Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- considering all documents that addressed the topics of this literature review;
- including documents published in the English language;
- excluding all documents whose authorship could not be confirmed;
- excluding works whose content was irrelevant to the present scope.
3. Results and Discussion
Macro Nutrients (g/100 g d.m.) 1 | Larvae A. mellifera ligustica [25] | Larvae A. mellifera (Subspecies Not Indicated) [3] | Pupae A. mellifera ligustica [25] | Pupae A. mellifera (Subspecies Not Indicated) [3] | Brood A. mellifera (Subspecies Not Indicated) [24] | Pupae A. mellifera (Subspecies Not Indicated) [27] |
---|---|---|---|---|---|---|
Honey Bee Caste | Workers | Brood | Workers | Brood | Brood | Drone |
Moisture (g/100 g) | 74.4 | — | 79.3 | — | 76.8 | — |
Protein | 35.3 | 19.0 | 45.9 | 24.6–26.6 | 40.5 | 48.5–51.8 |
Fat | 14.5 | 28.1 | 16.0 | 19.1–21.1 | 20.3 | 25.8–26.2 |
Fibre (crude) | — | — | — | — | — | 2.5–2.7 |
Fibre (acid detergent) | — | — | — | — | 1.3 | — |
Fibre (neutral detergent) | — | — | — | — | 0.9 | — |
Ash | 4.1 | 2.8 | 3.8 | 3.5–3.2 | 3.4 | 4.0–4.2 |
Carbohydrates | 46.1 | 50.1 | 34.3 | 80.8–51.1 | 34.5 | 15.4–15.9 |
Energy (kJ/100 g d.m.) | 1908.0 | — | 1946.5 | — | 2019.0 | — |
Subspecies of A. mellifera 1 | Reference | Amino Acids (g/100 g Dry Matter) | ||||
---|---|---|---|---|---|---|
Leucine 2 | Lysine 2 | Aspartic Acid 3 | Glutamic Acid 3 | Proline 3 | ||
A. mellifera mellifera | [26,28] | 2.7–3.5 | 2.4–3.1 | 2.4–3.0 | 6.6–8.1 | 2.8–3.6 |
A. mellifera ligustica | [25,26] | 2.5–5.5 | 1.9–4.4 | 2.5–3.5 | 5.0–12.2 | 3.0–4.6 |
A. mellifera carnica | [26,28] | 2.6–3.6 | 2.3–3.2 | 2.4–2.8 | 6.3–7.4 | 2.4–3.7 |
A. mellifera buckfast | [26] | 4.0–4.3 | 3.5–3.7 | 3.2 | 7.9–8.8 | 1.5–1.6 |
Species/Subspecies and Developmental Stage | Honey Bee Caste | Ref. | Fatty Acids (mg/100 g Dry Matter) (%) | |||
---|---|---|---|---|---|---|
SFAs 1 | MUFAs 2 | PUFAs 3 | Total FAs 4 | |||
A. mellifera mellifera Larvae | Brood | [3] | 14,021.9 (50%) | 12,897.9 (46%) | 1152.1 (4%) | 28,071.9 (100%) |
A. mellifera mellifera Pupae 5 | Brood | [3] | 9359.0–10,022.5 (49–48%) | 8900.6–10,275.7 (47–48%) | 780.7–821.3 (4–4%) | 19,080.9–21,078.9 (100%) |
A. mellifera mellifera Prepupae | Drones | [26,28] | 6483.5 (58%) | 4521.6 (41%) | 149.4 (1%) | 11,154.6 (100%) |
A. mellifera mellifera Early (white-eyed) pupae | Drones | [26,28] | 6450.3 (57%) | 4654.7 (41%) | 197.7 (2%) | 11,302.7 (100%) |
A. mellifera mellifera Late (dark-eyed) pupae | Drones | [26,28] | 5396.9 (55%) | 4264.2 (43%) | 223.8 (2%) | 9884.9 (100%) |
A. mellifera ligustica Larvae | Drones | [25] | 2560.6 (52%) | 2381.2 (48%) | 0.0 (0%) | 4941.8 (100%) |
A. mellifera ligustica Early (white-eyed) pupae | Drones | [26] | 6414.1 (56%) | 4965.9 (43%) | 99.2 (1%) | 11,479.2 (100%) |
A. mellifera ligustica Late (dark-eyed) pupae | Drones | [26] | 5341.1 (54%) | 4470.7 (45%) | 131.2 (1%) | 9943.0 (100%) |
A. mellifera ligustica Pupae | Workers | [25] | 2821.1 (51%) | 2663.2 (49%) | 0.0 (0%) | 5484.3 (100%) |
A. mellifera carnica Prepupae | Drones | [26,28] | 6453.7 (56%) | 4766.9 (42%) | 228.6 (2%) | 11,449.2 (100%) |
A. mellifera carnica Early (white-eyed) pupae | Drones | [26,28] | 6475.8 (56%) | 4831.7 (42%) | 239.0 (2%) | 11,546.5 (100%) |
A. mellifera carnica Late (dark-eyed) pupae | Drones | [26,28] | 4885.4 (51%) | 4373.3 (46%) | 242.8 (3%) | 9501.5 (100%) |
A. mellifera buckfast Prepupae | Drones | [26] | 6305.7 (57%) | 4776.6 (43%) | 0.0 (0%) | 11,082.3 (100%) |
A. mellifera buckfast Late (dark-eyed) pupae | Drones | [26] | 6634.6 (56%) | 5156.4 (43%) | 67.0 (1%) | 11,858.9 (100%) |
Vitamins (μg/100 g) 1 | Worker Larvae 2 A. mellifera ligustica [44] | Drone Pupae (Subspecies Not Indicated) [45] | Brood (Subspecies Not Indicated) [24] |
---|---|---|---|
Honey Bee Caste | Workers | Drones | Brood |
Vitamin A | 1.32–7.41 | n.d. | <100 3 |
Beta-carotene (provitamin A) | n.a. | n.a. | <20 |
Vitamin B1 (thiamine) | 0.94–3.27 | 1550 | 410 |
Vitamin B2 (riboflavin) | 0–251 | 2930 | 910 |
Vitamin B3 (niacin) | n.a. | n.a. | 3670 |
Vitamin B5 (pantothenic acid) | n.a. | n.a. | 1190 |
Vitamin B6 (pyridoxine) | n.a. | n.a. | 120 |
Vitamin B7 (biotin) | n.a. | n.a. | 0.023 |
Vitamin B9 (folic acid) | n.a. | n.a. | <6 |
Vitamin B12 | n.a. | n.a. | <0.12 |
Vitamin C | 4020–4350 | n.a. | 3800 |
Vitamin D | 390–410 | n.d. | <25.1 3 |
Vitamin E | 0.87–1.10 | n.a. | <0.5 3 |
Choline | n.a. | n.a. | 168,400 |
Extract Solvent | Drone Brood (A. mellifera carnica) 7–11–14-Day-Old Larvae | |
---|---|---|
Total phenolic content (mg GAE/100 g) | water | 251.3–289.4–245.2 |
ethanol (70%) | 89.1–81.8–87.0 | |
Total flavonoid content (mg GAE/100 g) | water | 8.7–10.9–6.7 |
ethanol (70%) | 0.7–1.0–1.0 | |
FRAP (mmol/100 g) | water | 1.0–1.1–0.9 |
ethanol (70%) | 0.5–0.5–0.5 | |
Antioxidant activity by ABTS method (%) | water | 12.7–6.3- 11.6 |
ethanol (70%) | 20.4–21.0–20.7 | |
Antioxidant activity by DPPH method (%) | water | 14.2–20.1–14.7 |
ethanol (70%) | 4.3–4.0–3.0 |
Drone Brood (4–9 Days After Hatching) [51] | Carniolan Hybrid Honeybees (A. mellifera) (7 Days Old) [50] | Drone Larvea Apilarnil (A. mellifera anatoliaca) [49] | |
---|---|---|---|
Country of origin | Turkey | Egypt | Turkey |
Total phenolic content | 13.18 ± 0.19 * | n.a | 14.35 ± 3.2 ** |
Total flavonoid (mg QE/100 g) | n.a. | 13.16 ± 0.94 | 47.5 ± 3.62 |
FRAP activity (μmol Trolox/g) | 27.17 ± 0.28 | n.a. | |
ABTS (mmol Trolox/100 g) | n.a. | n.a. | 0.59 ± 12.73 |
DPPH radical scavenging activity (IC50: mg/mL) | 0.65 ± 0.01 | 0.180 ±0.0025 | n.a. |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Complete Tables for Amino Acids, Fatty Acids, and Minerals
Species/Subspecies and Developmental Stage, When Available | Honey Bee Caste | Reference | Essential Amino Acids (g/100 g Dry Matter) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Histidine | Isoleucine | Leucine | Lysine | Methionine | Phenylalanine | Threonine | Tryptophan | Valine | |||
Prepupae Apis mellifera mellifera | Drones | [26,28] | 0.8 | 1.6 | 2.7 | 2.4 | 0.5 | 1.5 | 1.4 | n.a. | 1.9 |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 0.9 | 1.9 | 3.1 | 2.8 | 0.8 | 1.6 | 1.5 | 1.5 | 2.2 |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 1.1 | 2.2 | 3.5 | 3.1 | 0.8 | 1.8 | 1.7 | 1.7 | 2.4 |
Larvae A. mellifera ligustica | Workers | [25] | 0.7 | 1.6 | 2.5 | 1.9 | n.a. | 0.2 | 1.6 | n.d. | 1.7 |
Prepupae A. mellifera ligustica | Drones | [26] | 0.9 | 2.1 | 3.5 | 3.0 | n.a. | n.a. | 1.9 | n.a. | 2.6 |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | 1.1 | 2.4 | 4.1 | 3.5 | n.a. | n.a. | 1.9 | n.a. | 3.0 |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | 1.4 | 3.2 | 5.5 | 4.4 | n.a. | n.a. | 3.2 | n.a. | 4.1 |
Pupae A. mellifera ligustica | Workers | [25] | 1.1 | 2.3 | 3.2 | 3.0 | n.a. | 0.2 | 1.9 | n.d. | 2.4 |
Prepupae A. mellifera carnica | Drones | [26,28] | 0.8 | 1.6 | 2.6 | 2.3 | 0.4 | 1.4 | 1.3 | n.a. | 1.8 |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | 0.9 | 1.9 | 3.2 | 2.8 | 0.2 | 1.7 | 1.6 | n.a. | 2.2 |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | 1.1 | 2.2 | 3.6 | 3.2 | 0.4 | 1.8 | 1.7 | n.a. | 2.5 |
Prepupae A. mellifera buckfast | Workers | [26] | 1.2 | 2.4 | 4.0 | 3.5 | n.a. | n.a. | 1.9 | n.a. | 2.9 |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | 1.3 | 2.6 | 4.3 | 3.7 | n.a. | n.a. | 1.6 | n.a. | 3.0 |
Brood (subspecies not indicated) | Drones | [24] | 0.9 | 1.9 | 2.8 | 2.5 | 0.9 | 1.4 | 1.3 | 0.4 | 2.1 |
Species/Subspecies and Developmental Stage, When Available | Honey Bee Caste | Reference | Non-Essential Amino Acids (g/100 g Dry Matter) | Others (g/100 g Dry Matter) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Alanine | Arginine | Aspartic Acid | Cysteine | Glutamic Acid | Glycine | Proline | Serine | Tyrosine 2 | Taurine 3 | Sulphur-containing AA 4 | Aromatic AA 5 | Ammonia 6 | |||
Prepupae A. mellifera mellifera | Drones | [26,28] | 1.5 | 1.7 | 2.4 | 0.5 | 6.6 | 1.6 | 2.8 | 1.4 | 1.5 | n.a. | 1.8 | n.a. | n.a. |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 2.0 | 2.0 | 2.8 | 0.6 | 7.6 | 1.9 | 3.3 | 1.7 | 1.8 | n.a. | 1.4 | 3.4 | n.a. |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 2.5 | 2.3 | 3.0 | 1.0 | 8.1 | 2.4 | 3.6 | 2.0 | 2.1 | n.a. | 1.8 | 3.9 | n.a. |
Larvae A. mellifera ligustica | Workers | [25] | 1.6 | 1.6 | 2.6 | 0.3 | 5.0 | 1.4 | n.a. | 1.4 | 1.5 | n.a. | 1.0 | n.a. | n.a. |
Prepupae A. mellifera ligustica | Drones | [26] | 2.6 | 2.2 | 2.5 | n.a. | 10.0 | 2.1 | 3.0 | 1.8 | n.a. | n.a. | 0.4 | 4.0 | n.a. |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | 3.4 | 2.6 | 2.7 | n.a. | 10.6 | 2.8 | 3.6 | 2.1 | n.a. | n.a. | 0.7 | 4.8 | n.a. |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | 5.8 | 3.4 | 3.2 | n.a. | 12.2 | 4.6 | 4.6 | 3.2 | n.a. | n.a. | 2.3 | 5.3 | n.a. |
Pupae A. mellifera ligustica | Workers | [25] | 2.9 | 2.3 | 3.5 | 0.4 | 8.4 | 2.5 | n.a. | 2.0 | 2.0 | n.a. | n.a. | n.a. | n.a. |
Prepupae A. mellifera carnica | Drones | [26,28] | 1.5 | 1.7 | 2.4 | 0.2 | 6.3 | 1.5 | 2.4 | 1.4 | 1.6 | n.a. | 1.4 | 3.0 | n.a. |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | 2.0 | 2.1 | 2.8 | 0.1 | 7.7 | 1.9 | 3.0 | 1.6 | 1.7 | n.a. | 0.3 | 3.4 | n.a. |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | 2.9 | 2.3 | 2.8 | 0.7 | 7.4 | 2.6 | 3.7 | 1.9 | 2.0 | n.a. | 1.1 | 3.8 | n.a. |
Prepupae A. mellifera buckfast | Workers | [26] | 2.4 | 2.2 | 3.2 | n.a. | 7.9 | 2.3 | 1.6 | 2.0 | n.a. | n.a. | 1.4 | 4.6 | n.a. |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | 2.9 | 2.5 | 3.2 | n.a. | 8.8 | 2.7 | 1.5 | 2.4 | n.a. | n.a. | 1.5 | 4.9 | n.a. |
Brood (subspecies not indicated) | Drones | [24] | 1.9 | 1.7 | 3.3 | 0.9 1 | 5.6 | 1.8 | 2.5 | 1.4 | 1.8 | 0.1 | n.a. | n.a. | 0.8 |
Species/Subspecies and Developmental Stage, When Available | Honey Bee Caste | Reference | Saturated Fatty Acids (g/100 g Dry Matter) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Capric Acid (C10:0) | Lauric Acid (C12:0) | Myristic Acid (C14:0) | Palmitic Acid (C16:0) | Margaric Acid (C17:0) 2 | Stearic Acid (C18:0) | Arachidic Acid (C20:0) | Behenic Acid (C22:0) | Lignoceric Acid (C24:0) | |||
Larvae A. mellifera | Brood | [3] | n.a. | n.a. | 843.0 | 9694.5 | n.a. | 2922.4 | 281.0 | 281.0 | n.a. |
Pupae 1 A. mellifera | Brood | [3] | n.a. | n.a. | 506.4 to 515.7 | 5959.2 to 6055.7 | n.a. | 2158.3 to 2637.5 | 343.8 to 379.8 | 382.0 to 443.1 | n.a. |
Prepupae A. mellifera mellifera | Drones | [26,28] | n.d. | 20.9 | 341.7 | 4847.7 | 4.3 | 1207.0 | 45.1 | 16.9 | n.a. |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | n.d. | 24.9 | 354.0 | 4726.6 | 4.7 | 1260.0 | 58.9 | 21.2 | n.d. |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 1.8 | 26.0 | 284.1 | 3803.9 | 4.5 | 1181.4 | 67.7 | 27.6 | n.a. |
Larvae A. mellifera ligustica | Drones | [25] | n.d. | 15.1 | 116.6 | 1844.0 | n.a. | 584.9 | n.a. | n.a. | n.a. |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | 32.5 | 333.1 | 4517.5 | n.d. | 1356.9 | 120.6 | 14.4 | 39.2 |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | 33.4 | 258.1 | 3570.8 | n.d. | 1267.0 | 145.8 | 23.3 | 42.6 |
Pupae A. mellifera ligustica | Workers | [25] | n.d. | 24.6 | 157.5 | 1942.2 | n.a. | 696.8 | n.a. | n.a. | n.a. |
Prepupae A. mellifera carnica | Drones | [26,28] | 2.0 | 28.2 | 379.3 | 4699.2 | 4.2 | 1277.9 | 46.8 | 16.0 | n.a. |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | 1.9 | 29.8 | 355.0 | 4640.6 | 4.1 | 1362.7 | 60.9 | 20.9 | n.d. |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | 2.0 | 27.6 | 234.7 | 3307.0 | 4.1 | 1207.3 | 72.4 | 30.3 | n.a. |
Prepupae A. mellifera buckfast | Drones | [26] | n.d. | 26.0 | 359.5 | 4810.0 | n.d. | 1110.3 | n.d. | n.d. | n.d. |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | n.d. | 31.4 | 365.5 | 4879.1 | n.d. | 1302.5 | 56.2 | n.d. | n.d. |
Species/Subspecies and Developmental Stage, When Available | Honey Bee Caste | Reference | Monounsaturated Fatty Acids (g/100 g Dry Matter) | |||||
---|---|---|---|---|---|---|---|---|
Myristoleic Acid (C14:1) | Hexadecenoic Acid (C16:1t) 2 | Palmitoleic Acid (C16:1) 2 | Elaidic Acid (C18:1t) 3 | Oleic Acid (C18:1) 3 | Palmitoleic Acid (C16:1) 2 | |||
Larvae A. mellifera | Brood | [3] | n.a. | n.a. | n.a. | n.a. | 12,897.9 | n.a. |
Pupae 1 A. mellifera | Brood | [3] | n.a. | n.a. | n.a. | n.a. | 8900.6 to 10,275.7 | n.a. |
Prepupae A. mellifera mellifera | Drones | [26,28] | 3.1 | n.a. | 72.3 | n.a. | 4439.6 | 6.6 |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 3.0 | n.a. | 65.6 | n.d. | 4578.5 | 7.6 |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 2.4 | n.a. | 56.1 | n.a. | 4197.3 | 8.5 |
Larvae A. mellifera ligustica | Drones | [25] | n.a. | 35.1 | n.a. | n.a. | 2346.1 | n.d. |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | n.a. | 47.7 | 6.8 | 4902.8 | 8.7 |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | n.a. | 48.3 | n.d. | 4412.0 | 10.4 |
Pupae A. mellifera ligustica | Workers | [25] | n.a. | 31.1 | n.a. | n.a. | 2632.1 | n.d. |
Prepupae A. mellifera carnica | Drones | [26,28] | 2.4 | n.a. | 55.4 | n.a. | 4701.8 | 7.3 |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | 2.0 | n.a. | 50.8 | n.d. | 4771.3 | 7.6 |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | n.d. | n.a. | 47.9 | n.a. | 4316.3 | 9.1 |
Prepupae A. mellifera buckfast | Drones | [26] | n.d. | 56.4 | n.d. | n.a. | 4720.3 | n.d. |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | n.d. | 51.9 | n.d. | n.a. | 5104.5 | n.d. |
Species/Subspecies and Developmental Stage, When Available | Honey Bee Caste | Reference | Polyunsaturated Fatty Acids (g/100 g Dry Matter) | |||||
---|---|---|---|---|---|---|---|---|
Linolelaidic Acid (C18:2t) 2 | Linoleic Acid (C18:2) 2 | Linolenic Acid (C18:3) | Mead Acid (C20:3) 3 | Docosadienoic Acid (C22:2) | Eicosapentaenoic Acid (C20:5) | |||
Larvae A. mellifera | Brood | [3] | n.a. | 421.5 | 730.6 | n.a. | n.a. | n.a. |
Pupae 1 A. mellifera | Brood | [3] | n.a. | 295.4 to 401.1 | 420.2 to 485.3 | n.a. | n.a. | n.a. |
Prepupae A. mellifera mellifera | Drones | [26,28] | 21.3 | 31.3 | 77.4 | n.d. | 13.0 | 6.5 |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 22.0 | 53.2 | 98.4 | n.d. | 16.8 | 7.4 |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | 22.2 | 56.8 | 118.7 | n.d. | 19.4 | 6.6 |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | 22.8 | 61.2 | n.d. | 15.2 | n.d. |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | n.d. | 30.7 | 83.2 | n.d. | 17.2 | n.d. |
Prepupae A. mellifera carnica | Drones | [26,28] | 10.2 | 46.6 | 153.0 | n.d. | 14.9 | 3.9 |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | 13.3 | 49.0 | 151.9 | n.d. | 18.8 | 6.0 |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | 17.3 | 36.3 | 154.1 | 1.8 | 26.2 | 7.3 |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | n.a. | 67.9 | n.a. | n.a. | n.a. | n.a. |
Species/Subspecies and Developmental Stage, When Available | Caste | Ref. | Mineral Content (mg/100 g Dry Matter) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bromine (Br) | Calcium (Ca) | Chloride (Cl) | Gold (Au) | Iodine (I) | Iron (Fe) | Magnesium (Mg) | Manganese (Mn) | Phosphorus (P) | Potassium (K) | Selenium (Se) | Sodium(Na) | Strontium (Sr) | Zirconium (Zr) | |||
Prepupae A. mellifera mellifera | Drones | [26,28] | n.a. | 39.3 | n.a. | n.a. | n.a. | 4.7 | 70.2 | n.a. | 673.5 | 1079.9 | n.a. | 8.1 | n.a. | n.a. |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | n.a. | 40.1 | n.a. | n.a. | n.a. | 5.2 | 75.3 | n.a. | 731.3 | 1205.2 | n.a. | 8.7 | n.a. | n.a. |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | n.a. | 43.3 | n.a. | n.a. | n.a. | 5.7 | 85.8 | n.a. | 812.3 | 1341.6 | n.a. | 9.9 | n.a. | n.a. |
Larvae A. mellifera ligustica | Workers | [25] | n.a. | 331.6 | n.a. | n.a. | n.a. | 52.0 | 691.4 | 4.7 | 3056.6 | 7312.1 | n.a. | 232.0 | n.a. | n.a. |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | n.a. | 43.7 | n.a. | n.a. | n.a. | 4.9 | 82.9 | n.a. | 774.0 | 544.6 | n.a. | 7.3 | n.a. | n.a. |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | n.a. | 49.3 | n.a. | n.a. | n.a. | 5.7 | 95.0 | n.a. | 892.4 | 643.1 | n.a. | 8.5 | n.a. | n.a. |
Pupae A. mellifera ligustica | Workers | [25] | n.a. | 97.0 | n.a. | n.a. | n.a. | 15.3 | 193.9 | 0.7 | 900.0 | 2207.3 | n.a. | 60.8 | n.a. | n.a. |
Prepupae A. mellifera carnica | Drones | [26,28] | n.a. | 34.0 | n.a. | n.a. | n.a. | 5.6 | 65.9 | n.a. | 651.7 | 1048.9 | n.a. | 7.8 | n.a. | n.a. |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | n.a. | 37.9 | n.a. | n.a. | n.a. | 5.7 | 74.3 | n.a. | 734.7 | 1219.8 | n.a. | 7.0 | n.a. | n.a. |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | n.a. | 46.1 | n.a. | n.a. | n.a. | 6.1 | 88.4 | n.a. | 869.2 | 1401.2 | n.a. | 10.3 | n.a. | n.a. |
Prepupae A. mellifera buckfast | Drones | [26] | n.a. | 34.2 | n.a. | n.a. | n.a. | 5.6 | 68.1 | n.a. | 686.9 | 891.1 | n.a. | 30.1 | n.a. | n.a. |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | n.a. | 38.7 | n.a. | n.a. | n.a. | 6.0 | 81.9 | n.a. | 802.6 | 1102.0 | n.a. | 38.0 | n.a. | n.a. |
Brood (subspecies not indicated) | Brood | [24] | n.a. | 59.5 | 375.0 | n.a. | <0.04 | 5.6 | 90.9 | 0.3 | 771.6 | 1159.5 | 0.026 | 55.2 | n.a. | n.a. |
Larvae and pupae (subspecies not indicated) | Drones | [40] | 0.195 | 133.6 | n.d. | 0.12 | n.a. | 6.087 | n.a. | 0 | n.a. | n.a. | n.a. | n.a. | 0.313 | 0.167 |
Species/Subspecies and Developmental Stage, When Available | Caste | Ref. | Heavy Metal Content (mg/100 g Dry Matter) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bismuth (Bi) | Cadmium (Cd) | Chromium (Cr) | Copper (Cu) | Lead (Pb) | Mercury (Hg) | Molybdenum (Mo) | Silver (Ag) | Zinc (Zn) | |||
Prepupae A. mellifera mellifera | Drones | [26,28] | n.a. | n.a. | n.a. | 1.5 | n.a. | n.a. | n.a. | n.a. | 4.4 |
Early (white-eyed) pupae A. mellifera mellifera | Drones | [26,28] | n.a. | n.a. | n.a. | 1.6 | n.a. | n.a. | n.a. | n.a. | 4.9 |
Late (dark-eyed) pupae A. mellifera mellifera | Drones | [26,28] | n.a. | n.a. | n.a. | 1.9 | n.a. | n.a. | n.a. | n.a. | 5.5 |
Larvae A. mellifera ligustica | Workers | [25] | n.a. | n.a. | n.a. | 14.1 | n.a. | n.a. | n.a. | n.a. | 45.3 |
Early (white-eyed) pupae A. mellifera ligustica | Drones | [26] | n.a. | n.a. | n.a. | 1.8 | n.a. | n.a. | n.a. | n.a. | 5.3 |
Late (dark-eyed) pupae A. mellifera ligustica | Drones | [26] | n.a. | n.a. | n.a. | 1.9 | n.a. | n.a. | n.a. | n.a. | 5.9 |
Pupae A. mellifera ligustica | Workers | [25] | n.a. | n.a. | n.a. | 3.7 | n.a. | n.a. | n.a. | n.a. | 11.7 |
Prepupae A. mellifera carnica | Drones | [26,28] | n.a. | n.a. | n.a. | 1.6 | n.a. | n.a. | n.a. | n.a. | 4.8 |
Early (white-eyed) pupae A. mellifera carnica | Drones | [26,28] | n.a. | n.a. | n.a. | 1.8 | n.a. | n.a. | n.a. | n.a. | 5.3 |
Late (dark-eyed) pupae A. mellifera carnica | Drones | [26,28] | n.a. | n.a. | n.a. | 2.0 | n.a. | n.a. | n.a. | n.a. | 6.0 |
Prepupae A. mellifera buckfast | Drones | [26] | n.a. | n.a. | n.a. | 0.1 | n.a. | n.a. | n.a. | n.a. | 5.1 |
Late (dark-eyed) pupae A. mellifera buckfast | Drones | [26] | n.a. | n.a. | n.a. | 0.4 | n.a. | n.a. | n.a. | n.a. | 6.0 |
Brood (subspecies not indicated) | Brood | [24] | n.a. | n.a. | n.a. | 1.7 | n.a. | n.a. | n.a. | n.a. | 6.9 |
Larvae and pupae (subspecies not indicated) | Drones | [40] | 0.387 | n.d. | n.d. | 5.483 | 0.21 | n.d. | 0.45 | 8.27 | n.a. |
References
- Muñoz-Seijas, N.; Fernandes, H.; López-Periago, J.E.; Outeiriño, D.; Morán-Aguilar, M.G.; Domínguez, J.M.; Salgado, J.M. Characterization of All Life Stages of Tenebrio Molitor: Envisioning Innovative Applications for This Edible Insect. Future Foods 2024, 10, 100404. [Google Scholar] [CrossRef]
- Pastrana-Pastrana, Á.J.; Rodríguez-Herrera, R.; Solanilla-Duque, J.F.; Flores-Gallegos, A.C. Plant Proteins, Insects, Edible Mushrooms and Algae: More Sustainable Alternatives to Conventional Animal Protein. J. Future Foods 2025, 5, 248–256. [Google Scholar] [CrossRef]
- Haber, M.; Mishyna, M.; Itzhak Martinez, J.J.; Benjamin, O. Edible Larvae and Pupae of Honey Bee (Apis mellifera): Odor and Nutritional Characterization as a Function of Diet. Food Chem. 2019, 292, 197–203. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans–A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Miglietta, P.P.; De Leo, F.; Ruberti, M.; Massari, S. Mealworms for Food: A Water Footprint Perspective. Water 2015, 7, 6190–6203. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Correia, P.; Coelho, C.; Costa, C.A. The Role of Edible Insects to Mitigate Challenges for Sustainability. Open Agric. 2021, 6, 24–36. [Google Scholar] [CrossRef]
- Florença, S.G.; Guiné, R.P.F.; Gonçalves, F.J.A.; Barroca, M.J.; Ferreira, M.; Costa, C.A.; Correia, P.M.R.; Cardoso, A.P.; Campos, S.; Anjos, O.; et al. The Motivations for Consumption of Edible Insects: A Systematic Review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef] [PubMed]
- Hoon Lee, J.; Kim, Y.-J.; Choi, Y.-J.; Kim, T.-K.; Yoon Cha, J.; Kyung Park, M.; Jung, S.; Choi, Y.-S. Effect of Gamma-Ray and Electron-Beam Irradiation on the Structural Changes and Functional Properties of Edible Insect Proteins from Protaetia brevitarsis Larvae. Food Chem. 2024, 434, 137463. [Google Scholar] [CrossRef] [PubMed]
- Chimbo-Gándara, L.F.; Granda-Albuja, G.; Mora, J.R.; Llumiquinga, E.; Ruiz-Uriguen, M.; Machado, A.; Cisneros-Heredia, D.F.; Abreu-Naranjo, R.; Giampieri, F.; Tejera, E.; et al. Nutritional, Functional, and Safety Characterization of the Edible Larva of the South American Palm Weevil (Chontacuro) Rhynchophorus palmarum L. from Amazonian Ecuador. J. Food Compos. Anal. 2024, 134, 106507. [Google Scholar] [CrossRef]
- Hoon Lee, J.; Kim, Y.-J.; Kim, T.-K.; Song, K.-M.; Choi, Y.-S. Effect of Ethanol Treatment on the Structural, Techno-Functional, and Antioxidant Properties of Edible Insect Protein Obtained from Tenebrio molitor Larvae. Food Chem. 2024, 437, 137852. [Google Scholar] [CrossRef]
- Suleiman, J.B.; Bakar, A.B.A.; Mohamed, M. Review on Bee Products as Potential Protective and Therapeutic Agents in Male Reproductive Impairment. Molecules 2021, 26, 3421. [Google Scholar] [CrossRef]
- Sawczuk, R.; Karpinska, J.; Miltyk, W. What Do We Need to Know about Drone Brood Homogenate and What Is Known. J. Ethnopharmacol. 2019, 245, 111581. [Google Scholar] [CrossRef] [PubMed]
- Sidor, E.; Miłek, M.; Tomczyk, M.; Dżugan, M. Antioxidant Activity of Frozen and Freeze-Dried Drone Brood Homogenate Regarding the Stage of Larval Development. Antioxidants 2021, 10, 639. [Google Scholar] [CrossRef]
- Koşum, N.; Yücel, B.; Kandemir, Ç.; Taşkın, T.; Duru, M.E.; Küçükaydın, S.; Margaoan, R.; Cornea-Cipcigan, M. Chemical Composition and Androgenic Effect of Bee Drone Larvae (Apilarnil) for Goat Male Kids. Chem. Biodivers. 2022, 19, e202200548. [Google Scholar] [CrossRef]
- Inandiklioglu, N.; Doganyigit, Z.; Okan, A.; Kaymak, E.; Silici, S. Nephroprotective Effect of Apilarnil in Lipopolysaccharide-Induced Sepsis through TLR4/NF-κB Signaling Pathway. Life Sci. 2021, 284, 119875. [Google Scholar] [CrossRef]
- Hamamci, M.; Doganyigit, Z.; Silici, S.; Okan, A.; Kaymak, E.; Yilmaz, S.; Tokpinar, A.; Inan, L.E. Apilarnil: A Novel Neuroprotective Candidate. Acta Neurol. Taiwanica 2020, 29, 33–45. [Google Scholar]
- Rutka, I.; Galoburda, R.; Galins, J.; Galins, A. Bee Drone Brood Homogenate Chemical Composition, Stabilization and Application: A Reviw. Res. Rural Dev. 2021, 36, 96–103. [Google Scholar] [CrossRef]
- Arıcan, M.; Kekecoglu, M.; Turhan, Y.; Çaprazlı, T.; Gamsızkan, M.; Karaduman, Z.O. Effects of Drone Brood Homogenate on Wound Healing: An Experimental Study on Rats. Vet. Med. Sci. 2025, 11, e70260. [Google Scholar] [CrossRef] [PubMed]
- Katumo, D.M.; Liang, H.; Ochola, A.C.; Lv, M.; Wang, Q.-F.; Yang, C.-F. Pollinator Diversity Benefits Natural and Agricultural Ecosystems, Environmental Health, and Human Welfare. Plant Divers. 2022, 44, 429–435. [Google Scholar] [CrossRef]
- Gonçalves, J.C.; Vouga, B.; Costa, C.A.; Gonçalves, F.; Coelho, C.; Guiné, R.P.F.; Correia, P.M.R. Production and Characterization of Powder from Drone Brood of Honeybees (Apis mellifera). Appl. Food Res. 2025, 5, 100718. [Google Scholar] [CrossRef]
- Weimers, C. Insects in Food|E-000581/2023|European Parliament. Available online: https://www.europarl.europa.eu/doceo/document/E-9-2023-000581_EN.html (accessed on 21 December 2024).
- European Commission Food and Feed Information Portal Database|FIP. Available online: https://ec.europa.eu/food/food-feed-portal/screen/novel-food-catalogue/search (accessed on 21 December 2024).
- European Union Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods (EUR-Lex). Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng (accessed on 21 December 2024).
- Finke, M.D. Full Article: Nutrient Composition of Bee Brood and Its Potential as Human Food. Ecol. Food Nutr. 2005, 44, 257–270. [Google Scholar] [CrossRef]
- Ghosh, S.; Jung, C.; Meyer-Rochow, V.B. Nutritional Value and Chemical Composition of Larvae, Pupae, and Adults of Worker Honey Bee, Apis mellifera Ligustica as a Sustainable Food Source. J. Asia-Pac. Entomol. 2016, 19, 487–495. [Google Scholar] [CrossRef]
- Ghosh, S.; Meyer-Rochow, V.B.; Jung, C. Honey Bees and Their Brood: A Potentially Valuable Resource of Food, Worthy of Greater Appreciation and Scientific Attention. J. Ecol. Environ. 2021, 45, 31. [Google Scholar] [CrossRef]
- Choi, H.M.; Kim, H.-Y.; Woo, S.O.; Kim, S.G.; Bang, K.W.; Moon, H.J.; Han, S.M. Drying Techniques and Nutritional Composition of Drone Pupae (Apis mellifera L.) as Edible Food. Apiculture 2019, 34, 161–167. [Google Scholar] [CrossRef]
- Ghosh, S.; Herren, P.; Meyer-Rochow, V.B.; Jung, C. Nutritional Composition of Honey Bee Drones of Two Subspecies Relative to Their Pupal Developmental Stages. Insects 2021, 12, 759. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sohn, H.-Y.; Pyo, S.-J.; Jensen, A.B.; Meyer-Rochow, V.B.; Jung, C. Nutritional Composition of Apis mellifera Drones from Korea and Denmark as a Potential Sustainable Alternative Food Source: Comparison Between Developmental Stages. Foods 2020, 9, 389. [Google Scholar] [CrossRef]
- Oliveira, L.A.; Pereira, S.M.S.; Dias, K.A.; da Silva Paes, S.; Grancieri, M.; Jimenez, L.G.S.; de Carvalho, C.W.P.; de Oliveira, E.E.; Martino, H.S.D.; Della Lucia, C.M. Nutritional Content, Amino Acid Profile, and Protein Properties of Edible Insects (Tenebrio molitor and Gryllus assimilis) Powders at Different Stages of Development. J. Food Compos. Anal. 2024, 125, 105804. [Google Scholar] [CrossRef]
- WHO/FAO. Proteinand Amino Acid Requirements in Human Nutrition; WHO/FAO: Geneva, Switzerland, 2002; p. 284. [Google Scholar]
- Ghosh, S.; Jung, C.; Chuttong, B.; Burgett, M. Nutritional Aspects of the Dwarf Honeybee (Apis plorea F.) for Human Consumption. In The Future Role of Dwarf Honeybees in Natural and Agricultural Systems; CRC Press: Boca Raton, FL, USA, 2020; pp. 137–145. [Google Scholar]
- Raksakantong, P.; Meeso, N.; Kubola, J.; Siriamornpun, S. Fatty Acids and Proximate Composition of Eight Thai Edible Terricolous Insects. Food Res. Int. 2010, 43, 350–355. [Google Scholar] [CrossRef]
- Palupi, E.; Nasir, S.Q.; Jayanegara, A.; Susanto, I.; Ismail, A.; Iwansyah, A.C.; Setiawan, B.; Sulaeman, A.; Damanik, M.R.M.; Filianty, F. Meta-Analysis on the Fatty Acid Composition of Edible Insects as a Sustainable Food and Feed. Future Foods 2024, 11, 100529. [Google Scholar] [CrossRef]
- McLean, R.M.; Wang, N.X. Chapter Three-Potassium. The Latest Research and Development of Minerals in Human Nutrition. In Advances in Food and Nutrition Research; Eskin, N.A.M., Ed.; Academic Press: New York, NY, USA, 2021; Volume 96, pp. 89–121. [Google Scholar]
- Bird, R.P.; Eskin, N.A.M. Chapter Two-The Emerging Role of Phosphorus in Human Health. The Latest Research and Development of Minerals in Human Nutrition. In Advances in Food and Nutrition Research; Eskin, N.A.M., Ed.; Academic Press: New York, NY, USA, 2021; Volume 96, pp. 27–88. [Google Scholar]
- Glasdam, S.-M.; Glasdam, S.; Peters, G.H. Chapter Six-The Importance of Magnesium in the Human Body: A Systematic Literature Review. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 73, pp. 169–193. [Google Scholar]
- Pu, F.; Chen, N.; Xue, S. Calcium Intake, Calcium Homeostasis and Health. Food Sci. Hum. Wellness 2016, 5, 8–16. [Google Scholar] [CrossRef]
- Chen, Y.; Forgetta, V.; Richards, J.B.; Zhou, S. Health Effects of Calcium: Evidence From Mendelian Randomization Studies. JBMR Plus 2021, 5, e10542. [Google Scholar] [CrossRef]
- Borkovcová, M.; Mlček, J.; Adámková, A.; Adámek, M.; Bednářová, M.; Musilová, Z.; Ševčíková, V. Use of Foods Based on Bee Drone Brood: Their Sensory and Microbiological Evaluation and Mineral Composition. Sustainability 2022, 14, 2814. [Google Scholar] [CrossRef]
- Malematja, E.; Manyelo, T.G.; Sebola, N.A.; Kolobe, S.D.; Mabelebele, M. The Accumulation of Heavy Metals in Feeder Insects and Their Impact on Animal Production. Sci. Total Environ. 2023, 885, 163716. [Google Scholar] [CrossRef] [PubMed]
- Schrögel, P.; Wätjen, W. Insects for Food and Feed-Safety Aspects Related to Mycotoxins and Metals. Foods 2019, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Fialho, A.T.S.; Silva, A.S.; Brito, C.; Vale, P.A.C.B.; Oliveira, C.J.P.; Junior, V. Nutritional Composition of Larvae of Mealworm (Tenebrio molitor L.) and Crickets (Gryllus assimilis) with Potential Usage in Feed. Arq. Bras. De Med. Veterinária E Zootec. 2021, 73, 539–542. [Google Scholar] [CrossRef]
- Hu, F.; Li, Y. Nutritive Value and Pharmacological Actions of Italian Worker Bee Larvae and Pupae. In Proceedings of the APIMONDIA: 37th International Apicultural Congress, Durban, South Africa, 28 October–1 November 2001. Document Transformation Technologies. [Google Scholar]
- Kim, J.-E.; Kim, D.-I.; Koo, H.-Y.; Kim, H.-J.; Kim, S.-Y.; Lee, Y.-B.; Moon, J.-H.; Choi, Y.-S. Evaluation of Honey Bee (Apis mellifera L.) Drone Pupa Extracts on the Improvement of Hair Loss. J. Apic. 2020, 35, 179–188. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; El-Masarawy, M.S.; Altemimi, A.B.; Hesarinejad, M.A.; Hussein, A.M.S.; Smuda, S.S. Drones and Workers of Honeybee Apis mellifera L. Dried Powder: Chemical Composition, Antioxidant, and Anticancer Assessment. Food Sci. Nutr. 2024, 12, 10357–10369. [Google Scholar] [CrossRef] [PubMed]
- Sidor, E.; Miłek, M.; Zaguła, G.; Bocian, A.; Dżugan, M. Searching for Differences in Chemical Composition and Biological Activity of Crude Drone Brood and Royal Jelly Useful for Their Authentication. Foods 2021, 10, 2233. [Google Scholar] [CrossRef]
- Mutlu Sarıguzel, F.; Sılıcı, S.; Koc, A.N. Antifungal Activity of Different Extractions of Drone Larvae (Apilarnil). Nat. Prod. Res. 2025, 1–6. [Google Scholar] [CrossRef]
- Kurtdede, E.; Sevin, S. Evaluation of Antioxidant Properties and Total Phenolic and Flavonoid Contents of Honey Bee Hive Products Collected from the Ankara Region. Kocatepe Vet. J./Kocatepe Vet. Derg. 2022, 15, 342–347. [Google Scholar] [CrossRef]
- Abd El-Wahed, A.A.; Khalifa, S.A.M.; Aldahmash, B.; Zhang, H.; Du, M.; Zhao, C.; Tahir, H.E.; Saeed, A.; Hussain, H.; Guo, Z.; et al. Exploring the Chemical Constituents and Nutritive Potential of Bee Drone (Apilarnil): Emphasis on Antioxidant Properties. Chem. Biodivers. 2024, 21, e202400085. [Google Scholar] [CrossRef]
- Sonmez, E.; Kekecoglu, M.; Sahin, H.; Bozdeveci, A.; Alpay Karaoglu, S. An Evaluation of the Chemical Composition and Biological Properties of Anatolian Royal Jelly, Drone Brood and Queen Bee Larvae. Eur. Food Res. Technol. 2023, 249, 1391–1401. [Google Scholar] [CrossRef]
- Inci, H.; Izol, E.; Yilmaz, M.A.; Ilkaya, M.; Bingöl, Z.; Gülçin, I. Comprehensive Phytochemical Content by LC/MS/MS and Anticholinergic, Antiglaucoma, Antiepilepsy, and Antioxidant Activity of Apilarnil (Drone Larvae). Chem. Biodivers. 2023, 20, e202300654. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Sidor, E.; Miłek, M.; Tomczyk, M. The Possibility of Using Bee Drone Brood to Design Novel Dietary Supplements for Apitherapy. Appl. Sci. 2023, 13, 4687. [Google Scholar] [CrossRef]
- Cruz-García, K.; Ortiz-Hernández, Y.D.; Acevedo-Ortiz, M.A.; Aquino-Bolaños, T.; Aquino-López, T.; Lugo-Espinosa, G.; Ortiz-Hernández, F.E. Edible Insects: Global Research Trends, Biosafety Challenges, and Market Insights in the Mexican Context. Foods 2025, 14, 663. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current Knowledge on the Microbiota of Edible Insects Intended for Human Consumption: A State-of-the-Art Review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
- Murefu, T.R.; Macheka, L.; Musundire, R.; Manditsera, F.A. Safety of Wild Harvested and Reared Edible Insects: A Review. Food Control. 2019, 101, 209–224. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Cunha, L.M.; Sousa-Pinto, B.; Fonseca, J. Allergic Risks of Consuming Edible Insects: A Systematic Review. Mol. Nutr. Food Res. 2018, 62, 1700030. [Google Scholar] [CrossRef]
- Ji, K.; Chen, J.; Li, M.; Liu, Z.; Wang, C.; Zhan, Z.; Wu, X.; Xia, Q. Anaphylactic Shock and Lethal Anaphylaxis Caused by Food Consumption in China. Trends Food Sci. Technol. 2009, 20, 227–231. [Google Scholar] [CrossRef]
- De Marchi, L.; Wangorsch, A.; Zoccatelli, G. Allergens from Edible Insects: Cross-Reactivity and Effects of Processing. Curr. Allergy Asthma Rep. 2021, 21, 35. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.; Su, N.; Masagounder, K.; Xu, M.; Chen, L.; Liu, Q.; Ye, H.; Sun, Z.; Ye, C. Effects of DL-Methionine and a Methionine Hydroxy Analogue (MHA-Ca) on Growth, Amino Acid Profiles and the Expression of Genes Related to Taurine and Protein Synthesis in Common Carp (Cyprinus carpio). Aquaculture 2021, 532, 735962. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The Sulfur-Containing Amino Acids: An Overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Phillips, R.S.; Li, J. Editorial: Aromatic Amino Acid Metabolism. Front. Mol. Biosci. 2019, 6, 22. [Google Scholar] [CrossRef]
- Graham, T.E.; MacLean, D.A. Ammonia and Amino Acid Metabolism in Human Skeletal Muscle during Exercise. Can. J. Physiol. Pharmacol. 1992, 70, 132–141. [Google Scholar] [CrossRef] [PubMed]
Phytochemical Compounds | Amount (mg/g Dry Extract) |
---|---|
Quinic acid | 1091.045 |
Fumaric acid | 48.714 |
Aconitic acid | 47.218 |
Kaempferol | 39.946 |
Quercetin | 27.508 |
4-OH-Benzoic acid | 16.307 |
Protocatechuic acid | 0.769 |
Chlorogenic acid | 0.905 |
p-Coumaric acid | 9.023 |
Caffeic acid | 2.011 |
Quercitrin | 4.553 |
Luteolin | 2.747 |
Hesperetin | 2.671 |
Nicotiflorin | 2.461 |
Caffeic acid | 2.011 |
Vanillin | 1.37 |
Acacetin | 1.25 |
Amentoflavone | 0.981 |
Chlorogenic acid | 0.905 |
Chrysin | 0.884 |
Astragalin | 0.866 |
Protocatechuic acid | 0.769 |
Isoquercitrin | 0.757 |
Naringenin | 0.551 |
Cosmosiin | 0.249 |
Apigenin | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Costa, C.A. Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition. Insects 2025, 16, 796. https://doi.org/10.3390/insects16080796
Guiné RPF, Florença SG, Barroca MJ, Costa CA. Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition. Insects. 2025; 16(8):796. https://doi.org/10.3390/insects16080796
Chicago/Turabian StyleGuiné, Raquel P. F., Sofia G. Florença, Maria João Barroca, and Cristina A. Costa. 2025. "Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition" Insects 16, no. 8: 796. https://doi.org/10.3390/insects16080796
APA StyleGuiné, R. P. F., Florença, S. G., Barroca, M. J., & Costa, C. A. (2025). Bee Brood as a Food for Human Consumption: An Integrative Review of Phytochemical and Nutritional Composition. Insects, 16(8), 796. https://doi.org/10.3390/insects16080796