Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,316)

Search Parameters:
Keywords = protein release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3674 KiB  
Article
Extracellular Adenosine in Gastric Cancer: The Role of GCSCs
by Sharin Valdivia, Carolina Añazco, Camila Riquelme, María Constanza Carrasco, Andrés Alarcón and Sebastián Alarcón
Int. J. Mol. Sci. 2025, 26(15), 7594; https://doi.org/10.3390/ijms26157594 - 6 Aug 2025
Abstract
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like [...] Read more.
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like cells (GCSCs) derived from the MKN-74 cell line. Our results show that GCSCs release more ATP into the extracellular medium and exhibit higher levels of CD39 expression, which enables them to hydrolyze a greater amount of ATP. Furthermore, we also found that GCSCs possess a greater capacity to hydrolyze AMP, primarily due to the activity of the CD73 protein, with no significant changes in CD73 transcripts and protein levels between GCSCs and differentiated cells. Additionally, adenosine transport is primarily mediated by members of the equilibrative nucleoside transporter (ENT) family in GCSCs, where a significant increase in the expression level of the ENT2 protein is observed compared to non-GCSCs MKN-74 cells. These findings suggest that targeting the adenosine metabolism pathway in GCSCs could be a potential therapeutic strategy for gastric cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cancer Invasion and Metastasis)
Show Figures

Figure 1

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Figure 1

11 pages, 1349 KiB  
Article
The Effect of Intracellular Calcium Buffer Bapta on Epileptiform Activity of Hippocampal Neurons
by V. P. Zinchenko, I. Yu. Teplov, F. V. Tyurin, A. E. Malibayeva, B. K. Kairat and S. T. Tuleukhanov
Int. J. Mol. Sci. 2025, 26(15), 7596; https://doi.org/10.3390/ijms26157596 - 6 Aug 2025
Abstract
The rhythm of epileptiform activity occurs in various brain injuries (ischemia, stroke, concussion, mechanical damage, AD, PD). The epileptiform rhythm is accompanied by periodic Ca2+ pulses, which are necessary for the neurotransmitter release, the repair of damaged connections between neurons, and the [...] Read more.
The rhythm of epileptiform activity occurs in various brain injuries (ischemia, stroke, concussion, mechanical damage, AD, PD). The epileptiform rhythm is accompanied by periodic Ca2+ pulses, which are necessary for the neurotransmitter release, the repair of damaged connections between neurons, and the growth of new projections. The duration and amplitude of these pulses depend on intracellular calcium-binding proteins. The effect of the synthetic fast calcium buffer BAPTA on the epileptiform activity of neurons induced by the GABA(A)-receptor inhibitor, bicuculline, was investigated in a 14-DIV rat hippocampal culture. In the epileptiform activity mode, neurons periodically synchronously generate action potential (AP) bursts in the form of paroxysmal depolarization shift (PDS) clusters and their corresponding high-amplitude Ca2+ pulses. Changes in the paroxysmal activity and Ca2+ pulses were recorded continuously for 10–11 min as BAPTA accumulated. It was shown that during BAPTA accumulation, transformation of neuronal patch activity occurs. Moreover, GABAergic and glutamatergic neurons respond differently to the presence of calcium buffer. Experiments were performed on two populations of neurons: a population of GABAergic neurons that responded selectively to ATPA, a calcium-permeable GluK1 kainate receptor agonist, and a population of glutamatergic neurons with a large amplitude of cluster depolarization (greater than −20 mV). These neurons made up the majority of neurons. In the population of GABAergic neurons, during BAPTA accumulation, the amplitude of PDS clusters decreases, which leads to a switch from the PDS mode to the classical burst mode with an increase in the electrical activity of the neuron. In glutamatergic neurons, the duration of PDS clusters decreased during BAPTA accumulation. However, the amplitude changed little. The data obtained showed that endogenous calcium-binding proteins play a significant role in switching the epileptiform rhythm to the recovery rhythm and perform a neuroprotective function by reducing the duration of impulses in excitatory neurons and the amplitude of impulses in inhibitory neurons. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

25 pages, 3822 KiB  
Article
Comparative Transcriptome and MicroRNA Profiles of Equine Mesenchymal Stem Cells, Fibroblasts, and Their Extracellular Vesicles
by Sebastian Sawicki, Monika Bugno-Poniewierska, Jakub Żurowski, Tomasz Szmatoła, Ewelina Semik-Gurgul, Michał Bochenek, Elżbieta Karnas and Artur Gurgul
Genes 2025, 16(8), 936; https://doi.org/10.3390/genes16080936 (registering DOI) - 5 Aug 2025
Abstract
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in [...] Read more.
Background: Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their ability to secrete paracrine factors that modulate tissue repair. Extracellular vesicles (EVs) released by MSCs contain bioactive molecules (e.g., mRNAs, miRNAs, proteins) and play a key role in intercellular communication. Methods: This study compared the transcriptomic profiles (mRNA and miRNA) of equine MSCs derived from adipose tissue (AT-MSCs), bone marrow (BM-MSCs), and ovarian fibroblasts (as a differentiated control). Additionally, miRNAs present in EVs secreted by these cells were characterized using next-generation sequencing. Results: All cell types met ISCT criteria for MSCs, including CD90 expression, lack of MHC II, trilineage differentiation, and adherence. EVs were isolated using ultracentrifugation and validated with nanoparticle tracking analysis and flow cytometry (CD63, CD81). Differential expression analysis revealed distinct mRNA and miRNA profiles across cell types and their secreted EVs, correlating with tissue origin. BM-MSCs showed unique regulation of genes linked to early development and osteogenesis. EVs contained diverse RNA species, including miRNA, mRNA, lncRNA, rRNA, and others. In total, 227 and 256 mature miRNAs were detected in BM-MSCs and AT-MSCs, respectively, including two novel miRNAs per MSC type. Fibroblasts expressed 209 mature miRNAs, including one novel miRNA also found in MSCs. Compared to fibroblasts, 60 and 92 differentially expressed miRNAs were identified in AT-MSCs and BM-MSCs, respectively. Conclusions: The results indicate that MSC tissue origin influences both transcriptomic profiles and EV miRNA content, which may help to interpret their therapeutic potential. Identifying key mRNAs and miRNAs could aid in future optimizing of MSC-based therapies in horses. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 (registering DOI) - 2 Aug 2025
Viewed by 263
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

18 pages, 5815 KiB  
Article
Novel Lipid Biomarkers of Chronic Kidney Disease of Unknown Etiology Based on Urinary Small Extracellular Vesicles: A Pilot Study of Sugar Cane Workers
by Jie Zhou, Kevin J. Kroll, Jaime Butler-Dawson, Lyndsay Krisher, Abdel A. Alli, Chris Vulpe and Nancy D. Denslow
Metabolites 2025, 15(8), 523; https://doi.org/10.3390/metabo15080523 - 2 Aug 2025
Viewed by 192
Abstract
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine [...] Read more.
Background/Objectives: Chronic kidney disease of unknown etiology (CKDu) disproportionately affects young male agricultural workers who are otherwise healthy. There is a scarcity of biomarkers for early detection of this type of kidney disease. We hypothesized that small extracellular vesicles (sEVs) released into urine may provide novel biomarkers. Methods: We obtained two urine samples at the start and the end of a workday in the fields from a limited set of workers with and without kidney impairment. Isolated sEVs were characterized for size, surface marker expression, and purity and, subsequently, their lipid composition was determined by mass spectrometry. Results: The number of particles per ml of urine normalized to osmolality and the size variance were larger in workers with possible CKDu than in control workers. Surface markers CD9, CD63, and CD81 are characteristic of sEVs and a second set of surface markers suggested the kidney as the origin. Differential expression of CD25 and CD45 suggested early inflammation in CKDu workers. Of the twenty-one lipids differentially expressed, several were bioactive, suggesting that they may have essential functions. Remarkably, fourteen of the lipids showed intermediate expression values in sEVs from healthy individuals with acute creatinine increases after a day of work. Conclusions: We identified twenty-one possible lipid biomarkers in sEVs isolated from urine that may be able to distinguish agricultural workers with early onset of CKDu. Differentially expressed surface proteins in these sEVs suggested early-stage inflammation. This pilot study was limited in the number of workers evaluated, but the approach should be further evaluated in a larger population. Full article
Show Figures

Graphical abstract

20 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 196
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

22 pages, 513 KiB  
Review
Unraveling NETs in Sepsis: From Cellular Mechanisms to Clinical Relevance
by Giulia Pignataro, Stefania Gemma, Martina Petrucci, Fabiana Barone, Andrea Piccioni, Francesco Franceschi and Marcello Candelli
Int. J. Mol. Sci. 2025, 26(15), 7464; https://doi.org/10.3390/ijms26157464 - 1 Aug 2025
Viewed by 172
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of [...] Read more.
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, frequently resulting in septic shock and multi-organ failure. Emerging evidence highlights the critical role of neutrophil extracellular traps (NETs) in the pathophysiology of sepsis. NETs are extracellular structures composed of chromatin DNA, histones, and granular proteins released by neutrophils through a specialized form of cell death known as NETosis. While NETs contribute to the containment of pathogens, their excessive or dysregulated production in sepsis is associated with endothelial damage, immunothrombosis, and organ dysfunction. Several NET-associated biomarkers have been identified, including circulating cell-free DNA (cfDNA), histones, MPO-DNA complexes, and neutrophil elastase–DNA complexes, which correlate with the disease severity and prognosis. Therapeutic strategies targeting NETs are currently under investigation. Inhibition of NET formation using PAD4 inhibitors or ROS scavengers has shown protective effects in preclinical models. Conversely, DNase I therapy facilitates the degradation of extracellular DNA, reducing the NET-related cytotoxicity and thrombotic potential. Additionally, heparin and its derivatives have demonstrated the ability to neutralize NET-associated histones and mitigate coagulopathy. Novel approaches include targeting upstream signaling pathways, such as TLR9 and IL-8/CXCR2, offering further therapeutic promise. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

35 pages, 2193 KiB  
Review
How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects
by Gabriel Atampugre Atampugbire, Joanna Afokai Quaye and Giovanni Gadda
Catalysts 2025, 15(8), 736; https://doi.org/10.3390/catal15080736 - 1 Aug 2025
Viewed by 413
Abstract
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower [...] Read more.
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower overall costs, and environmental friendliness are some advantages biocatalysis has over conventional chemical synthesis, which has made biocatalysis increasingly used in industry. We highlight three necessary fields that are fundamental to advancing industrial biocatalysis, including biocatalyst engineering, solvent engineering, and mechanistic engineering. However, the fundamental mechanism of enzyme function is often overlooked or given less attention, which can limit the engineering process. In this review, we describe how mechanistic enzymology benefits industrial biocatalysis by elucidating key fundamental principles, including the kcat and kcat/Km parameters. Mechanistic enzymology presents a unique field that provides in-depth insights into the molecular mechanisms of enzyme activity and includes areas such as reaction kinetics, catalytic mechanisms, structural analysis, substrate specificity, and protein dynamics. In line with the objective of protein engineering to optimize enzyme activity, we summarize a range of strategies reported in the literature aimed at improving the product release rate, the chemical step of catalysis, and the overall catalytic efficiency of enzymes. Further into this review, we delineate kinetic solvent viscosity effects (KSVEs) as a very efficient, cost-effective, and easy-to-perform method to probe different aspects of enzyme reaction mechanisms, including diffusion-dependent kinetic steps and rate-limiting steps. KSVEs are cost-effective because simple kinetic enzyme assays, such as the Michaelis–Menten kinetic approach, can be combined with them without the need for specialized and costly equipment. Other techniques in protein engineering and genetic engineering are also covered in this review. Additionally, we provide information on solvent systems in enzymatic reactions, details on immobilized biocatalysts, and common misconceptions that misguide enzyme design and optimization processes. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

20 pages, 4980 KiB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 - 1 Aug 2025
Viewed by 267
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

15 pages, 1487 KiB  
Article
Protective Effects of a Bifidobacterium-Based Probiotic Mixture on Gut Inflammation and Barrier Function
by Yeji You, Tae-Rahk Kim, Minn Sohn, Dongmin Yoo and Jeseong Park
Microbiol. Res. 2025, 16(8), 168; https://doi.org/10.3390/microbiolres16080168 - 1 Aug 2025
Viewed by 329
Abstract
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide [...] Read more.
Disruption of the intestinal epithelial barrier is a key driver of gut-derived inflammation in various disorders, yet strategies to preserve or restore barrier integrity remain limited. To address this, we evaluated a four-strain Bifidobacterium mixture—selected for complementary anti-inflammatory potency and industrial scalability—in lipopolysaccharide (LPS)-challenged RAW 264.7 macrophages and a Caco-2/THP-1 transwell co-culture model. Pretreatment with the probiotic blend reduced nitric oxide (NO) release in a dose-dependent manner by 25.9–48.3% and significantly down-regulated the pro-inflammatory markers in macrophages. In the co-culture system, the formulation decreased these markers, increased transepithelial electrical resistance (TEER) by up to 31% at 105 colony-forming unit (CFU)/mL after 48 h, and preserved the membrane localization of tight junction (TJ) proteins. Adhesion to Caco-2 cells (≈ 6%) matched that of the benchmark probiotic Lacticaseibacillus rhamnosus GG, suggesting direct epithelial engagement. These in vitro findings demonstrate that this probiotic mixture can attenuate LPS-driven inflammation and reinforce epithelial architecture, providing a mechanistic basis for its further evaluation in animal models and clinical studies of intestinal inflammatory disorders. Full article
Show Figures

Figure 1

33 pages, 2423 KiB  
Review
Chaperone-Mediated Responses and Mitochondrial–Endoplasmic Reticulum Coupling: Emerging Insight into Alzheimer’s Disease
by Manish Kumar Singh, Minghao Fu, Sunhee Han, Jyotsna S. Ranbhise, Wonchae Choe, Sung Soo Kim and Insug Kang
Cells 2025, 14(15), 1179; https://doi.org/10.3390/cells14151179 - 31 Jul 2025
Viewed by 431
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the most prevalent cause of dementia. By early 2030, the global cost of dementia is projected to rise by USD 2 trillion per year, with up to 85% of that cost attributed to daily patient care. Several factors have been implicated in the progression of neurodegeneration, including increased oxidative stress, the accumulation of misfolded proteins, the formation of amyloid plaques and aggregates, the unfolded protein response (UPR), and mitochondrial–endoplasmic reticulum (ER) calcium homeostasis. However, the exact triggers that initiate these pathological processes remain unclear, in part because clinical symptoms often emerge gradually and subtly, complicating early diagnosis. Among the early hallmarks of neurodegeneration, elevated levels of reactive oxygen species (ROS) and the buildup of misfolded proteins are believed to play pivotal roles in disrupting proteostasis, leading to cognitive deficits and neuronal cell death. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles is a characteristic feature of AD. These features contribute to chronic neuroinflammation, which is marked by the release of pro-inflammatory cytokines and chemokines that exacerbate oxidative stress. Given these interconnected mechanisms, targeting stress-related signaling pathways, such as oxidative stress (ROS) generated in the mitochondria and ER, ER stress, UPR, and cytosolic chaperones, represents a promising strategy for therapeutic intervention. This review focuses on the relationship between stress chaperone responses and organelle function, particularly the interaction between mitochondria and the ER, in the development of new therapies for AD and related neurodegenerative disorders. Full article
Show Figures

Figure 1

30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Viewed by 216
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
20 pages, 8914 KiB  
Article
Assessment of Low-Dose rhBMP-2 and Vacuum Plasma Treatments on Titanium Implants for Osseointegration and Bone Regeneration
by Won-Tak Cho, Soon Chul Heo, Hyung Joon Kim, Seong Soo Kang, Se Eun Kim, Jong-Ho Lee, Gang-Ho Bae and Jung-Bo Huh
Materials 2025, 18(15), 3582; https://doi.org/10.3390/ma18153582 - 30 Jul 2025
Viewed by 280
Abstract
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated [...] Read more.
This study evaluated the effects of low-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) coating in combination with vacuum plasma treatment on titanium implants, aiming to enhance osseointegration and bone regeneration while minimizing the adverse effects associated with high-dose rhBMP-2. In vitro analyses demonstrated that plasma treatment increased surface energy, promoting cell adhesion and proliferation. Additionally, it facilitated sustained rhBMP-2 release by enhancing protein binding to the implant surface. In vivo experiments using the four-beagle mandibular defect model were conducted with the following four groups: un-treated implants, rhBMP-2–coated implants, plasma-treated implants, and implants treated with both rhBMP-2 and plasma. Micro-computed tomography (micro-CT) and medical CT analyses revealed a significantly greater volume of newly formed bone in the combined treatment group (p < 0.05). Histological evaluation further confirmed superior outcomes in the combined group, showing significantly higher bone-to-implant contact (BIC), new bone area (NBA), and inter-thread bone density (ITBD) compared to the other groups (p < 0.05). These findings indicate that vacuum plasma treatment enhances the biological efficacy of low-dose rhBMP-2, representing a promising strategy to improve implant integration in compromised conditions. Further studies are warranted to determine the optimal clinical dosage. Full article
Show Figures

Graphical abstract

Back to TopTop