Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,119)

Search Parameters:
Keywords = properties of risk measures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

22 pages, 3994 KiB  
Article
Analysis of Foaming Properties, Foam Stability, and Basic Physicochemical and Application Parameters of Bio-Based Car Shampoos
by Bartosz Woźniak, Agata Wawrzyńczak and Izabela Nowak
Coatings 2025, 15(8), 907; https://doi.org/10.3390/coatings15080907 (registering DOI) - 2 Aug 2025
Viewed by 264
Abstract
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware [...] Read more.
Environmental protection has become one of the key challenges of our time. This has led to an increase in pro-environmental activities in the field of cosmetics and household chemicals, where manufacturers are increasingly trying to meet the expectations of consumers who are aware of the potential risks associated with the production of cosmetics and household chemistry products. This is one of the most important challenges of today’s industry, given that some of the raw materials still commonly used, such as surfactants, may be toxic to aquatic organisms. Many companies are choosing to use natural raw materials that have satisfactory performance properties but are also environmentally friendly. In addition, modern products are also characterized by reduced consumption of water, resources, and energy in production processes. These measures reduce the carbon footprint and reduce the amount of plastic packaging required. In the present study, seven formulations of environmentally friendly car shampoo concentrates were developed, based entirely on mixtures of bio-based surfactants. The developed formulations were tested for application on the car body surface, allowing the selection of the two best products. For these selected formulations, an in-depth physicochemical analysis was carried out, including pH, density, and viscosity measurements. Comparison of the results with commercial products available on the market was also performed. Additionally, using the multiple light scattering method, the foamability and foam stability were determined for the car shampoos developed. The results obtained indicate the very high application potential of the products under study, which combine high performance and environmental concerns. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

22 pages, 5182 KiB  
Article
Effects of High-Phenolic Extra Virgin Olive Oil (EVOO) on the Lipid Profile of Patients with Hyperlipidemia: A Randomized Clinical Trial
by Christos Kourek, Emmanouil Makaris, Prokopios Magiatis, Virginia Zouganeli, Vassiliki Benetou, Alexandros Briasoulis, Andrew Xanthopoulos, Ioannis Paraskevaidis, Eleni Melliou, Georgios Koudounis and Philippos Orfanos
Nutrients 2025, 17(15), 2543; https://doi.org/10.3390/nu17152543 - 2 Aug 2025
Viewed by 426
Abstract
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types [...] Read more.
Background/Objectives: Hyperlipidemia is a major risk factor for cardiovascular disease and atherosclerosis. Polyphenols found in polyphenol-rich extra virgin olive oil (EVOO) have been shown to possess strong antioxidant, anti-inflammatory, and cardioprotective properties. The present study aimed to assess the effects of two types of EVOO with different polyphenol content and dosages on the lipid profile of hyperlipidemic patients. Methods: In this single-blind, randomized clinical trial, 50 hyperlipidemic patients were randomized to receive either a higher-dose, lower-phenolic EVOO (414 mg/kg phenols, 20 g/day) or a lower-dose, higher-phenolic EVOO (1021 mg/kg phenols, 8 g/day), for a period of 4 weeks. These doses were selected to ensure equivalent daily polyphenol intake in both groups (~8.3 mg of total phenols/day), based on chemical analysis performed using NMR spectroscopy. The volumes used (8–20 g/day) reflect typical daily EVOO intake and were well tolerated by participants. A group of 20 healthy individuals, separated into two groups, also received the two types of EVOO, respectively, for the same duration. Primary endpoints included blood levels of total blood cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, lipoprotein-a (Lpa), and apolipoproteins A1 and B. Measurements were performed at baseline and at the end of the 4-week intervention. Linear mixed models were performed for the data analysis. Results: The higher-phenolic, lower-dose EVOO group showed a more favorable change in total blood cholesterol (p = 0.045) compared to the lower-phenolic, higher-dose group. EVOO intake was associated with a significant increase in HDL (p < 0.001) and reduction in Lp(a) (p = 0.040) among hyperlipidemic patients in comparison to healthy individuals. Conclusions: EVOO consumption significantly improved the lipid profile of hyperlipidemic patients. Higher-phenolic EVOO at lower dosages appears to be more effective in improving the lipid profile than lower-phenolic EVOO in higher dosages. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 - 31 Jul 2025
Viewed by 138
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

15 pages, 2439 KiB  
Article
Environmental Microbiome Characteristics and Disinfection Strategy Optimization in Intensive Dairy Farms: Bactericidal Efficacy of Glutaraldehyde-Based Combination Disinfectants and Regulation of Gut Microbiota
by Tianchen Wang, Tao He, Mengqi Chai, Liyan Zhang, Xiangshu Han and Song Jiang
Vet. Sci. 2025, 12(8), 707; https://doi.org/10.3390/vetsci12080707 - 28 Jul 2025
Viewed by 158
Abstract
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial [...] Read more.
As the primary biological risk threatening safe dairy production, bovine mastitis control highly relies on environmental disinfection measures. However, the mechanisms by which chemical disinfectants influence host–environment microbial interactions remain unclear. This study systematically investigated the disinfection efficacy and regulatory effects on microbial community composition and diversity of glutaraldehyde-benzalkonium chloride (BAC) and glutaraldehyde-didecyl dimethyl ammonium bromide (DAB) at recommended concentrations (2–5%), using 80 environmental samples from intensive dairy farms in Xinjiang, China. Combining 16S rDNA sequencing with culturomics, the results showed that BAC achieved a disinfection rate of 99.33%, higher than DAB’s 97.87%, and reduced the environment–gut microbiota similarity index by 23.7% via a cationic bacteriostatic film effect. Microbiome analysis revealed that BAC selectively suppressed Fusobacteriota abundance (15.67% reduction) and promoted Bifidobacterium proliferation (7.42% increase), enhancing intestinal mucosal barrier function through butyrate metabolism. In contrast, DAB induced Actinobacteria enrichment in the environment (44.71%), inhibiting pathogen colonization via bioantagonism. BAC’s long-acting bacteriostatic properties significantly reduced disinfection costs and mastitis incidence. This study first elucidated the mechanism by which quaternary ammonium compound (QAC) disinfectants regulate host health through “environment-gut” microbial interactions, providing a critical theoretical basis for developing precision disinfection protocols integrating “cost reduction-efficiency enhancement-risk mitigation.” Full article
Show Figures

Figure 1

17 pages, 574 KiB  
Systematic Review
Hydrogen Peroxide-Free Color Correctors for Tooth Whitening in Adolescents and Young Adults: A Systematic Review of In Vitro and Clinical Evidence
by Madalina Boruga, Gianina Tapalaga, Magda Mihaela Luca and Bogdan Andrei Bumbu
Dent. J. 2025, 13(8), 346; https://doi.org/10.3390/dj13080346 - 28 Jul 2025
Viewed by 471
Abstract
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of [...] Read more.
Background: The rising demand for aesthetic dental treatments has spurred interest in peroxide-free color correctors as alternatives to traditional hydrogen peroxide formulations, which are associated with tooth sensitivity and potential enamel demineralization. This systematic review evaluates the whitening efficacy and safety profile of hydrogen peroxide-free color corrector (HPFCC) products, focusing on color change metrics, enamel and dentin integrity, and adverse effects. Methods: Following PRISMA guidelines, we searched PubMed, Scopus, and Web of Science throughout January 2025 for randomized controlled trials, observational studies, and in vitro experiments comparing HPFCC to placebo or peroxide-based agents. The data extraction covered study design, sample characteristics, intervention details, shade improvement (ΔE00 or CIE Lab), enamel/dentin mechanical properties (microhardness, roughness, elastic modulus), and incidence of sensitivity or tissue irritation. Risk of bias was assessed using the Cochrane tool for clinical studies and the QUIN tool for in vitro research. Results: Six studies (n = 20–80 samples or subjects) met the inclusion criteria. In vitro, HPFCC achieved mean ΔE00 values of 3.5 (bovine incisors; n = 80) and 2.8 (human molars; n = 20), versus up to 8.9 for carbamide peroxide (p < 0.01). Across studies, HPFCC achieved a mean ΔE00 of 2.8–3.5 surpassing the perceptibility threshold of 2.7 and approaching the clinical acceptability benchmark of 3.3. Surface microhardness increased by 12.9 ± 11.7 VHN with HPFCC (p < 0.001), and ultramicrohardness rose by 110 VHN over 56 days in prolonged use studies. No significant enamel erosion or dentin roughness changes were observed, and the sensitivity incidence remained below 3%. Conclusions: These findings derive from one clinical trial (n = 60) and five in vitro studies (n = 20–80), encompassing violet-pigment serums and gels with differing concentrations. Due to heterogeneity in designs, formulations, and outcome measures, we conducted a narrative synthesis rather than a meta-analysis. Although HPFCC ΔE00 values were lower than those of carbamide peroxide, they consistently exceeded perceptibility thresholds while maintaining enamel integrity and causing sensitivity in fewer than 3% of subjects, supporting HPFCCs as moderate but safe alternatives for young patients. Full article
Show Figures

Figure 1

13 pages, 1758 KiB  
Article
Microwave Based Non-Destructive Testing for Detecting Cold Welding Defects in Thermal Fusion Welded High-Density Polyethylene Pipes
by Zhen Wang, Chaoming Zhu, Jinping Pan, Ran Huang and Lianjiang Tan
Polymers 2025, 17(15), 2048; https://doi.org/10.3390/polym17152048 - 27 Jul 2025
Viewed by 235
Abstract
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose [...] Read more.
High-density polyethylene (HDPE) pipes are widely used in urban natural gas pipeline systems due to their excellent mechanical and chemical properties. However, welding joints are critical weak points in these pipelines, and defects, such as cold welding—caused by reduced temperature or/and insufficient pressure—pose significant safety risks. Traditional non-destructive testing (NDT) methods face challenges in detecting cold welding defects due to the polymer’s complex structure and characteristics. This study presents a microwave-based NDT system for detecting cold welding defects in thermal fusion welds of HDPE pipes. The system uses a focusing antenna with a resonant cavity, connected to a vector network analyzer (VNA), to measure changes in microwave parameters caused by cold welding defects in thermal fusion welds. Experiments conducted on HDPE pipes welded at different temperatures demonstrated the system’s effectiveness in identifying areas with a lack of fusion. Mechanical and microstructural analyses, including tensile tests and scanning electron microscopy (SEM), confirmed that cold welding defects lead to reduced mechanical properties and lower material density. The proposed microwave NDT method offers a sensitive, efficient approach for detecting cold welds in HDPE pipelines, enhancing pipeline integrity and safety. Full article
(This article belongs to the Special Issue Additive Agents for Polymer Functionalization Modification)
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 220
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

15 pages, 4368 KiB  
Article
Antibacterial and Antifungal Tannic Acid Coating on Plasma-Activated Titanium Alloy Surface
by Mariusz Winiecki, Magdalena Stepczyńska, Maciej Walczak, Ewelina Soszczyńska, Magdalena Twarużek, Dorota Bociaga, Marek Trzcinski, Marta Michalska-Sionkowska and Krzysztof Moraczewski
Int. J. Mol. Sci. 2025, 26(15), 7051; https://doi.org/10.3390/ijms26157051 - 22 Jul 2025
Viewed by 436
Abstract
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing [...] Read more.
Titanium (Ti) alloys, renowned for their exceptional physicochemical properties and high biocompatibility, are widely utilized in orthopedic and dental implants; however, their lack of intrinsic antimicrobial activity significantly increases the risk of implant-associated infections, often leading to severe complications and implant failure. Developing antimicrobial coatings on Ti implants is therefore a promising strategy. In this study, tannic acid (TA) coatings were deposited by immersing Ti alloy surfaces—beforehand activated by low-temperature oxygen plasma—in TA solutions at 2, 5, and 8 wt%. Coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and Folin–Ciocalteu release assays, and their cytocompatibility and antimicrobial performance were assessed in vitro. Surface characterization confirmed the formation of uniform TA layers, and WCA measurements indicated enhanced hydrophilicity relative to unmodified Ti (82.0° ± 3.6°), with values decreasing as TA concentration increased (from 35.2° ± 3.2° for 2% TA to 26.6° ± 2.8° for 8% TA). TA release profiles exhibited an initial burst followed by sustained diffusion, with 5% and 8% coatings releasing significantly more TA than 2% coatings. Coatings containing ≥ 5% TA demonstrated bactericidal activity—achieving > 2-log10 reductions—against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, and also showed inhibitory effects against Candida albicans. Importantly, all coatings remained cytocompatible with NIH/3T3 fibroblasts, and the released tannic acid hydrolysis products (particularly gallic acid) enhanced their proliferation. These findings indicate that plasma-activated titanium surfaces coated with ≥5 wt% tannic acid impart broad-spectrum antimicrobial efficacy and hold potential to reduce implant-associated infections and improve long-term outcomes in orthopedic and dental applications. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

18 pages, 4051 KiB  
Article
Change in Mechanical Property of Rat Brain Suffering from Chronic High Intraocular Pressure
by Yukai Zeng, Kunya Zhang, Zhengyuan Ma and Xiuqing Qian
Bioengineering 2025, 12(8), 787; https://doi.org/10.3390/bioengineering12080787 - 22 Jul 2025
Viewed by 275
Abstract
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of [...] Read more.
Glaucoma is a trans-synaptic neurodegenerative disease, and the pathological increase in intraocular pressure (IOP) is a major risk factor of glaucoma. High IOP alters microstructure and morphologies of the brain tissue. Since mechanical properties of the brain are sensitive to the alteration of the tissue microstructure, we investigate how varying durations of chronic elevated IOP alter brain mechanical properties. A chronic high IOP rat model was induced by episcleral vein cauterization with subconjunctival injection of 5-Fluorouracil. At 2, 4 and 8 weeks after induction, indentation tests were performed on the brain slices to measure mechanical properties in the hippocampus, lateral geniculate nucleus and occipital lobe of both hemispheres. Meanwhile, the brain’s microstructure was assessed via F-actin and myelin staining. Compared to the blank control group, the Young’s modulus decreased in all three brain regions in the highIOP experimental groups. F-actin fluorescence intensity and myelin area fraction were reduced in the hippocampus, while β-amyloid levels and tau phosphorylation were elevated in the experimental groups. Our study provides insight into Alzheimer’s disease pathogenesis by demonstrating how chronic high IOP alters the brain’s mechanical properties. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Ophthalmic Diseases)
Show Figures

Figure 1

17 pages, 1582 KiB  
Article
Rare Earth Elements in Tropical Agricultural Soils: Assessing the Influence of Land Use, Parent Material, and Soil Properties
by Gabriel Ribeiro Castellano, Juliana Silveira dos Santos, Melina Borges Teixeira Zanatta, Rafael Souza Cruz Alves, Zigomar Menezes de Souza, Milton Cesar Ribeiro and Amauri Antonio Menegário
Agronomy 2025, 15(7), 1741; https://doi.org/10.3390/agronomy15071741 - 19 Jul 2025
Viewed by 373
Abstract
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, [...] Read more.
Rare earth elements (REEs) are emerging soil contaminants due to increasing fertilizer use, mining activities, and technological applications. However, few studies have assessed their concentrations in soils or associated environmental risks. Here, we evaluate the influence of land cover types (Eucalyptus plantation, forest, and pasture), parent material, and soil physicochemical properties (predictor variables) on REE content in the Brazilian Atlantic Forest and measure pseudo-total REE content using inductively coupled plasma mass spectrometry (ICP-MS). Differences in REE content across land cover types, parent materials, and soil properties were assessed using similarity and variance analyses (ANOSIM, ANOVA, and Kruskal–Wallis) followed by post hoc tests (Tukey HSD and Dunn’s). We used model selection based on the Akaike criterion (ΔAICc < 2) to determine the influence of predictor variables on REE content. Our results showed that parent materials (igneous and metamorphic rocks) were the best predictors, yielding plausible models (Adj R2 ≥ 0.3) for Y, δEu, and LaN/SaN. In contrast, Ca:Mg alone provided a plausible model (Adj R2 = 0.15) for δCe anomalies, while clay content (Adj R2 = 0.11) influenced the SaN/YbN ratio, though soil properties had weaker effects than parent materials. However, we found no evidence that Eucalyptus plantations or pastures under non-intensive management increase REE content in Brazilian Atlantic Forest soils. Full article
Show Figures

Figure 1

13 pages, 1628 KiB  
Article
Eco-Friendly Fabrication of Zinc Oxide Nanoparticles Using Gaultheria fragrantissima: Phytochemical Analysis, Characterization, and Antimicrobial Potential
by Bhoj Raj Poudel, Sujan Dhungana, Anita Dulal, Aayush Raj Poudel, Laxmi Tiwari, Devendra Khadka, Megh Raj Pokhrel, Milan Babu Poudel, Allison A. Kim and Janaki Baral
Inorganics 2025, 13(7), 247; https://doi.org/10.3390/inorganics13070247 - 19 Jul 2025
Viewed by 374
Abstract
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and [...] Read more.
This work explores zinc oxide nanoparticle (ZnO NP) synthesis utilizing leaf extract of the Gaultheria fragrantissima plant that are useful in medicine, environmental remediation, and cosmetics due to their antibacterial activity, photocatalytic efficiency, and UV-blocking characteristics. Traditional synthesis methods involve energy-intensive procedures and hazardous chemicals, posing environmental and human health risks. To overcome these limitations, this research focuses on utilizing G. fragrantissima, rich in bioactive compounds such as phenolics and flavonoids, with the methyl salicylate previously reported in the literature for this species, which helps reduce and stabilize NPs. ZnO NPs were characterized through X-ray diffraction (XRD), UV–visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), and energy-dispersive spectroscopy (EDS). The ZnO NPs were found to have a well-defined crystalline structure, with their average crystallite size measured at around 8.26 nm. ZnO NPs exhibited moderate antimicrobial activity against selected microbial strains. These findings underscore the potential of G. fragrantissima-mediated synthesis as an environmentally sustainable and efficient method for producing ZnO NPs with multifunctional applications. This study provides a greener alternative to conventional synthesis approaches, demonstrating a method that is both eco-friendly and capable of yielding NPss with desirable properties. Full article
Show Figures

Figure 1

21 pages, 385 KiB  
Review
Emerging Mycotoxins in Aquaculture: Current Insights on Toxicity, Biocontrol Strategies, and Occurrence in Aquafeed and Fish
by Patrizio Lorusso, Giusy Rusco, Alessio Manfredi, Nicolaia Iaffaldano, Angela Di Pinto and Elisabetta Bonerba
Toxins 2025, 17(7), 356; https://doi.org/10.3390/toxins17070356 - 17 Jul 2025
Viewed by 362
Abstract
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major [...] Read more.
Mycotoxins are secondary metabolites produced by various fungal species that can contaminate food and feed, posing significant risks to human and animal health. In aquaculture, the replacement of fishmeal with alternative protein sources has increased the risk of mycotoxin contamination, becoming a major challenge in fish feed production. Current data highlights that fish are exposed not only to common mycotoxins but also to emerging ones, raising concerns about human exposure through fish consumption. In this review, we draw attention to the toxicity data of key emerging mycotoxins from Fusarium (enniatins, ENNs; beauvericin, BEA) and Alternaria (alternariol monomethyl ether, AME; alternariol, AOH), their occurrence in aquafeeds and in commercially relevant fish species in Europe, and potential biocontrol approaches to prevent/mitigate contaminations. From the present review, it emerged that these mycotoxins exhibit in vitro cytotoxic properties. Their prevalence and concentrations vary widely both among aquafeeds, depending on the sample’s origin, and among fish species. Biocontrol approaches using microorganisms or natural compounds show promise as sustainable solutions to limit contamination. However, further research is essential to address data gaps and to allow for a proper risk assessment and, if necessary, the implementation of effective management measures. Full article
(This article belongs to the Special Issue Risk Assessment of Mycotoxins: Challenges and Emerging Threats)
23 pages, 1633 KiB  
Article
Multifactorial Evaluation of Honey from Pakistan: Essential Minerals, Antioxidant Potential, and Toxic Metal Contamination with Relevance to Human Health Risk
by Sana, Waqar Ahmad, Farooq Anwar, Hammad Ismail, Mujahid Farid, Muhammad Adnan Ayub, Sajjad Hussain Sumrra, Chijioke Emenike, Małgorzata Starowicz and Muhammad Zubair
Foods 2025, 14(14), 2493; https://doi.org/10.3390/foods14142493 - 16 Jul 2025
Viewed by 369
Abstract
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as [...] Read more.
Honey is prized for its nutritional and healing properties, but its quality can be affected by contamination with toxic elements. This study evaluates the nutritional value and health risks of fifteen honey samples from different agro-climatic regions of Pakistan. Physicochemical properties such as color, pH, electrical conductivity, moisture, ash, and solids content were within acceptable ranges. ICP-OES analysis was used to assess six essential minerals and ten toxic metals. Except for slightly elevated boron levels (up to 0.18 mg/kg), all elements were within safe limits, with potassium reaching up to 1018 mg/kg. Human health risk assessments—including Average Daily Dose of Ingestion, Total Hazard Quotient, and Carcinogenic Risk—indicated no carcinogenic threats for adults or children, despite some elevated metal levels. Antioxidant activity, measured through total phenolic content (TPC) and DPPH radical scavenging assays, showed that darker honeys had stronger antioxidant properties. While the overall quality of honey samples was satisfactory, significant variations (p ≤ 0.05) were observed across different regions. These differences are attributed to diverse agro-climatic conditions and production sources. The findings highlight the need for continued monitoring to ensure honey safety and nutritional quality. Full article
Show Figures

Figure 1

22 pages, 2366 KiB  
Review
Machine Learning for Fire Safety in the Built Environment: A Bibliometric Insight into Research Trends and Key Methods
by Mehmet Akif Yıldız
Buildings 2025, 15(14), 2465; https://doi.org/10.3390/buildings15142465 - 14 Jul 2025
Viewed by 353
Abstract
Assessing building fire safety risks during the early design phase is vital for developing practical solutions to minimize loss of life and property. This study aims to identify research trends and provide a guiding framework for researchers by systematically reviewing the literature on [...] Read more.
Assessing building fire safety risks during the early design phase is vital for developing practical solutions to minimize loss of life and property. This study aims to identify research trends and provide a guiding framework for researchers by systematically reviewing the literature on integrating machine learning-based predictive methods into building fire safety design using bibliometric methods. This study evaluates machine learning applications in fire safety using a comprehensive approach that combines bibliometric and content analysis methods. For this purpose, as a result of the scan without any year limitation from the Web of Science Core Collection-Citation database, 250 publications, the first of which was published in 2001, and the number has increased since 2019, were reached, and sample analysis was performed. In order to evaluate the contribution of qualified publications to science more accurately, citation counts were analyzed using normalized citation counts that balanced differences in publication fields and publication years. Multiple regression analysis was applied to support this metric’s theoretical basis and determine the impact levels of variables affecting the metric’s value (such as total citation count, publication year, and number of articles). Thus, the statistical impact of factors influencing the formation of the normalized citation count was measured, and the validity of the approach used was tested. The research categories included evacuation and emergency management, fire detection, and early warning systems, fire dynamics and spread prediction, fire load, and material risk analysis, intelligent systems and cyber security, fire prediction, and risk assessment. Convolutional neural networks, artificial neural networks, support vector machines, deep neural networks, you only look once, deep learning, and decision trees were prominent as machine learning categories. As a result, detailed literature was presented to define the academic publication profile of the research area, determine research fronts, detect emerging trends, and reveal sub-themes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop