Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = proportional pressure control valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4630 KiB  
Article
A Novel Flow Characteristic Regulation Method for Two-Stage Proportional Valves Based on Variable-Gain Feedback Grooves
by Xingyu Zhao, Huaide Geng, Long Quan, Chengdu Xu, Bo Wang and Lei Ge
Machines 2025, 13(8), 648; https://doi.org/10.3390/machines13080648 - 24 Jul 2025
Viewed by 259
Abstract
The two-stage proportional valve is a key control component in heavy-duty equipment, where its signal-flow characteristics critically influence operational performance. This study proposes an innovative flow characteristic regulation method using variable-gain feedback grooves. Unlike conventional throttling notch optimization, the core mechanism actively adjusts [...] Read more.
The two-stage proportional valve is a key control component in heavy-duty equipment, where its signal-flow characteristics critically influence operational performance. This study proposes an innovative flow characteristic regulation method using variable-gain feedback grooves. Unlike conventional throttling notch optimization, the core mechanism actively adjusts pilot–main valve mapping through feedback groove shape and area gain adjustments to achieve the desired flow curves. This approach avoids complex throttling notch issues while retaining the valve’s high dynamics and flow capacity. Mathematical modeling elucidated the underlying mechanism. Subsequently, trapezoidal and composite feedback grooves are designed and investigated via simulation. Finally, composite feedback groove spools tailored to construction machinery operating conditions are developed. Comparative experiments demonstrate the following: (1) Pilot–main mapping inversely correlates with area gain; increasing gain enhances micro-motion control, while decreasing gain boosts flow gain for rapid actuation. (2) This method does not significantly increase pressure loss or energy consumption (measured loss: 0.88 MPa). (3) The composite groove provides segmented characteristics; its micro-motion flow gain (2.04 L/min/0.1 V) is 61.9% lower than conventional valves, significantly improving fine control. (4) Adjusting groove area gain and transition point flexibly modifies flow gain and micro-motion zone length. This method offers a new approach for high-performance valve flow regulation. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

27 pages, 6704 KiB  
Article
Dynamic Characteristics of a Digital Hydraulic Drive System for an Emergency Drainage Pump Under Alternating Loads
by Yong Zhu, Yinghao Liu, Qingyi Wu and Qiang Gao
Machines 2025, 13(8), 636; https://doi.org/10.3390/machines13080636 - 22 Jul 2025
Viewed by 229
Abstract
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone [...] Read more.
With the frequent occurrence of global floods, the demand for emergency rescue equipment has grown rapidly. The development and technological innovation of digital hydraulic drive systems (DHDSs) for emergency drainage pumps (EDPs) have become key to improving rescue efficiency. However, EDPs are prone to being affected by random and uncertain loads during operation. To achieve intelligent and efficient rescue operations, a DHDS suitable for EDPs was proposed. Firstly, the configuration and operation mode of the DHDS for EDPs were analyzed. Based on this, a multi-field coupling dynamic simulation platform for the DHDS was constructed. Secondly, the output characteristics of the system under alternating loads were simulated and analyzed. Finally, a test platform for the EDP DHDS was established, and the dynamic characteristics of the system under alternating loads were explored. The results show that as the load torque of the alternating loads increases, the amplitude of the pressure of the motor also increases, the output flow of the hydraulic-controlled proportional reversing valve (HCPRV) changes slightly, and the fluctuation range of the rotational speed of the motor increases. The fluctuation range of the pressure and the rotational speed of the motor are basically not affected by the frequency of alternating loads, but the fluctuation amplitude of the output flow of the HCPRV reduces with the increase in the frequency of alternating loads. This system can respond to changes in load relatively quickly under alternating loads and can return to a stable state in a short time. It has laudable anti-interference ability and output stability. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

20 pages, 3835 KiB  
Article
Fuzzy PD-Based Control for Excavator Boom Stabilization Using Work Port Pressure Feedback
by Joseph T. Jose, Gyan Wrat, Santosh Kr. Mishra, Prabhat Ranjan and Jayanta Das
Actuators 2025, 14(7), 336; https://doi.org/10.3390/act14070336 - 4 Jul 2025
Viewed by 298
Abstract
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need [...] Read more.
Hydraulic excavators operate in harsh environments where direct measurement of actuator chamber pressures and boom displacement is often unreliable or infeasible. This study presents a novel control strategy that estimates actuator chamber pressures from work port pressures using differential equations, eliminating the need for direct pressure or position sensors. A fuzzy logic-based proportional–derivative (PD) controller is developed to mitigate boom oscillations, particularly under high-inertia load conditions and variable operator inputs. The controller dynamically adjusts gains through fuzzy logic-based gain scheduling, enhancing adaptability across a wide range of operating conditions. The proposed method addresses the limitations of classical PID controllers, which struggle with the nonlinearities, parameter uncertainties, and instability introduced by counterbalance valves and pressure-compensated proportional valves. Experimental data is used to design fuzzy rules and membership functions, ensuring robust performance. Simulation and full-scale experimental validation demonstrate that the fuzzy PD controller significantly reduces pressure overshoot (by 23% during extension and 32% during retraction) and decreases settling time (by 31.23% and 28%, respectively) compared to conventional systems. Frequency-domain stability analysis confirms exponential stability and improved damping characteristics. The proposed control scheme enhances system reliability and safety, making it ideal for excavators operating in remote or rugged terrains where conventional sensor-based systems may fail. This approach is generalizable and does not require modifications to the existing hydraulic circuit, offering a practical and scalable solution for modern hydraulic machinery. Full article
Show Figures

Figure 1

21 pages, 5951 KiB  
Article
The Study of Waste Heat Recovery of the Thermal Management System of Electric Vehicle Based on Simulation and Experimental Analyses
by Weiwei Lu, Qingxia Yang, Liyou Xu and Xiuqing Li
World Electr. Veh. J. 2025, 16(6), 298; https://doi.org/10.3390/wevj16060298 - 28 May 2025
Viewed by 845
Abstract
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace [...] Read more.
In this study, in order to overcome the limitations of existing electric vehicle (EV) thermal management systems (TMS), a highly integrated and coordinated operation strategy for EV thermal management was proposed. Specifically, an integrated architecture with a 10-way valve was established to replace traditional 3-way and 4-way valves to enhance the coupling between coolant circuits. Six operating modes were realized via the switching function of the 10-way valve, including the mode of waste heat recovery. A highly integrated TMS model was developed on the AMEsim2304 platform, followed by parameter matching. The accuracy of the model was validated through comparative analysis with laboratory and environmental chamber test results. Based on the designed highly integrated TMS, a classical fuzzy Proportional-Integral-Derivative Control (PID) control strategy was introduced to regulate the coolant circulation pump. Simulation analyses and experimental results demonstrated that the optimized system could reduce the battery pack heating time by approximately 300 s compared to the pre-optimized configuration. Moreover, the waste heat recovery could improve the cabin heating rate from 1.9 °C/min to 3.4 °C/min, representing a 43.7% enhancement. Furthermore, the output power of the high-pressure liquid heater remained low, resulting in a 10% reduction in overall heating energy consumption. Based on simulation and experimental analyses, this research can promote the progress of thermal management system technology for electric vehicles to a certain extent. Full article
(This article belongs to the Special Issue Thermal Management System for Battery Electric Vehicle)
Show Figures

Figure 1

23 pages, 9693 KiB  
Article
Research on Pneumatic Proportional Pressure Valve Based on Silicon Microfluidic Chip with V-Shaped Electrothermal Microactuator
by Jun Zhang, Chengjie Zhou and Yangfang Wu
Micromachines 2025, 16(5), 566; https://doi.org/10.3390/mi16050566 - 8 May 2025
Viewed by 2509
Abstract
This study presents a pneumatic proportional pressure valve employing a silicon microfluidic chip (SMC) integrated with a V-shaped electrothermal microactuator, aiming to address the limitations of traditional solenoid-based valves in miniaturization and high-precision control. The SMC, fabricated via MEMS technology, leverages the thermal [...] Read more.
This study presents a pneumatic proportional pressure valve employing a silicon microfluidic chip (SMC) integrated with a V-shaped electrothermal microactuator, aiming to address the limitations of traditional solenoid-based valves in miniaturization and high-precision control. The SMC, fabricated via MEMS technology, leverages the thermal expansion of microactuator ribs to regulate pressure through adjustable orifices. A first-order transfer function between input voltage and displacement of the microactuator was derived through theoretical modeling and validated via COMSOL Multiphysics 5.2a simulations. Key geometric parameters of the actuator ribs—cross-section, number, inclination angle, width, span length and thickness—were analyzed for their influence on lever mechanism displacement, actuator displacement, static gain and time constant. AMESim 16.0-based simulations of single- and dual-chip valve structures revealed that increasing ζ shortens step-response rise time, while reducing τ improves hysteresis. Experimental validation confirmed the valve’s static and dynamic performance, achieving a step-response rise time of <40 ms, linearity within the 30–60% input voltage range, and effective tracking of sinusoidal control signals up to 8 Hz with a maximum pressure deviation of 0.015 MPa. The work underscores the potential of MEMS-based actuators in advancing compact pneumatic systems, offering a viable alternative to conventional solenoids. Key innovations include geometry-driven actuator optimization and dual-chip integration, providing insights into high-precision, low-cost pneumatic control solutions. Full article
(This article belongs to the Special Issue MEMS Actuators and Their Applications)
Show Figures

Figure 1

30 pages, 7722 KiB  
Article
Neural Network and Generalized Extended State Observer Sliding Mode Control of Hydraulic Cylinder Position in the Independent Metering Control System with Digital Valves
by Xiangfei Tao, Kailei Liu and Jing Yang
Actuators 2025, 14(5), 221; https://doi.org/10.3390/act14050221 - 29 Apr 2025
Viewed by 485
Abstract
The independent metering control system is renowned for its ability to independently regulate the flow and pressure of various actuators, achieving high efficiency and energy savings in hydraulic systems. The high-speed digital valve is known for its fast response to control signals and [...] Read more.
The independent metering control system is renowned for its ability to independently regulate the flow and pressure of various actuators, achieving high efficiency and energy savings in hydraulic systems. The high-speed digital valve is known for its fast response to control signals and precise fluid control. However, challenges such as jitter in the position control of hydraulic cylinders, unknown dead zone nonlinearity, and time variance in electro-hydraulic proportional systems necessitate further investigation. To address these issues, this study initially establishes an independent metering control system with digital valves. Based on the state space equation and Lyapunov stability judgment conditions, a high-order sliding mode controller is designed. In addition, a radial basis function (RBF) neural network is constructed to approximate uncertainties arising from the modeling process, the accuracy error indicator uses Mean Absolute Error (MAE), and a finite time generalized extended state observer (GESO) is introduced to conduct online disturbance observation for the external disturbances present within the control system. Consequently, a variable structure high-order sliding mode control strategy, augmented by RBF neural networks and finite time generalized extended state observer (RBF-GESO-SMC), is proposed. Finally, simulations and experimental verification are performed, followed by a comprehensive analysis of the experimental results. Compared with the sliding mode control (SMC), the RBF-GESO-SMC diminishes the displacement-tracking control accuracy error by 63.7%. Compared with traditional Proportional-Integral-Derivative (PID) control, it reduces the displacement-tracking control accuracy error by 78.1%. The results indicate that, through the comparison with SMC and PID control, RBF-GESO-SMC exerts significant influence on the improvement of position accuracy, anti-interference ability, transient response performance, and stability. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 17382 KiB  
Article
Speed–Pressure Compound Control of Thrust System Based on the Adaptive Sliding Mode Control Strategy
by Tong Xing, Hong Liu, Zhe Zheng, Lianhui Jia, Lijie Jiang, Guofang Gong, Huayong Yang and Dong Han
Machines 2025, 13(3), 213; https://doi.org/10.3390/machines13030213 - 6 Mar 2025
Viewed by 551
Abstract
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence [...] Read more.
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence or upheaval. Conversely, solely relying on pressure control causes fluctuations in speed, making it difficult to ensure that the deviation between the designed tunneling axis (DTA) and the actual tunneling axis (ATA) remains within the permissible range. Due to the increase in geological complexity and higher construction quality standards, primarily relying on single-mode speed or pressure control has become inadequate to meet operational demands. Therefore, to realize higher safety and precise trajectory tracking, it is necessary to ensure speed and pressure compound control for thrust systems. This paper proposes a novel adaptive sliding mode control (ASMC) strategy for thrust systems, which is composed of a proportional pressure relief valve (PPRV) and a proportional flow control valve (PFCV). Firstly, PPRV and PFCV are modeled as a second-order system and an ASMC is employed to control the pressure and speed. Next, to assess the performance of the ASMC controller, simulation experiments were conducted under various conditions, including speed regulation, sudden changed load, and disturbed load. The simulation results indicate that compared to the Proportion–Integral–Differential (PID) controller, the ASMC controller shows almost no overshoot in speed and pressure control during the initial stages, with the response time reduced by approximately 70%. During speed regulation process and sudden changed load process, the response time for both speed and pressure control is shortened by about 80%. In the disturbed load process, the ASMC controller maintains pressure stability. In conclusion, the ASMC controller significantly improves the response speed and stability of the thrust system, exhibiting better control performance under various operating conditions. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 9340 KiB  
Article
Research on Pressure Control of Hydraulic System for Pump Controlled Anchor Drilling Machine Based on Variable Universe Fuzzy PID Algorithm
by Zheng Yan, Guangwei Tang and Youshan Gao
Machines 2025, 13(3), 199; https://doi.org/10.3390/machines13030199 - 28 Feb 2025
Cited by 1 | Viewed by 701
Abstract
To address significant pressure fluctuations in anchor drilling machine systems during the drilling and anchoring support of complex coal roadway surrounding rock, a variable universe fuzzy PID control strategy was proposed to regulate the speed of the servo motor. Additionally, a pump-controlled pressure [...] Read more.
To address significant pressure fluctuations in anchor drilling machine systems during the drilling and anchoring support of complex coal roadway surrounding rock, a variable universe fuzzy PID control strategy was proposed to regulate the speed of the servo motor. Additionally, a pump-controlled pressure approach was introduced to further reduce throttling losses and energy consumption. To validate the proposed algorithm, disturbances were simulated by adjusting the opening size of a three-position four-way proportional directional valve. A co-simulation model was first established using AMESIM 2020.1 and SIMULINK R2022a software, followed by experimental verification and comparison with conventional PID control. The experimental results demonstrated that when the system pressure signal was set to a constant value, the proposed algorithm reduced the pressure error by approximately 36.5% compared to PID control. For step pressure inputs, the algorithm decreased the response time and overshoot by 6.8–8.2% and 10.3–16.2%, respectively, under different valve openings. Furthermore, when the system pressure followed various sinusoidal signals, the proposed algorithm exhibited lower pressure error and faster response times than PID control. This study provides theoretical and experimental references for maintaining stable pressure during the operation of anchor drilling machines, offering an efficient and reliable control solution for complex drilling environments. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

34 pages, 23812 KiB  
Article
Novel Approach for Robust Control of Axial Piston Pump
by Tsonyo Slavov, Alexander Mitov and Jordan Kralev
Mathematics 2025, 13(4), 643; https://doi.org/10.3390/math13040643 - 16 Feb 2025
Viewed by 561
Abstract
The article is devoted to designing novel multivariable robust μ-control of an open-circuit axial piston pump. In contrast with classical solutions of displacement volume control, in our case, the hydro-mechanical controller (by pressure, flow rate, or power) is replaced by an electro-hydraulic [...] Read more.
The article is devoted to designing novel multivariable robust μ-control of an open-circuit axial piston pump. In contrast with classical solutions of displacement volume control, in our case, the hydro-mechanical controller (by pressure, flow rate, or power) is replaced by an electro-hydraulic proportional valve which receives a control signal from an industrial microcontroller. The valve is used as the actuator of the pump swash plate. The pump swash plate swivel angle determines the displacement volume and the flow rate of the pump. The μ-controller design is performed on the basis of a one-input, two-output model with multiplicative output uncertainty. This model is estimated and validated from experimental data at various loads by multivariable identification. The designed control system achieves robust stability and robust performance for the wide working mode of an axial piston pump. To conduct this experimental study, the authors have developed a laboratory test bench, enabling a real-time function of the control system via USB/CAN communication. The designed controller is implemented in a rapid prototyping system, and real-time experiments are performed. They show the advantages of μ-control and confirm the possibility of its implementation in the case of the real-time control of an axial piston pump. Full article
Show Figures

Figure 1

19 pages, 4798 KiB  
Article
Investigating the Symmetric Control of a Hydraulic System Based on Status Feedback
by Yuebing Wen, Shuhua Teng, Qiang Li, Jianping Tan, Yuwei Song and Shiyuan Sun
Symmetry 2025, 17(2), 246; https://doi.org/10.3390/sym17020246 - 7 Feb 2025
Viewed by 770
Abstract
Valve-controlled hydraulic systems are widely used in various hydraulic equipment, but their asymmetric characteristics are the most critical factor restricting further improvements in system performance. This paper takes large asymmetric complex hydraulic equipment as the industrial background, and proposes a state feedback-based symmetric [...] Read more.
Valve-controlled hydraulic systems are widely used in various hydraulic equipment, but their asymmetric characteristics are the most critical factor restricting further improvements in system performance. This paper takes large asymmetric complex hydraulic equipment as the industrial background, and proposes a state feedback-based symmetric switching control method to address the complex control strategy and difficult control accuracy caused by input–output asymmetry and the inconsistent response of asymmetric valve-controlled hydraulic systems. A system state space model is established, and the parameterized expression that satisfies the state space switching-based symmetric control law is solved. Feedback and feedforward links based on state space symmetric switching are designed to transform the asymmetric system into a state space symmetric system. And the research results will be applied to the experimental setup of the 300 MN forging hydraulic press control system. Through simulation verification, under asymmetric PID control conditions, due to the influence of the asymmetric characteristics of the system structure, load, and their coupling relationship, the forward response time is shorter than the unloaded response time, and the overshoot is larger than the unloaded response time. The reverse response time is longer than the unloaded response time, and the overshoot is smaller than the unloaded response time. After symmetric control, the forward and reverse dynamic system characteristic curves completely overlap, proving that the system has achieved symmetric transformation; through experimental verification, under asymmetric PID control conditions, when the proportional valve opening remains constant, changes in the load pressure will cause changes in the load speed. For every 1 MPa increase in the load pressure, the load speed will slow down by about 0.0033 m/s. The load speed of the system after symmetrical control replacement will be much less affected by changes in the load pressure. The simulation and experimental results have shown that this method is expected to solve the key problem of inconsistent dynamic characteristics of complex equipment hydraulic systems in both the forward and reverse directions due to asymmetry, and the inability to ensure control accuracy in both directions using symmetric control strategies. This paper has developed a set of control theories and methods applicable to hydraulic systems with complex asymmetry. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

24 pages, 4240 KiB  
Article
Digital Hydraulic Transformer Concepts for Energy-Efficient Motion Control
by Helmut Kogler
Actuators 2025, 14(2), 54; https://doi.org/10.3390/act14020054 - 25 Jan 2025
Cited by 1 | Viewed by 954
Abstract
Hydraulic linear drive systems with conventional proportional valves result in poor energy efficiency due to resistance control. In systems with multiple actuators connected to one common pressure supply, a load-sensing strategy is often used to reduce these throttling losses. However, like conventional cylinder [...] Read more.
Hydraulic linear drive systems with conventional proportional valves result in poor energy efficiency due to resistance control. In systems with multiple actuators connected to one common pressure supply, a load-sensing strategy is often used to reduce these throttling losses. However, like conventional cylinder actuators, common load-sensing systems are also not able to recuperate the energy, which is actually released when a dead load is lowered. In order to overcome these drawbacks, in this paper, new concepts of a digital hydraulic smart actuator and a load-sensitive pressure supply unit are presented, which are qualified to reduce throttling losses and, furthermore, to harvest energy from the load. According to previous research, the basic concepts used in this contribution promise energy savings in the range of 30% for certain applications, which is one of the main motivations for this study. The operating principles are based on a parallel arrangement of multiple hydraulic switching converters, representing so-called digital hydraulic transformers. Furthermore, the storage module of the presented load-sensitive pressure supply unit is able to boost the hydraulic power in the common pressure rail beyond the maximum power of the primary motor. For exemplary operating cycles of the smart actuator and the pressure supply unit, a significant reduction in the energy consumption could be shown by simulation experiments, which offers a new perspective for energy-efficient motion control. Full article
(This article belongs to the Special Issue Actuation and Control in Digital Fluid Power)
Show Figures

Figure 1

16 pages, 5669 KiB  
Article
Investigation on the Dynamic Characteristics of a New High-Pressure Water Hydraulic Flow Control Valve
by Wenchao Liu, Jie Tian, Hongyao Wang, Junshi Li, Rulin Zhou and Yu Cao
Machines 2024, 12(9), 640; https://doi.org/10.3390/machines12090640 - 12 Sep 2024
Cited by 2 | Viewed by 1282
Abstract
Water has the disadvantages of low viscosity, poor lubrication, and easy leakage, which leads to many problems in water hydraulic flow control valves, such as low working pressure and large flow fluctuations. To address these issues, this paper proposes a novel digital flow [...] Read more.
Water has the disadvantages of low viscosity, poor lubrication, and easy leakage, which leads to many problems in water hydraulic flow control valves, such as low working pressure and large flow fluctuations. To address these issues, this paper proposes a novel digital flow control valve. The valve uses a linear stepper motor as the driving device. Compared to proportional electromagnets, the thrust and stroke of the linear stepper motor are larger, making the valve more suitable for high-pressure working conditions. Simultaneously, the valve innovatively incorporates a set of pilot valve spool strings at the front end of the pilot valve damping hole. Through controlling the two pilot valves to regulate the pressure difference before and after the damping hole, the flow passing through the pilot valve is maintained stable, thereby making the pressure of the upper chamber of the master valve spool more stable. In comparison to a single pilot valve structure, this design ensures a more stable main valve core position and reduces flow fluctuation. A mathematical and simulation model of the valve has been established, confirming the performance advantages of the new structure. The impact of structural parameters (such as valve core diameter, spring stiffness, and diameter of damping hole) on the stability of flow regulation has been investigated. A genetic algorithm has been employed to optimize the key parameters that influence valve flow stability, resulting in the identification of optimal parameters. The simulation results indicate that the optimized parameters lead to a reduction of approximately 45% in the maximum overshoot oscillation amplitude of the valve flow regulation. A prototype of the new flow control valve was developed, and a test system was established for conducting tests. The test results also confirmed the performance advantages of the valve and the accuracy of the optimal design. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

22 pages, 13522 KiB  
Article
Comparison of Advanced Multivariable Control Techniques for Axial-Piston Pump
by Alexander Mitov, Tsonyo Slavov and Jordan Kralev
Processes 2024, 12(9), 1797; https://doi.org/10.3390/pr12091797 - 23 Aug 2024
Cited by 3 | Viewed by 1414
Abstract
This article is devoted to a comparison of two advanced control techniques applied to the same plant. The plant is a certain type of axial-piston pump. A linear-quadratic (LQR) controller and an H-infinity (H) controller were synthesized to regulate the displacement [...] Read more.
This article is devoted to a comparison of two advanced control techniques applied to the same plant. The plant is a certain type of axial-piston pump. A linear-quadratic (LQR) controller and an H-infinity (H) controller were synthesized to regulate the displacement volume of the pump. The classical solution to such a problem is to use a hydro-mechanical controller (by pressure, flow rate, or power) but, in the available sources, there are solutions that implement proportional-integral-derivative (PID), LQR, model predictive control (MPC), etc. Unlike a classical solution, in our case, the hydro-mechanical controller is replaced by an electro-hydraulic proportional valve, which receives a reference signal from an industrial microcontroller. It is used as the actuator of the pump swash plate. The pump swash plate swivel angle determines the displacement volume, respectively, and the flow rate of the pump. The microcontroller is capable of embedding various control algorithms with different structures and complexities. The developed LQR and H controllers are compared in the simulation and real experiment conditions. For this purpose, the authors have developed a laboratory experimental test bench, enabling a real-time function of the control system via USB/CAN communication. Both controllers are compared under different pump loading modes. Also, this paper contributes an uncertain model of an axial-piston pump with proportional valve control that is obtained from experimental data. Based on this model, the robust stability of the closed-loop system is investigated by comparing the structured singular value (μ). The investigations show that both control systems achieved robust stability. Moreover, they can tolerate up to four times larger uncertainties than modeled ones. The system with the H controller attenuates approximately at least 30 times the disturbances with frequency up to 1 rad/s while the system with the LQR controller attenuates at least 10 times the same disturbances. Full article
Show Figures

Figure 1

22 pages, 5427 KiB  
Article
The Development and Nonlinear Adaptive Robust Control of the Air Chamber Pressure Regulation System of a Slurry Pressure Balance Shield Tunneling Machine
by Shuai Wang, Yakun Zhang, Guofang Gong and Huayong Yang
Machines 2024, 12(7), 457; https://doi.org/10.3390/machines12070457 - 4 Jul 2024
Viewed by 1179
Abstract
The rapid and accurate control of air chamber pressure in slurry pressure balance (SPB) shield tunneling machines is crucial for establishing the balance between slurry pressure and soil and water pressure, ensuring the stability of the support face. A novel air chamber pressure [...] Read more.
The rapid and accurate control of air chamber pressure in slurry pressure balance (SPB) shield tunneling machines is crucial for establishing the balance between slurry pressure and soil and water pressure, ensuring the stability of the support face. A novel air chamber pressure control method based on nonlinear adaptive robust control (ARC) and using a pneumatic proportional three-way pressure-reducing valve is proposed in this paper. Firstly, an electric proportional control system for the air chamber pressure is developed. Secondly, a nonlinear state space model for the air chamber pressure regulation process is established. Utilizing experimental data from the SPB shield tunneling machine test bench, nonlinear adaptive identification is conducted through the nonlinear recursive least square algorithm. The results demonstrate the model’s effectiveness and accuracy. Then, a nonlinear ARC for air chamber pressure is designed based on the backstepping method, and its Lyapunov stability is proved. Finally, the feasibility and effectiveness of the controller designed in this paper is verified through simulation and experiments. The results demonstrate that the developed control system can compensate for the nonlinearity and disturbance in the air chamber pressure regulation process. It can achieve good transient and steady-state performance and has good robustness against uncertainty. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

17 pages, 4661 KiB  
Article
Interrupter Technique Revisited: Building an Experimental Mechanical Ventilator to Assess Respiratory Mechanics in Large Animals
by Camilla Zilianti, Erfan Bashar, Anna Kyriakoudi and Matteo Pecchiari
Fluids 2024, 9(6), 142; https://doi.org/10.3390/fluids9060142 - 14 Jun 2024
Viewed by 1370
Abstract
Large animals are increasingly used as experimental models of respiratory diseases. Precise characterization of respiratory mechanics requires dedicated equipment with specific characteristics which are difficult to find together in the same commercial device. In this work, we describe building and validation of a [...] Read more.
Large animals are increasingly used as experimental models of respiratory diseases. Precise characterization of respiratory mechanics requires dedicated equipment with specific characteristics which are difficult to find together in the same commercial device. In this work, we describe building and validation of a computer-controlled ventilator able to perform rapid airways occlusions during constant flow inflations followed by a prolonged inspiratory hold. A constant airflow is provided by a high pressure source (5 atm) connected to the breathing circuit by three proportional valves. The combined action of three 2-way valves produces the phases of the breath. During non-inspiratory breath phases, airflow is diverted to a flowmeter for precise feedback regulation of the proportional valves. A computer interface enables the user to change the breathing pattern, trigger test breaths or run predetermined breaths sequences. A respiratory system model was used to test the ability of the ventilator to correctly estimate interrupter resistance. The ventilator was able to produce a wide range of constant flows (0.1–1.6 L/s) with the selected timing. Errors in the measurement of interrupter resistance were small (1 ± 5% of the reference value). The device described reliably estimated interrupter resistance and can be useful as a measuring tool in large animal research. Full article
(This article belongs to the Special Issue Respiratory Flows)
Show Figures

Figure 1

Back to TopTop