Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,677)

Search Parameters:
Keywords = proline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 (registering DOI) - 1 Aug 2025
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

25 pages, 1695 KiB  
Review
Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition
by Raquel P. F. Guiné, Sofia G. Florença, Maria João Barroca and Cristina A. Costa
Insects 2025, 16(8), 796; https://doi.org/10.3390/insects16080796 (registering DOI) - 31 Jul 2025
Abstract
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a [...] Read more.
The utilisation of edible insects for human nutrition is a long-standing practice in many parts of the globe, and is being gradually introduced into countries without an entomophagic tradition as well. These unconventional sources of protein of animal origin have arisen as a sustainable alternative to other animal protein sources, such as meat. This review intends to present the compilation of data in the scientific literature on the chemical composition and nutritional value of the bee brood of A. mellifera species and subspecies as edible foods. For this, a comprehensive search of the scientific literature was carried out using the databases ScienceDirect, Scopus, Pub-Med, BOn, and SciELO. Appropriate keywords were used for the search to reach the research works that addressed the topics of the review. The results showed that bee brood has considerable quantities of protein, fat and carbohydrates. The most abundant amino acids are leucine and lysine (these two being essential amino acids) and aspartic acid, glutamic acid, and proline (these three being non-essential amino acids). As for the fatty acids, bee broods contain approximately equal fractions of saturated and monounsaturated fatty acids, while the polyunsaturated fatty acids are negligible. The dietary minerals present in higher quantities are potassium, phosphorus, and magnesium, and the most abundant vitamins are vitamin C and niacin; choline is also present, although it is not a true vitamin. Although bee brood from A. mellifera has potential for human consumption as a nutrient-rich food, there are still many aspects that need to be further studied in the future, such as safety and hazards linked to possible regular consumption. Full article
(This article belongs to the Special Issue Insects: A Unique Bioresource for Agriculture and Humanity)
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Effect of Enterobacter bugandensis R-18 on Maize Growth Promotion Under Salt Stress
by Xingguo Tian, Qianru Liu, Jingjing Song, Xiu Zhang, Guoping Yang, Min Li, Huan Qu, Ahejiang Tastanbek and Yarong Tan
Microorganisms 2025, 13(8), 1796; https://doi.org/10.3390/microorganisms13081796 - 31 Jul 2025
Abstract
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based [...] Read more.
Soil salinization poses a significant constraint to agricultural productivity. However, certain plant growth-promoting bacteria (PGPB) can mitigate salinity stress and enhance crop performance. In this study, a bacterial isolate, R-18, isolated from saline-alkali soil in Ningxia, China, was identified as Enterobacter bugandensis based on 16S rRNA gene sequencing. The isolate was characterized for its morphological, biochemical, and plant growth-promoting traits and was evaluated for its potential to alleviate NaCl-induced stress in maize (Zea mays L.) under hydroponic conditions. Isolate R-18 exhibited halotolerance, surviving at NaCl concentrations ranging from 2.0% to 10.0%, and alkaliphilic adaptation, growing at pH 8.0–11.0. Biochemical assays confirmed it as a Gram-negative bacterium, displaying positive reactions in the Voges–Proskauer (V–P) tests, catalase activity, citrate utilization, fluorescent pigment production, starch hydrolysis, gelatin liquefaction, and ammonia production, while testing negative for the methyl red and cellulose hydrolysis. Notably, isolate R-18 demonstrated multiple plant growth-promoting attributes, including nitrogen fixation, phosphate and potassium solubilization, ACC deaminase activity, and indole-3-acetic acid (IAA) biosynthesis. Under 100 mM NaCl stress, inoculation with isolate R-18 significantly enhanced maize growth, increasing plant height, stem dry weight, root fresh weight, and root dry weight by 20.64%, 47.06%, 34.52%, and 31.25%, respectively. Furthermore, isolate R-18 improved ion homeostasis by elevating the K+/Na+ ratio in maize tissues. Physiological analyses revealed increased chlorophyll and proline content, alongside reduced malondialdehyde (MDA) levels, indicating mitigated oxidative damage. Antioxidant enzyme activity was modulated, with decreased superoxide dismutase (SOD) and peroxidase (POD) activities but increased catalase (CAT) activity. These findings demonstrated that Enterobacter bugandensis R-18 effectively alleviated NaCl-induced growth inhibition in maize by enhancing osmotic adjustment, reducing oxidative stress, and improving ion balance. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 (registering DOI) - 31 Jul 2025
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

13 pages, 1279 KiB  
Article
Study on the Excretion of a New Antihypertensive Drug 221s (2,9) in Rats
by Yunmei Chen, Kuan Yang, Shaojing Liu, Lili Yu, Rong Wang and Bei Qin
Pharmaceuticals 2025, 18(8), 1138; https://doi.org/10.3390/ph18081138 - 30 Jul 2025
Abstract
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this [...] Read more.
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this knowledge gap. Methods: Excretion of unchanged 221s (2,9) was quantified in urine, feces, and bile of Sprague-Dawley rats after oral administration (30 mg/kg). Concentrations of unchanged 221s (2,9) in all matrices were quantified using developed UPLC-MS/MS that underwent methodological validation. Excretion amount, excretion velocity, and accumulative excretion rate of 221s (2,9) were calculated. Results: Urinary excretion exhibited rapid elimination kinetics, reaching peak cumulative excretion rates (138.81 ± 15.56 ng/h) at 8 h post-dosing and plateauing by 48 h (cumulative excretion: 1479.81 ± 155.7 ng). Fecal excretion displayed an accelerated elimination phase between 4 and 8 h (excretion rate: 7994.29 ± 953.75 ng/h), followed by a sustained slow-release phase, culminating in a cumulative output of 36,726.31 ± 5507 ng at 48 h. Biliary excretion was minimal and ceased entirely by 24 h. Notably, total recovery of unchanged drug across all matrices remained below 1% (urine: 0.020 ± 0.021%; feces: 0.73 ± 0.069%; bile: 0.00044 ± 0.00002%) at 72 h. Conclusions: This study provides the first definitive excretion data for 221s (2,9). Quantitative analysis via a validated UPLC-MS/MS method revealed that fecal excretion is the principal elimination pathway for unchanged 221s (2,9) in rats, with direct excretion of the parent compound accounting for <1% of the administered dose over 72 h. Future studies will employ extended pharmacokinetic monitoring and concurrent UPLC-MS/MS analysis of the parent drug and phase II conjugates to resolve the observed mass imbalance and elucidate contributions to total elimination. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

15 pages, 3712 KiB  
Article
Behavioral and Proteomics Studies on the Regulation of Response Speed in Mice by Whey Protein Hydrolysate Intervention
by Xinxin Ren, Chao Wu, Hui Hong, Yongkang Luo and Yuqing Tan
Nutrients 2025, 17(15), 2500; https://doi.org/10.3390/nu17152500 (registering DOI) - 30 Jul 2025
Abstract
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: [...] Read more.
Background: Response speed refers to an individual’s ability to perceive and react to harmful stimuli, which can vary due to genetics, neural regulation, and environmental factors. Our previous study demonstrated that whey protein hydrolysate was a potential means to enhance cognitive function. Methods: This study used a variety of behavioral methods to evaluate the functional effects of whey protein hydrolysate on improving reaction speed, and revealed its potential mechanisms through proteomics analysis. Results: The results showed that whey protein hydrolysate improved response speed in mice when tested against thermal pain, mechanical strength stimuli, and prepulse inhibition. Proteomic analysis of the hippocampus revealed changes in proteins related to arginine and proline metabolism, as well as neuroactive ligand–receptor interactions. Conclusions: These findings provide new insights into the neuromodulatory effects of whey protein hydrolysate and support its potential role in enhancing response speed and cognitive performance. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 153
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

17 pages, 5549 KiB  
Article
The Effects of Limonin, Myo-Inositol, and L-Proline on the Cryopreservation of Debao Boar Semen
by Qianhui Feng, Yanyan Yang, Bing Zhang, Wen Shi, Yizhen Fang, Chunrong Xu, Zhuxin Deng, Wanyou Feng and Deshun Shi
Animals 2025, 15(15), 2204; https://doi.org/10.3390/ani15152204 - 27 Jul 2025
Viewed by 244
Abstract
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation [...] Read more.
Semen cryopreservation is associated with sperm vulnerability to oxidative stress and ice crystal-induced damage, adversely affecting in vitro fertilization (IVF) success. This study aimed to investigate the effects of freezing diluent supplemented with antioxidant limonin (Lim), myo-inositol (MYO), and the ice crystal formation inhibitor L-proline (LP) through sperm motility, morphological integrity, and antioxidant capacity. The Lim (150 mM), MYO (90 mM), and LP (100 mM) significantly ameliorated the quality of post-thaw sperm in Debao boar, and combined treatment of these agents significantly enhanced sperm motility, structural integrity, and antioxidant capacity compared with individual agents (p < 0.05). Notably, the combined use of these agents reduced glycerol concentration in the freezing diluent from 3% to 2%. Meanwhile, the integrity of the sperm plasma membrane, acrosome membrane, and mitochondrial membrane potential was significantly improved (p < 0.05), and the result of IVF revealed the total cell count of the blastocysts was also greater in the 2% glycerol group (p < 0.05). In conclusion, the newly developed freezing diluent for semen, by adding Lim (150 mM), MYO (90 mM), and LP (100 mM), can enhance the quality of frozen–thawed Debao boar sperm and reduce the concentration of glycerol from 3% to 2% as high concentrations of glycerol can impair the quality of thawed sperm and affect in vitro fertilization outcomes. In conclusion, the improved dilution solution formulated demonstrated efficacy in enhancing the quality of porcine spermatozoa following cryopreservation and subsequent thawing. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

16 pages, 1023 KiB  
Article
Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
by María Rita Guzman, Xavier Rojas-Ruilova, Catarina Gomes-Domingues and Isabel Marques
Agronomy 2025, 15(8), 1802; https://doi.org/10.3390/agronomy15081802 - 25 Jul 2025
Viewed by 222
Abstract
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with [...] Read more.
Water scarcity challenges floriculture, which depends on quality irrigation for ornamental value. This study assessed short-term salinity tolerance in eight Asteraceae species by measuring physiological (proline levels, antioxidant enzyme activity) and morphological (plant height, flower number, and size) responses. Plants were irrigated with 0, 50, 100, or 300 mM NaCl for 10 days. Salinity significantly enhanced proline content and the activity of key antioxidant enzymes (catalase, peroxidase, and ascorbate peroxidase), reflecting the activation of stress defense mechanisms. However, these defenses failed to fully protect reproductive organs. Flower number and size were consistently more sensitive to salinity than vegetative traits, with significant reductions observed even at 50 mM NaCl. Responses varied between species, with Zinnia elegans and Calendula officinalis exhibiting pronounced sensitivity to salinity, whereas Tagetes patula showed relative tolerance, particularly under moderate stress conditions. The results show that flower structures are more vulnerable to ionic and osmotic disturbances than vegetative tissues, likely due to their higher metabolic demands and developmental sensitivity. Their heightened vulnerability underscores the need to prioritize reproductive performance when evaluating stress tolerance. Incorporating these traits into breeding programs is essential for developing salt-tolerant floriculture species that maintain aesthetic quality under limited water availability. Full article
(This article belongs to the Special Issue Effect of Brackish and Marginal Water on Irrigated Agriculture)
Show Figures

Figure 1

15 pages, 2881 KiB  
Article
Monitoring Rose Black Spot Disease Using Electrical Impedance Spectroscopy
by Tianyi Ma, Dongyu Tan, Rui Wang, Tianyi Li, Yiying Wang, Guilin Shan, Ji Qian and Bao Di
Agronomy 2025, 15(8), 1800; https://doi.org/10.3390/agronomy15081800 - 25 Jul 2025
Viewed by 127
Abstract
Rosa hybrida is a globally important ornamental species, but its economic and aesthetic value is often compromised by rose black spot disease (Diplocarpon rosae). Effective monitoring and early detection are essential for disease management. This study investigated physiological and biophysical responses [...] Read more.
Rosa hybrida is a globally important ornamental species, but its economic and aesthetic value is often compromised by rose black spot disease (Diplocarpon rosae). Effective monitoring and early detection are essential for disease management. This study investigated physiological and biophysical responses to infection in a resistant cultivar (‘Carefree Wonder’) and a susceptible cultivar (‘Red Cap’) using electrical impedance spectroscopy (EIS), biochemical assays, and ultrastructural analysis. Key EIS parameters (ri, re, τ), reducing sugar and free proline content, chitinase and β-1,3-glucanase activities, and chloroplast ultrastructure were monitored. The results showed that ‘Carefree Wonder’ had a higher initial EIS arc magnitude and osmolyte levels than ‘Red Cap’. Following infection, ‘Red Cap’ displayed earlier and more pronounced increases in EIS arc magnitude, while ‘Carefree Wonder’ responded more gradually. Reducing sugar and proline levels increased in both cultivars, with earlier accumulation in the resistant cultivar. Notably, extracellular resistivity (re) exhibited strong positive correlations with reducing sugar (R2 = 0.479), free proline (R2 = 0.399), chitinase (R2 = 0.399), and β-1,3-glucanase activities (R2 = 0.401). These findings highlight re as the most reliable EIS-derived indicator for early, non-destructive detection of rose black spot resistance. This study supports the potential of EIS for rapid disease diagnostics in rose breeding and cultivation. Full article
Show Figures

Figure 1

16 pages, 1038 KiB  
Article
Metabolic Profiles of Feline Obesity Revealed by Untargeted and Targeted Mass Spectrometry-Based Metabolomics Approaches
by Renata Barić Rafaj, Ivana Rubić, Josipa Kuleš, Dominik Prišćan, Alberto Muñoz-Prieto, Jelena Gotić, Luka Ećimović, Nada Kučer, Marko Samardžija, Mislav Kovačić and Vladimir Mrljak
Vet. Sci. 2025, 12(8), 697; https://doi.org/10.3390/vetsci12080697 - 25 Jul 2025
Viewed by 182
Abstract
Obesity is currently one of the major medical problems affecting humans and companion animals, including cats; however, a detailed understanding of the metabolic processes altered in feline obesity remains limited. This study aimed to investigate obesity-related changes in the serum metabolome of three [...] Read more.
Obesity is currently one of the major medical problems affecting humans and companion animals, including cats; however, a detailed understanding of the metabolic processes altered in feline obesity remains limited. This study aimed to investigate obesity-related changes in the serum metabolome of three groups of cats, metabolically healthy normal-weight (MHN) cats, metabolically healthy overweight (MHO) cats, and metabolically unhealthy overweight (MUO) cats. Metabolome changes were assessed using LC-MS (untargeted), LC-MS (targeted), and FIA-MS (targeted) methods. Untargeted analysis detected 141 significant annotated features, while targeted approach identified 48 metabolites significantly associated with obesity. Both untargeted and targeted analyses showed lower kynurenine levels in the MUO group compared to the MHN group. Targeted LC-MS analysis identified 11 significant metabolites, whereas the FIA-MS approach detected 37. Four metabolites—glycine, citrulline, and two phosphatidylcholines—were found at lower levels in the MHO group compared to the MHN group. Arginine and proline metabolism, along with methionine metabolism, were significantly altered pathways, while thyroid hormone synthesis was independently altered with the highest enrichment ratio. The obtained results suggest that cats with a healthy phenotype exhibit an intermediate-metabolic-risk profile and provide new insights into the metabolic mechanisms and pathways underlying feline obesity. Full article
(This article belongs to the Section Nutritional and Metabolic Diseases in Veterinary Medicine)
Show Figures

Figure 1

24 pages, 9486 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Viewed by 233
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

18 pages, 8415 KiB  
Article
Genome-Wide Identification of the UGT Gene Family in Poplar Populus euphratica and Functional Analysis of PeUGT110 Under Drought Stress
by Jilong An, Qing He, Jinfeng Xi, Jing Li and Gaini Wang
Forests 2025, 16(8), 1214; https://doi.org/10.3390/f16081214 - 24 Jul 2025
Viewed by 252
Abstract
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we [...] Read more.
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we identified 134 UGT genes in P. euphratica. Phylogenetic analysis classified these genes into 16 major groups (A–P), and UGT genes within the same groups showed similar structural characteristics. Tandem duplication events were identified as the predominant mechanism driving the expansion of the PeUGT family. Cis-acting element analysis revealed an enrichment of motifs associated with developmental regulation, light response, phytohormone signaling, and abiotic stress in the promoters of PeUGT genes. Expression profiling demonstrated spatiotemporal regulation of the PeUGT genes under drought stress. Among them, PeUGT110 was significantly induced by PEG treatment in the leaf, root, and stem tissues of P. euphratica. Overexpression of PeUGT110 enhanced drought tolerance in transgenic Arabidopsis. Furthermore, the PeUGT110-OE lines exhibited reduced malonaldehyde accumulation, elevated proline content, higher superoxide dismutase activity, and upregulated expression of stress-related genes under drought stress. The results demonstrated that PeUGT110 plays a critical role in plant drought resistance. These findings establish a foundation for elucidating the function of PeUGT genes. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 1549 KiB  
Article
Mitigation of Cadmium and Copper Stress in Lettuce: The Role of Biochar on Metal Uptake, Oxidative Stress, and Yield
by Riccardo Fedeli, Zhanna Zhatkanbayeva, Rachele Marcelli, Yerlan Zhatkanbayev, Sara Desideri and Stefano Loppi
Plants 2025, 14(15), 2255; https://doi.org/10.3390/plants14152255 - 22 Jul 2025
Viewed by 290
Abstract
Biochar has emerged as a promising soil amendment for mitigating heavy metal contamination in agricultural systems. This study investigates the effects of biochar on cadmium (Cd) and copper (Cu) uptake, plant growth, oxidative stress, and physiological responses in lettuce (Lactuca sativa L.) [...] Read more.
Biochar has emerged as a promising soil amendment for mitigating heavy metal contamination in agricultural systems. This study investigates the effects of biochar on cadmium (Cd) and copper (Cu) uptake, plant growth, oxidative stress, and physiological responses in lettuce (Lactuca sativa L.) plants exposed to different metal concentrations. Results indicate that biochar significantly influenced Cd bioavailability, reducing its accumulation in plant tissues by up to 31.9% and alleviating oxidative stress, with malondialdehyde and proline levels decreasing by up to 51.0% and 60.2%, particularly at higher application rates (5%). Cd-exposed plants treated with biochar exhibited an improved fresh weight (+22.6%), lower malondialdehyde and proline levels, and enhanced the chlorophyll content (+14.9% to 24.1%) compared to untreated plants. The bioaccumulation factor for Cd decreased (up to 31.8%) while the immobilization index (II) increased, confirming the role of biochar in limiting Cd mobility in soil. In contrast, Cu uptake remained consistently low across all treatments, with a significant reduction observed only at higher contamination levels (up to −34.2%). Biochar contributed to Cu immobilization, reflected in increased II values, and enhanced the plant biomass and chlorophyll content under Cu exposure (+15.4% and up to +24.1%, respectively), suggesting a partial alleviation of Cu toxicity. These findings highlight biochar’s potential in heavy metal remediation, particularly for Cd, by reducing bioavailability and improving plant resilience. However, its role in Cu-contaminated soils is mainly through immobilization rather than uptake reduction. Full article
Show Figures

Figure 1

23 pages, 14728 KiB  
Article
Integrated Multi-Omics Analysis of the Developmental Stages of Antheraea pernyi Pupae: Dynamic Changes in Metabolite Profiles and Gene Expression
by Shuhui Ma, Yongxin Sun, Yajie Li, Xuejun Li, Zhixin Wen, Rui Mi, Nan Meng and Xingfan Du
Insects 2025, 16(7), 745; https://doi.org/10.3390/insects16070745 - 21 Jul 2025
Viewed by 295
Abstract
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives [...] Read more.
This study integrated non-targeted metabolomics and transcriptomics to investigate dynamic changes in Antheraea pernyi pupae across five developmental stages. Metabolomic analysis identified 1246 metabolites, primarily organic acids, lipids, heterocyclic compounds, and oxygen-containing organics. Principal component analysis revealed stage-specific metabolic profiles: amino acid derivatives (pyruvate, proline, lysine) declined, while pyrimidines (cytidine, uridine, β-alanine) and monosaccharides (glucose, mannose) increased. 18β-glycyrrhetinic and ursolic acids accumulated significantly in the middle and late stages. Transcriptomic analysis identified 7230 differentially expressed genes (DEGs), with 366, 1705, and 5159 significantly differentially expressed genes in the T1, T3, and T5 comparison groups, respectively. KEGG enrichment highlighted ABC transporters, amino acid/pyrimidine metabolism, and tyrosine pathways as developmentally critical, with aminoacyl-tRNA biosynthesis upregulated in later phases. Integrated multi-omics analysis revealed coordinated shifts in metabolites and genes across developmental phases, reflecting dynamic nutrient remodeling during pupal maturation. This study systematically delineates the molecular transitions driving pupal development in Antheraea pernyi pupae, uncovering conserved pathway interactions and mechanistic insights into nutrient metabolism. These findings provide a scientific foundation for leveraging pupal resources in functional food innovation and bioactive compound discovery for pharmaceutical applications. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop