.4. Laboratory Analyses
2.4.1. Determination of the pH of Meat and Meat Products
2.4.2. Determination of Mass Fraction of Moisture
2.4.3. Determination of Protein Mass Fraction
2.4.4. Determination of Water-Holding Capacity (WHC)
2.4.5. Determination of Water-Binding Capacity (WBC)
2.4.6. Determination of Fat-Holding Capacity (FHC)
2.4.7. Determination of Organoleptic Parameters
2.4.8. Determination of Fatty Acid Composition
2.4.9. Determination of Water-Soluble Vitamins in Raw Materials and Food Products by Capillary Zone Electrophoresis Method
2.4.10. Determination of Amino Acid Composition
2.4.11. Assessment of Amino Acid Composition and Calculation of Protein Biological Value
2.4.12. Determination of Microbiological Parameters
2.4.13. Statistical Analysis
3. Results
3.1. Composite Quality Index and Expansion Ratio of Hemp Protein Extrudate
3.2. Nutritional and Biological Values of Cooked-Smoked Sausages
3.3. Amino Acid Composition of Cooked-Smoked Sausages
3.4. Organoleptic Characteristics of Boiled and Smoked Sausages with the Addition of Sea Buckthorn Extract and Hemp Protein
3.5. Microbiological Parameters of the Finished Product During Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibraimova, S.; Uazhanova, R.; Mardar, M.; Serikbaeva, A.; Tkachenko, N.; Zhygunov, D. Development of recipe composition of bread with the inclusion of juniper using mathematical modeling and assessment of its quality. East.-Eur. J. Enterp. Technol. 2020, 6, 6–16. [Google Scholar] [CrossRef]
- Issimov, A.; Baibatyrov, T.; Tayeva, A.; Kenenbay, S.; Abzhanova, S.; Shambulova, G.; Kuzembayeva, G.; Kozhakhiyeva, M.; Brel-Kisseleva, I.; Safronova, O.; et al. Prevalence of Clostridium perfringens and Detection of Its Toxins in Meat Products in Selected Areas of West Kazakhstan. Agriculture 2022, 12, 1357. [Google Scholar] [CrossRef]
- Michalski, G. Full operating cycle influence on the food and beverages processing firms characteristics. Agric. Econ. 2016, 62, 71–77. [Google Scholar] [CrossRef]
- Talens, C.; Llorente, R.; Simó-Boyle, L.; Odriozola-Serrano, I.; Tueros, I.; Ibargüen, M. Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer’s Spent Grain and Insect Flours. Foods 2022, 11, 3396. [Google Scholar] [CrossRef]
- Banwo, K.; Olojede, A.; Adesulu-Dahunsi, A.; Verma, D.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.; Gupta, A.; Aguilar, C.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, F.; Wei, P.; Chai, X.; Hou, G.; Meng, Q. Phytochemistry, health benefits, and food applications of sea buckthorn (Hippophae rhamnoides L.): A comprehensive review. Front. Nutr. 2022, 9, 1036295. [Google Scholar] [CrossRef]
- Wang, K.; Xu, Z.; Liao, X. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review. Crit. Rev. Food Sci. Nutr. 2021, 62, 6761–6782. [Google Scholar] [CrossRef] [PubMed]
- El-Sohaimy, S.; Androsova, N.; Toshev, A.; Enshasy, H. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants 2022, 11, 2825. [Google Scholar] [CrossRef]
- Yano, H.; Fu, W. Hemp: A Sustainable Plant with High Industrial Value in Food Processing. Foods 2023, 12, 651. [Google Scholar] [CrossRef]
- Shariatmadari, F. Emergence of hemp as feed for poultry. World’s Poult. Sci. J. 2023, 79, 769–782. [Google Scholar] [CrossRef]
- Pihlanto, A.; Nurmi, M.; Mäkinen, S. Hempseed Protein: Processing and Functional Properties. In Sustainable Agriculture Reviews 42; Springer: Cham, Switzerland, 2020; pp. 223–237. [Google Scholar] [CrossRef]
- Szenderák, J.; Fróna, D.; Rákos, M. Consumer Acceptance of Plant-Based Meat Substitutes: A Narrative Review. Foods 2022, 11, 1274. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.; Sanctorum, H. Alternative proteins, evolving attitudes: Comparing consumer attitudes to plant-based and cultured meat in Belgium in two consecutive years. Appetite 2021, 161, 105161. [Google Scholar] [CrossRef]
- Datta, B.; Spero, E.; Martín-Martínez, F.; Ortiz, C. Socially-Directed Development of Materials for Structural Color. Adv. Mater. 2022, 34, 2100939. [Google Scholar] [CrossRef]
- GOST 13586.5-93; Grain. Method of Moisture Content Determination. Standards Publishing: Moscow, Russia, 1994.
- ISO 712:2009; Cereals and Cereal Products—Determination of Moisture Content—Reference Method. ISO: Geneva, Switzerland, 2009.
- AOAC International. AOAC Official Method 925.10. Solids (Total) and Moisture in Flour—Air Oven Method, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content (Reference Method). ISO: Geneva, Switzerland, 1997.
- ISO 7971-3:2019; Cereals—Determination of Bulk Density, Called Mass per Hectolitre—Part 3: Routine Method. ISO: Geneva, Switzerland, 2019.
- GOST 16290-86; Cooked and Smoked Sausages. Specifications. Standartinform: Moscow, USSR, 1986.
- Korkeala, H.; Mäki-Petäys, O.; Alanko, T.; Sorvettula, O. Determination of pH in meat. Meat Sci. 1986, 18, 121–132. [Google Scholar] [CrossRef]
- GOST R 51479-99 (ISO 1442-97); Meat and Meat Products. Method for Determination of Moisture Content. Standards Publishing: Moscow, Russia, 2010.
- GOST 25011-81; Meat and Meat Products. Methods of Protein Determination. Standards Publishing: Moscow, USSR, 1982.
- GOST 7836-85; Meat and Meat Products. Methods for Determination of Water-Holding Capacity Using Pressing and Centrifugation Techniques. Standards Publishing House: Moscow, Russia, 1985.
- GOST 15115.3-77; Cooked Smoked, Semi-Smoked and Dry Sausages. Methods for Organoleptic Evaluation. Standards Publishing: Moscow, Russia, 1978.
- Brainina, K.; Varzakova, D.; Gerasimova, E. A chronoamperometric method for determining total antioxidant activity. J. Anal. Chem. 2012, 67, 364–369. [Google Scholar] [CrossRef]
- FAO/WHO. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint FAO/WHO/UNU Expert Consultation; WHO Technical Report Series No. 935; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- GOST 26668-85; Meat and Meat Products. Methods for Determination of Moisture. State Committee of the USSR for Standards: Moscow, USSR, 1985.
- GOST 26669-85; Meat and Meat Products. Methods for Determination of Fat. State Committee of the USSR for Standards: Moscow, USSR, 1985.
- GOST 26972-85; Food Products. Methods for Determination of Nitrogen by the Kjeldahl Method and Calculation of Protein Content. State Committee of the USSR for Standards: Moscow, USSR, 1985.
- GOST 26670-85; Meat and Meat Products. Methods for Determination of Ash. State Committee of the USSR for Standards: Moscow, USSR, 1985.
- Abzhanova, S.; Baybolova, L.; Zhaksylykova, G.; Tayeva, A.; Kulazhanov, T. Development of meat products for the nutrition of the elderly. Hum. Nutr. Metab. 2023, 33, 200201. [Google Scholar] [CrossRef]
- Gorlov, I.; Slozhenkina, M.; Bozhkova, S.; Grigoryan, L.; Andryushchenko, D. Method for producing sausages, licopine enriched. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082047. [Google Scholar] [CrossRef]
- Schafer, F.; Wang, H.; Kelley, E.; Cueno, K.; Martin, S.; Buettner, G. Comparing β-Carotene, Vitamin E and Nitric Oxide as Membrane Antioxidants. Biol. Chem. 2002, 383, 671–681. [Google Scholar] [CrossRef] [PubMed]
- TR CU 034/2013; On the Safety of Meat and Meat Products. Customs Union Commission: Brussels, Belgium, 2013.
- Ganiari, S.; Choulitoudi, E.; Oreopoulou, V. Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci. Technol. 2017, 68, 70–82. [Google Scholar] [CrossRef]
- Rufián-Henares, J.; Guerra-Hernández, E.; García-Villanova, B. Evolution of fatty acid profile and lipid oxidation during enteral formula storage. JPEN J. Parenter. Enter. Nutr. 2005, 29, 204–211. [Google Scholar] [CrossRef]
- Shirazi, S.; Koocheki, A.; Milani, E.; Mohebbi, M. Production of high fiber ready-to-eat expanded snack from barley flour and carrot pomace using extrusion cooking technology. J. Food Sci. Technol. 2020, 57, 2169–2181. [Google Scholar] [CrossRef]
- Hashemi, N.; Mortazavi, S.; Milani, E.; Yazdi, F. Microstructural and textural properties of puffed snack prepared from partially deffated almond powder and corn flour. J. Food Process. Preserv. 2017, 41, e13210. [Google Scholar] [CrossRef]
- Singh, B.; Rachna; Hussain, S.; Sharma, S. Response Surface Analysis and Process Optimization of Twin-screw Extrusion Cooking of Potato-Based Snacks. J. Food Process. Preserv. 2015, 39, 270–281. [Google Scholar] [CrossRef]
- Tokysheva, G.; Tultabayeva, T.; Mukhtarkhanova, R.; Zhakupova, G.; Gorbulya, V.; Kakimov, M.; Makangali, K. The study of physicochemical and technological properties of boiled sausage recommended for the older adults. Potravin. Slovak J. Food Sci. 2023, 17, 16–29. [Google Scholar] [CrossRef]
- Ghribi, A.; Amira, A.; Gafsi, I.; Lahiani, M.; Bejar, M.; Triki, M.; Zouari, A.; Attia, H.; Besbes, S. Toward the enhancement of sensory profile of sausage “Merguez” with chickpea protein concentrate. Meat Sci. 2018, 143, 74–80. [Google Scholar] [CrossRef]
- Bukyei, E.; Baasanjargal, B.; Tumurbaatar, E.; Ragchaa, A.; Ganbold, S. The Technological Research Outcomes of Boiled Sausages Fortified with Sea Buckthorn Peels. FoodSci Indian J. Res. Food Sci. Nutr. 2022, 9, 51–57. [Google Scholar] [CrossRef]
- Alirezalu, K.; Hesari, J.; Eskandari, M.; Valizadeh, H.; Sirousazar, M. Effect of Green Tea, Stinging Nettle and Olive Leaves Extracts on the Quality and Shelf-Life Stability of Frankfurter Type Sausage. J. Food Process. Preserv. 2017, 41, e13100. [Google Scholar] [CrossRef]
- Aminzare, M.; Tajik, H.; Aliakbarlu, J.; Hashemi, M.; Raeisi, M. Effect of cinnamon essential oil and grape seed extract as functional-natural additives in the production of cooked sausage-impact on microbiological, physicochemical, lipid oxidation and sensory aspects, and fate of inoculated Clostridium perfringens. J. Food Saf. 2018, 38, e12459. [Google Scholar] [CrossRef]
- Serikbaeva, A.; Tnymbaeva, B.; Mardar, M.; Tkachenko, N.; Ibraimova, S.; Uazhanova, R. Determining optimal process parameters for sprouting buckwheat as a base for a food seasoning of improved quality. East.-Eur. J. Enterp. Technol. 2021, 4, 6–16. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, J.; Zhou, H.; Lu, A.; Xu, B. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. Meat Sci. 2021, 172, 108359. [Google Scholar] [CrossRef]
- Bozhko, N.; Pasichnyi, V.; Tischenko, V.; Marynin, A.; Shubina, Y.; Strashynskyi, I. The effect of hemp cake (Cannabis sativa L.) on the characteristics of meatballs stored in refrigerated conditions. Molecules 2021, 26, 5284. [Google Scholar] [CrossRef] [PubMed]
- Bozhko, N.; Pasichnyi, V.; Tischenko, V.; Marynin, A.; Shubina, Y.; Strashynskyi, I. Development of meat-containing breads with hemp seed flour and turkey meat of mechanical crumbling. EUREKA Life Sci. 2021, 4, 34–42. [Google Scholar] [CrossRef]
- Ibraimova, S.; Serikbaeva, A.; Amanova, S.; Tnymbaeva, B.; Kobjasarova, Z.; Taspoltayeva, A.; Tungyshbayeva, U. Effect of juniper fruit (Juniperus communis L.) on bread quality characteristics. Scifood 2025, 19, 30–43. [Google Scholar] [CrossRef]
Ingredients | Quantity |
---|---|
100 kg meat raw material, % | |
Fillet beef | 60 |
Poultry fillet | 20 |
Beef fat | 20 |
non-meat raw materials | |
Table salt, % | 2.5 |
Sodium nitrite, g/100 kg | 0.055 |
Hemp protein powder, g/100 kg | 10 |
Sea buckthorn extract, g/100 kg | 10 |
Sugar, g/100 kg | 100 |
Black pepper, g/100 kg | 85 |
Nutmeg, g/100 kg | 55 |
Basil, g/100 kg | 3 |
Mint, g/100 kg | 3 |
Indicators | With Addition of Sea Buckthorn Extract and Hemp Protein | Control |
---|---|---|
Mass fraction, % | ||
Moisture | 60.48 ± 0.05 a | 63.66 ± 0.05 b |
Protein | 25.23 ± 0.05 b | 22.75 ± 0.08 a |
Fat-soluble antioxidants, mg/g | 0.08 ± 0.0004 a | 0.11 ± 0.0010 b |
Water-soluble antioxidants, mg/g | 0.49 ± 0.0034 b | 0.36 ± 0.0038 a |
Water-holding capacity, % | 60.46 ± 0.02 a | 63.16 ± 0.02 b |
Water-binding capacity, % | 59.60 ± 0.02 a | 56.84 ± 0.05 b |
Fat-holding capacity, % | 54.18 ± 1.02 a | 57.21 ± 0.85 b |
Indicators | Daily Requirement | With Addition of Sea Buckthorn Extract and Hemp Protein | Control |
---|---|---|---|
Vitamin composition, mg/100 g product | |||
Polyunsaturated fatty acids, % | 11 mg/day | 1.35 ± 0.028 b | 1.22 ± 0.023 a |
Pyridoxine (B6) | 1.8–2.0 mg/day | 0.39 ± 0.02 | 0.35 ± 0.03 |
Riboflavin (B2) | 1.8 mg/day | 0.187 ± 0.004 | 0.180 ± 0.005 |
Thiamine (B1) | 1.5 mg/day | 0.283 ± 0.003 b | 0.250 ± 0.004 a |
Tocopherol | 7.8 mg/equivalent day | 0.705 ± 0.0265 b | 0.301 ± 0.0144 a |
Flavonoids, mg/100 g | – | 0.13 ± 0.08 | – |
Carotenoids, mg/100 g | – | 0.19 ± 0.02 | – |
Time | Component | Control Sample—Concentration (mg/100 g) | Control Sample—Mass Fraction of Amino Acids (%) | Experimental Sample—Concentrations (mg/100 g) | Experimental Sample—Amino Acid Mass Fraction (%) | p-Value |
---|---|---|---|---|---|---|
6.188 | 0.00 | 0.00 | 0.00 | 0.00 | ||
6.285 | arginine | 110.0 ± 0.088 | 2.422 ± 0.096 | 93.0 ± 0.799 | 2.000 ± 0.800 | p < 0.05 |
8.288 | lysine | 120.0 ± 0.799 | 2.642 ± 0.898 | 100.0 ± 0.453 | 2.151 ± 0.731 | p < 0.05 |
8.540 | tyrosine | 43.0 ± 0.212 | 0.947 ± 0.284 | 39.0 ± 0.197 | 0.839 ± 0.252 | p < 0.05 |
8.653 | phenylalanine | 56.0 ± 0.298 | 1.233 ± 0.370 | 53.0 ± 0.278 | 1.140 ± 0.342 | p < 0.05 |
8.873 | histidine | 43.0 ± 0.398 | 0.947 ± 0.473 | 37.0 ± 0.212 | 0.796 ± 0.398 | p < 0.05 |
9.182 | leucine + isoleucine | 93.0 ± 0.232 | 2.048 ± 0.532 | 86.0 ± 0.361 | 1.849 ± 0.481 | p < 0.05 |
9.340 | methionine | 45.0 ± 0.235 | 0.991 ± 0.337 | 37.0 ± 0.193 | 0.796 ± 0.271 | p < 0.05 |
9.448 | valine | 97.0 ± 0.623 | 2.136 ± 0.854 | 96.0 ± 0.366 | 2.065 ± 0.826 | p > 0.05 |
9.598 | proline | 70.0 ± 0.287 | 1.541 ± 0.308 | 72.0 ± 0.302 | 1.548 ± 0.403 | p > 0.05 |
9.703 | threonine | 67.0 ± 0.389 | 0.417 ± 0.401 | 55.0 ± 0.334 | 1.183 ± 0.473 | p < 0.05 |
10.015 | serine | 56.0 ± 0.456 | 1.475 ± 0.590 | 44.0 ± 0.265 | 0.946 ± 0.246 | p < 0.05 |
10.145 | alanine | 100.0 ± 0.510 | 2.202 ± 0.572 | 97.0 ± 0.456 | 2.086 ± 0.542 | p > 0.05 |
10.655 | glycine | 84.0 ± 0.567 | 1.849 ± 0.629 | 90.0 ± 0.612 | 1.935 ± 0.658 | p > 0.05 |
Amino Acids | Indicators | |||||||
---|---|---|---|---|---|---|---|---|
Content, mg/100 g | Aj, g/100 g | Acj, g/100 g | Cj, % | Δ Amino Acid Availability Deviation, % | Coefficient of Rationality of Amino Acid Score, % | Biological Value, % | Aj | |
lysine | 865 ± 24 | 5.15 | 5.5 | 93.6 | 33.3 | 22.34 | 77.6 | 0.64 |
tyrosine + phenylalanine | 1021 ± 31 | 6.08 | 6.0 | 101.3 | 41.0 | 0.60 | ||
leucine + isoleucine | 1616 ± 45 | 9.62 | 11.0 | 87.5 | 27.2 | 0.69 | ||
methionine | 458 ± 18 | 2.73 | 3.5 | 78.0 | 17.7 | 0.77 | ||
valine | 746 ± 21 | 4.44 | 5.0 | 88.8 | 28.5 | 0.68 | ||
threonine | 405 ± 17 | 2.41 | 4.0 | 60.3 | - | 1 | ||
tryptophan | 116 ± 9 | 0.69 | 1.0 | 69.0 | 8.7 | 0.87 |
Amino Acids | Indicators | |||||||
---|---|---|---|---|---|---|---|---|
Content, mg/100 g | Aj, g/100 g | Acj, g/100 g | Cj, % | Δ Amino Acid Availability Deviation, % | Coefficient of Rationality of Amino Acid Score, % | Biological Value, % | Aj | |
lysine | 1152 ± 28 | 6.2 | 5.51 | 112.7 | 28.9 | 19.9 | 80.1 | 0.75 |
tyrosine + phenylalanine | 1232 ± 37 | 6.62 | 6.1 | 110.3 | 26.5 | 0.77 | ||
leucine + isoleucine | 2195 ± 48 | 11.79 | 11.1 | 107.2 | 23.4 | 0.79 | ||
methionine | 685 ± 21 | 3.65 | 3.51 | 104.2 | 20.3 | 0.82 | ||
valine | 1009 ± 28 | 5.42 | 5.1 | 108.3 | 24.5 | 0.79 | ||
threonine | 626 ± 20 | 3.36 | 4.1 | 83.9 | - | 1.1 | ||
tryptophan | 190 ± 12 | 1.1 | 1.1 | 100.1 | 16.3 | 0.85 |
Name of Indicators, Units of Measurement, 1 g, log CFU/g | Actual Results | ||||
---|---|---|---|---|---|
Regulatory Limit | 1 | 2 | 3 | 4 | |
1 Days | 15 Days | 36 Days | 40 Days | ||
The number of mesophilic aerobic and facultative anaerobic microorganisms, colony-forming unit | ≤3.30 | 2.00 ± 0.05 | 2.60 ± 0.06 | 2.78 ± 0.07 | 3.15 ± 0.04 |
E. coli | ND | ND | ND | ND | ND |
S. aureus | ND | ND | ND | ND | ND |
Sulphite-reducing clostridium | ND | ND | ND | ND | ND |
Name of Indicators, Units of Measurement, 1 g, log CFU/g | Actual Results | ||||
---|---|---|---|---|---|
Regulatory Limit | 1 | 2 | 3 | 4 | |
1 Days | 15 Days | 36 Days | 40 Days | ||
The number of mesophilic aerobic and facultative anaerobic microorganisms, colony-forming unit | ≤3.30 | 2.48 ± 0.06 | 2.85 ± 0.05 | 2.95 ± 0.06 | 3.48 ± 0.05 |
E. coli | ND | ND | ND | ND | ND |
S. aureus | ND | ND | ND | ND | ND |
Sulphite-reducing clostridium | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukarbayev, K.; Abzhanova, S.; Baibolova, L.; Zhaksylykova, G.; Kulazhanov, T.; Vasilenko, V.; Jetpisbayeva, B.; Katasheva, A.; Sabraly, S.; Yerzhigitov, Y. Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages. Foods 2025, 14, 2730. https://doi.org/10.3390/foods14152730
Bukarbayev K, Abzhanova S, Baibolova L, Zhaksylykova G, Kulazhanov T, Vasilenko V, Jetpisbayeva B, Katasheva A, Sabraly S, Yerzhigitov Y. Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages. Foods. 2025; 14(15):2730. https://doi.org/10.3390/foods14152730
Chicago/Turabian StyleBukarbayev, Kainar, Sholpan Abzhanova, Lyazzat Baibolova, Gulshat Zhaksylykova, Talgat Kulazhanov, Vitalii Vasilenko, Bagila Jetpisbayeva, Alma Katasheva, Sultan Sabraly, and Yerkin Yerzhigitov. 2025. "Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages" Foods 14, no. 15: 2730. https://doi.org/10.3390/foods14152730
APA StyleBukarbayev, K., Abzhanova, S., Baibolova, L., Zhaksylykova, G., Kulazhanov, T., Vasilenko, V., Jetpisbayeva, B., Katasheva, A., Sabraly, S., & Yerzhigitov, Y. (2025). Effect of Hemp Protein and Sea Buckthorn Extract on Quality and Shelf Life of Cooked-Smoked Sausages. Foods, 14(15), 2730. https://doi.org/10.3390/foods14152730