Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = progeny abnormality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 - 30 Jul 2025
Viewed by 348
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

17 pages, 3141 KiB  
Article
Integrated Cytological, Physiological, and Comparative Transcriptome Profiling Analysis of the Male Sterility Mechanism of ‘Xinli No.7’ Pear (Pyrus sp.)
by Hao Li, Xiangyü Li, Yüjia Luo, Quanhui Ma, Zhi Luo, Jiayuan Xuan, Cuiyun Wu and Fenfen Yan
Plants 2025, 14(12), 1783; https://doi.org/10.3390/plants14121783 - 11 Jun 2025
Viewed by 388
Abstract
Pyrus bretschneideri ‘Xinli No.7’, a progeny of Pyrus sinkiangensis ‘Korla Fragrant Pear’, is an early-maturing, high-quality pear (Pyrus spp.) cultivar. As a dominant variety in China’s pear-producing regions, it holds significant agricultural importance. Investigating its male sterility (MS) mechanisms is critical for [...] Read more.
Pyrus bretschneideri ‘Xinli No.7’, a progeny of Pyrus sinkiangensis ‘Korla Fragrant Pear’, is an early-maturing, high-quality pear (Pyrus spp.) cultivar. As a dominant variety in China’s pear-producing regions, it holds significant agricultural importance. Investigating its male sterility (MS) mechanisms is critical for hybrid breeding and large-scale cultivation. Integrated cytological, physiological, and transcriptomic analyses were conducted to compare dynamic differences between male sterility (MS, ‘Xinli No.7’) and male-fertile (MF, ‘Korla Fragrant Pear’) plants during anther development. Cytological observations revealed that, compared with ‘Korla Fragrant Pear’, the tapetum of ‘Xinli No.7’ exhibited delayed degradation and abnormal thickening during the uninucleate microspore stage. This pathological alteration compressed the microspores, ultimately leading to their abortion. Physiological assays demonstrated excessive reactive oxygen species (ROS) accumulation, lower proline content, higher malondialdehyde (MDA) levels, and reduced activities of antioxidant enzymes (peroxidase and catalase) in MS plants. Comparative transcriptomics identified 283 co-expressed differentially expressed genes (DEGs). Functional enrichment linked these DEGs to ROS-scavenging pathways: galactose metabolism, ascorbate and aldarate metabolism, arginine and proline metabolism, fatty acid degradation, pyruvate metabolism, and flavonoid biosynthesis. qRT-PCR validated the expression patterns of key DEGs in these pathways. A core transcriptome-mediated MS network was proposed, implicating accelerated ROS generation and dysregulated tapetal programmed cell death. These findings provide theoretical insights into the molecular mechanisms of male sterility in ‘Xinli No.7’, supporting future genetic and breeding applications. Full article
Show Figures

Figure 1

19 pages, 7427 KiB  
Article
Analysis of Meiotic Behavior and 2n Pollen Formation Frequency in Triploid Hybrids of Chinese Jujube
by Yunxi Zhong, Lixin Ge, Yinfang Song, Zhi Luo, Jiurui Wang, Mengjun Liu and Fenfen Yan
Plants 2025, 14(11), 1643; https://doi.org/10.3390/plants14111643 - 28 May 2025
Viewed by 447
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), an economically significant fruit tree native to China, is valued for both fresh and dried uses. In plants, 2n gametes serve as the fundamental basis for creating a sexual polyploid germplasm. This study investigated the 2n [...] Read more.
The Chinese jujube (Ziziphus jujuba Mill.), an economically significant fruit tree native to China, is valued for both fresh and dried uses. In plants, 2n gametes serve as the fundamental basis for creating a sexual polyploid germplasm. This study investigated the 2n gametogenesis frequency in triploid hybrid jujubes through meiotic analysis of the hybrid strain Q161 and a two-year pollen analysis on hybrid progeny, assessing the natural 2n pollen frequencies to identify a high-2n-pollen germplasm and revealing the occurrence of 2n pollen. Meiotic analysis of the triploid hybrid Q161 (2n = 36) revealed cytological anomalies, including binucleate cells (22.80% abnormal tetrads), with natural 2n pollen production rates reaching 4.00% and 4.67% over two consecutive years. Scanning electron microscopy (SEM) revealed that the 2n pollen exhibited pronounced exine ornamentation with cerebroid sculpturing and tubercle-like structures at the apertures. Analysis of the triploid progeny for two consecutive years demonstrated a pollen viability of 30.45% and 23.83% (CV: 19. 39–29.69%), with the mean 2n pollen frequencies of 22.52% and 7.64%, peaking at 52.16% and 28.95% in elite individuals. Six triploid germplasm accessions with naturally elevated 2n pollen frequencies were identified. Under natural conditions, a triploid hybrid germplasm in Chinese jujube produces 2n pollen grains due to abnormal meiotic behavior, and a natural triploid germplasm with high pollen productivity was identified. This research provides a critical theoretical foundation for sexual polyploid breeding strategies. Full article
Show Figures

Figure 1

23 pages, 3947 KiB  
Study Protocol
Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment
by Mengfan Ren, Yixu Wang, Siyi Yi, Jingyi Chen, Wen Zhang, Haoran Li, Ke Du, Jianmin Tao and Huan Zheng
Horticulturae 2025, 11(5), 549; https://doi.org/10.3390/horticulturae11050549 - 19 May 2025
Viewed by 424
Abstract
N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and N-phenyl-1,2,3-thidiazole-5ylurea (TDZ) are plant growth regulators used for seedless treatment in grape. In this study, the flowers of ‘Shine Muscat’ (Vitis labruscana Bailey × V. vinifera L.) were treated with 3, 5, and 10 mg/L CPPU and TDZ one [...] Read more.
N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and N-phenyl-1,2,3-thidiazole-5ylurea (TDZ) are plant growth regulators used for seedless treatment in grape. In this study, the flowers of ‘Shine Muscat’ (Vitis labruscana Bailey × V. vinifera L.) were treated with 3, 5, and 10 mg/L CPPU and TDZ one week before flowering. The results showed that both CPPU and TDZ treatments reduced the pollen germination rate and caused abnormal stamen and pollen grain phenotypes, resembling the male sterility observed in ‘Y_14’ (a novel grapevine germplasm derived from the self-progeny of ‘Shine Muscat’). Using RNA-seq technology, the stamens of flowers treated with 10 mg/L CPPU (CPPU_10), 10 mg/L TDZ (TDZ_10), and the control (CK) were analyzed. A total of 520 and 722 differentially expressed genes (DEGs) were identified in CPPU and TDZ treatments, respectively. GO and KEGG analyses revealed that the common pathways leading to pollen abortion in both treatments were primarily associated with hydrolase activity (acting on glycosyl bonds), phenylpropanoid biosynthesis, pentose and glucuronate interconversions, and ABC transporters. By comparing the DEGs across the three groups (Y_14 vs. SM, CPPU_10 vs. CK, TDZ_10 vs. CK), 16 DEGs exhibited similar expression patterns. Further tissue-specific expression analysis identified nine genes that were highly expressed in stamens and shared the same expression pattern in sterile lines. These findings provide a foundation for further studies on the impact of CPPU and TDZ treatments on grape stamen fertility. Full article
(This article belongs to the Topic Grapevine and Kiwifruit Breeding Studies)
Show Figures

Figure 1

24 pages, 1857 KiB  
Review
Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health
by Aris Kaltsas, Eleftheria Markou, Maria-Anna Kyrgiafini, Athanasios Zikopoulos, Evangelos N. Symeonidis, Fotios Dimitriadis, Athanasios Zachariou, Nikolaos Sofikitis and Michael Chrisofos
Genes 2025, 16(1), 93; https://doi.org/10.3390/genes16010093 - 17 Jan 2025
Cited by 9 | Viewed by 3010
Abstract
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms—encompassing DNA methylation, histone modifications, and non-coding RNA activity—are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these [...] Read more.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms—encompassing DNA methylation, histone modifications, and non-coding RNA activity—are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility. This disruption extends to epigenetic modifications, resulting in abnormal gene expression and chromatin remodeling that compromise genomic integrity and fertilization potential. Importantly, oxidative-stress-induced epigenetic alterations can be inherited, affecting the health and fertility of offspring and future generations. This review investigates how oxidative stress influences epigenetic regulation in male reproduction by modifying DNA methylation, histone modifications, and non-coding RNAs, ultimately compromising spermatogenesis. Additionally, it discusses the transgenerational implications of these epigenetic disruptions and their potential role in hereditary infertility and disease predisposition. Understanding these mechanisms is vital for developing therapeutic strategies that mitigate oxidative damage and restore epigenetic homeostasis in the male germline. By integrating insights from molecular, clinical, and transgenerational research, this work emphasizes the need for targeted interventions to enhance male reproductive health and prevent adverse outcomes in progeny. Furthermore, elucidating the dose–response relationships between oxidative stress and epigenetic changes remains a critical research priority, informing personalized diagnostics and therapeutic interventions. In this context, future studies should adopt standardized markers of oxidative damage, robust clinical trials, and multi-omic approaches to capture the complexity of epigenetic regulation in spermatogenesis. Such rigorous investigations will ultimately reduce the risk of transgenerational disorders and optimize reproductive health outcomes. Full article
(This article belongs to the Section Epigenomics)
Show Figures

Figure 1

15 pages, 1364 KiB  
Article
Prenatal Stress Modulates Placental and Fetal Serotonin Levels and Determines Behavior Patterns in Offspring of Mice
by Victoria Melnikova, Nadezhda Lifantseva, Svetlana Voronova and Nadezhda Bondarenko
Int. J. Mol. Sci. 2024, 25(24), 13565; https://doi.org/10.3390/ijms252413565 - 18 Dec 2024
Cited by 2 | Viewed by 1143
Abstract
Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, [...] Read more.
Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, hence, fetal serotonin levels and thus may disturb fetal brain development. We investigated the effect of prenatal stress of varying intensities on the formation of adaptive behaviors in mouse offspring and the role of placental serotonin in these processes. Mild prenatal stress increased placental serotonin synthesis, whereas exposure to moderate stress decreased it. Prenatal stress of varying intensities also resulted in multidirectional changes in animal behavior in progeny, consistent with changes in serotonin levels in the placenta and fetal tissues. Mice exposed to mild prenatal stress showed higher sociality and exploratory activity, whereas, after moderate stress, in contrast, they avoided contact with other individuals of their species and had reduced exploratory activity, with no effect on locomotor activity. Thus, in mice, stressors of varying intensities during the critical period of intrauterine development can affect the synthesis of serotonin by the placenta and lead to multidirectional changes in animal behavior in postnatal life. Full article
(This article belongs to the Special Issue Serotonin in Health and Diseases)
Show Figures

Figure 1

15 pages, 2677 KiB  
Article
CRISPR-Based Editing of the Medicago truncatula LEC1 Gene
by Elina A. Potsenkovskaia, Varvara E. Tvorogova, Veronika Y. Simonova, Zakhar S. Konstantinov, Anna S. Kiseleva, Andrew G. Matveenko, Anna V. Brynchikova and Ludmila A. Lutova
Plants 2024, 13(22), 3226; https://doi.org/10.3390/plants13223226 - 16 Nov 2024
Viewed by 1597
Abstract
Arabidopsis thaliana LEAFY COTYLEDON1 (LEC1) gene is shown to have numerous diverse functions in plant development, including the regulation of embryo morphogenesis and maturation, hypocotyl elongation, flowering transition, etc. However, the functions of LEC1 orthologs in different plant species have not been extensively studied. [...] Read more.
Arabidopsis thaliana LEAFY COTYLEDON1 (LEC1) gene is shown to have numerous diverse functions in plant development, including the regulation of embryo morphogenesis and maturation, hypocotyl elongation, flowering transition, etc. However, the functions of LEC1 orthologs in different plant species have not been extensively studied. In this study, we obtained a line of Medicago truncatula, a model leguminous plant, carrying the loss-of-function mutation in the MtLEC1 (MtNF-YB10) gene, orthologous to LEC1, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas9) genome editing system. Edited plants with loss of MtNF-YB10 function did not demonstrate any severe abnormalities during their normal growth and gave viable seeds, but their capability for somatic embryogenesis in vitro was dramatically reduced. The T1 progeny of unedited plants with a Cas9-gRNA cassette insertion was also analyzed based on the suggestion that editing could occur during seed formation. However, no edited plants were found in the T1 generation. These results suggest divergent functions of LEC1 orthologs and make it possible to investigate potential specific MtNF-YB10 functions. Full article
Show Figures

Figure 1

24 pages, 8187 KiB  
Article
Climate Response and Radial Growth Dynamics of Pedunculate Oak (Quercus robur L.) Plus Trees and Their Half-Sib Progeny in Periods of Severe Droughts in the Forest-Steppe Zone of Eastern Europe
by Daria A. Litovchenko, Anna A. Popova, Konstantin A. Shestibratov and Konstantin V. Krutovsky
Plants 2024, 13(22), 3213; https://doi.org/10.3390/plants13223213 - 15 Nov 2024
Cited by 1 | Viewed by 1069
Abstract
The dendrochronological parameters of 97 pedunculate oak (Quercus robur L.) trees including 20 plus trees (142-year-old on average) and four half-sib families for four of them were analyzed considering also specifically years of the most severe droughts that were identified using average [...] Read more.
The dendrochronological parameters of 97 pedunculate oak (Quercus robur L.) trees including 20 plus trees (142-year-old on average) and four half-sib families for four of them were analyzed considering also specifically years of the most severe droughts that were identified using average monthly air temperature and precipitation data. The tree-ring width (TRW) was mostly affected by air temperature that had the largest cross-dating indices (CDI), up to 78% maximum. However, the 32-year Brückner–Egeson–Lockyer cycle (a climatic cycle of approximately 30–40 years that correlates with sunspot activity) was more reflected in the TRW dynamics in plus trees than precipitation and air temperature. A high-frequency of abnormal TRW was clearly observed during drought periods and in the following 2–3 years. Tree radial-growth reduction due to drought stress varied significantly between families. The resistance to drought based on TRW was higher in the maternal plus oak trees than in progeny. Drought resulted in reduced growth during the subsequent year(s); hence, the minimum growth occurred after the actual climate event. Autumn–winter precipitation and weather conditions were of the greatest importance at the onset of active vegetation in April and May. The influence of air temperature on oak growth was the largest in March (r = 0.39, p < 0.05). The strongest positive correlation between precipitation and growth (with r up to 0.38) was observed in May 2023. Plus trees had a high adaptive potential due to the stability of radial growth during drought with high resistance (Rt = 1.29) and resilience (Rs = 1.09) indexes. The offspring of families 1 (Rt = 0.89, Rs = 0.89) and 2 (Rt = 1.04, Rs = 0.87) had similar resistance and resilience, but the recovery indices (Rc) for offspring in families 1, 2 and 3 exceeded the recovery values for plus trees. For offspring in families 3 and 4, the index values were lower. The revealed responses of wood growth of plus trees to climatic parameters estimated as resistance (Rt), resilience (Rs) and recovery (Rc) indexes and similar responses in their progeny can be used in breeding pedunculate oak for wood growth productivity and drought resistance. Full article
Show Figures

Figure 1

13 pages, 1365 KiB  
Commentary
Amitotic Cell Division, Malignancy, and Resistance to Anticancer Agents: A Tribute to Drs. Walen and Rajaraman
by Razmik Mirzayans and David Murray
Cancers 2024, 16(17), 3106; https://doi.org/10.3390/cancers16173106 - 8 Sep 2024
Cited by 2 | Viewed by 3043
Abstract
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that [...] Read more.
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman. Full article
(This article belongs to the Special Issue The Role of Chromosomal Instability in Cancer)
Show Figures

Figure 1

13 pages, 1695 KiB  
Review
Prg4-Expressing Chondroprogenitor Cells in the Superficial Zone of Articular Cartilage
by Nadezda Ignatyeva, Nikita Gavrilov, Peter S. Timashev and Ekaterina V. Medvedeva
Int. J. Mol. Sci. 2024, 25(11), 5605; https://doi.org/10.3390/ijms25115605 - 21 May 2024
Cited by 4 | Viewed by 2560
Abstract
Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. [...] Read more.
Joint-resident chondrogenic precursor cells have become a significant therapeutic option due to the lack of regenerative capacity in articular cartilage. Progenitor cells are located in the superficial zone of the articular cartilage, producing lubricin/Prg4 to decrease friction of cartilage surfaces during joint movement. Prg4-positive progenitors are crucial in maintaining the joint’s structure and functionality. The disappearance of progenitor cells leads to changes in articular hyaline cartilage over time, subchondral bone abnormalities, and the formation of ectopic ossification. Genetic labeling cell technology has been the main tool used to characterize Prg4-expressing progenitor cells of articular cartilage in vivo through drug injection at different time points. This technology allows for the determination of the origin of progenitor cells and the tracking of their progeny during joint development and cartilage damage. We endeavored to highlight the currently known information about the Prg4-producing cell population in the joint to underline the significance of the role of these cells in the development of articular cartilage and its homeostasis. This review focuses on superficial progenitors in the joint, how they contribute to postnatal articular cartilage formation, their capacity for regeneration, and the consequences of Prg4 deficiency in these cells. We have accumulated information about the Prg4+ cell population of articular cartilage obtained through various elegantly designed experiments using transgenic technologies to identify potential opportunities for further research. Full article
(This article belongs to the Special Issue Molecular Aspects of Cartilage Biology)
Show Figures

Figure 1

10 pages, 2885 KiB  
Case Report
Spontaneous Remission of Blastic Plasmacytoid Dendritic Cell Neoplasm: A Case Report
by Tamara Castaño-Bonilla, Raquel Mata, Daniel Láinez-González, Raquel Gonzalo, Susana Castañón, Francisco Javier Díaz de la Pinta, Carlos Blas, José L. López-Lorenzo and Juan Manuel Alonso-Domínguez
Medicina 2024, 60(5), 807; https://doi.org/10.3390/medicina60050807 - 14 May 2024
Viewed by 2406
Abstract
Spontaneous remissions (SRs) in blastic plasmacytoid dendritic cell neoplasms (BPDCNs) are infrequent, poorly documented, and transient. We report a 40-year-old man presenting with bycitopenia and soft tissue infection. The bone marrow exhibited 3% abnormal cells. Immunophenotyping of these cells revealed the antigens CD45+ [...] Read more.
Spontaneous remissions (SRs) in blastic plasmacytoid dendritic cell neoplasms (BPDCNs) are infrequent, poorly documented, and transient. We report a 40-year-old man presenting with bycitopenia and soft tissue infection. The bone marrow exhibited 3% abnormal cells. Immunophenotyping of these cells revealed the antigens CD45+ (dim), CD34+, CD117+, CD123+ (bright), HLA-DR+ (bimodal), CD56+ (bright), CD33+, CD13+, CD2+, and CD22+ (dim) and the partial expression of the CD10+, CD36+, and CD7+ antigens. All other myeloid, monocytic, and lymphoid antigens were negative. Genetic studies showed a complex karyotype and mutations in the TP53R337C and KRASG12D genes. On hospital admission, the patient showed a subcutaneous nodule on the right hand and left lower limb. Flow cytometry multiparameter (FCM) analysis showed the presence of 29% abnormal cells with the previously described immunophenotype. The patient was diagnosed with BPDCN. The patient was treated with broad-spectrum antibiotics for soft tissue infection, which delayed therapy for BPDCN. No steroids or chemotherapeutic or hypomethylating agents were administered. His blood cell counts improved and skin lesions disappeared, until the patient relapsed five months after achieving spontaneous remission. About 60% of abnormal cells were identified. No changes in immunophenotype or the results of genetic studies were observed. The patient underwent a HyperCVAD chemotherapy regimen for six cycles. Consolidation therapy was performed via allogeneic bone marrow transplantation with an HLA-unrelated donor. One year after the bone marrow transplant, the patient died due to the progression of his underlying disease, coinciding with a respiratory infection caused by SARS-CoV-2. In the available literature, SRs are often linked to infections or other stimulators of the immune system, suggesting that powerful immune activation could play a role in controlling the leukemic clone. Nevertheless, the underlying mechanism of this phenomenon is not clearly understood. We hypothesize that the immune system would force the leukemic stem cell (LSC) to undergo a state of quiescence. This loss of replication causes the LSC progeny to die off, resulting in the SR of BPDCN. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

16 pages, 635 KiB  
Article
Heterosis and Mixed Genetic Analysis of Flowering Traits in Cross Breeding of Day-Neutral Chrysanthemum (Asteraceae)
by Xiaoyun Wu, Xiaogang Zhao, Kang Gao, Yuankai Tian, Mengmeng Zhang, Neil O. Anderson and Silan Dai
Agronomy 2023, 13(8), 2107; https://doi.org/10.3390/agronomy13082107 - 11 Aug 2023
Cited by 5 | Viewed by 2042
Abstract
Day-neutral multiflora chrysanthemums can flower throughout the year without being influenced by daylength and have great application value in gardens. Studying heterosis and the genetic basis of important traits in day-neutral chrysanthemums can accelerate the breeding of new cultivars. In this research, a [...] Read more.
Day-neutral multiflora chrysanthemums can flower throughout the year without being influenced by daylength and have great application value in gardens. Studying heterosis and the genetic basis of important traits in day-neutral chrysanthemums can accelerate the breeding of new cultivars. In this research, a genetic population was constructed by crossing 135 F1 hybrid progeny from the day-neutral chrysanthemum ‘82-81-19’ (female parent) and the late-flowering chrysanthemum ‘388Q-76’ (male parent). Six traits, including abnormal (crown) bud, plant height, plant crown width, budding date, full flowering date, and number of petal layers, were selected for inheritance and heterosis analyses, and a single-generation major gene plus polygene mixed inheritance model was used to perform mixed inheritance analysis on these traits. The results indicated that the six traits were widely segregated in the F1 population, with the coefficient of variation (CV) ranging from 30% to 84%. The phenomena of heterosis and extra-parent segregation existed generally in F1 progeny, and the ratio of heterosis value of mid-parents (RHm) for the six traits was 45.5%, 2%, 2%, 6%, 6%, and −0.3%, respectively. The mixed genetic analysis showed that the abnormal (crown) bud and budding date were fitted to the B-3 model and controlled by two pairs of additive major genes. The plant height and plant crown width were fitted to the A-0 model, and no major gene was detected. The full flowering date was fitted to the A-1 model and was controlled by one pair of major genes. The number of petal layers was fitted to the B-1 model and controlled by two pairs of additive–dominant major genes. The heritabilities of major genes for abnormal bud, budding date, full flowering date, and the number of petal layers were 1.0, 0.9871, 0.7240, and 0.5612, respectively, indicating that these traits were less affected by environmental factors. Using a percentile scoring method, eight day-neutral chrysanthemum genotypes were selected from the hybrid progeny. Full article
(This article belongs to the Special Issue Research Progress in Genetic Breeding of Ornamental Plants)
Show Figures

Figure 1

12 pages, 2575 KiB  
Article
Marker-Assisted Selection of Male-Sterile and Maintainer Line in Chili Improvement by Backcross Breeding
by Aatjima Na Jinda, Maneechat Nikornpun, Nakarin Jeeatid, Siwaporn Thumdee, Kamon Thippachote, Tonapha Pusadee and Jutamas Kumchai
Horticulturae 2023, 9(3), 357; https://doi.org/10.3390/horticulturae9030357 - 8 Mar 2023
Cited by 4 | Viewed by 5113
Abstract
Cytoplasmic genic male sterility (CGMS) is a male sterility system that uses the maternal line for hybrid production, ensuring no obscurity of F1 seed purity and reducing the cost of hybrid seed production. Identification of the male sterility gene is important for [...] Read more.
Cytoplasmic genic male sterility (CGMS) is a male sterility system that uses the maternal line for hybrid production, ensuring no obscurity of F1 seed purity and reducing the cost of hybrid seed production. Identification of the male sterility gene is important for plant improvement and classification when using the molecular marker-assisted selection (MAS) method. This study aimed to produce a new maternal line (A-line) and its maintainer line (B-line) by transferring a male-sterile line (A-line) and its maintainer line (B-line) gene from another variety to restorer lines (C-line) to achieve future hybrid seed production. In the process, the CGMS line (A-line) and B-line transferred to C1 and C3 lines, which finally resulted in new A-line (BC2F2A1 × C1, BC2F2A1 × C3), and B-line (BC1F2B1 × C1, BC1F2B1 × C3), and then used the MAS method for detecting genes and pollen viability test in the newly improved lines. The results indicated that the 3336-last2-SCAR (1639 bp) and 4162-SCAR (1046 bp) DNA markers classified the Rf locus, and the CMS-SCAR130/140 marker confirmed the S or N cytoplasm. The BC2F2A1 × C1 and BC2F2A1 × C3 lines represented both male-fertile (SRf_) and male-sterile (Srfrf) progenies in a Mendelian ratio of 3:1. Moreover, stained pollen grains with 1% acetocarmine confirmed abnormal pollen in male-sterile plants. The molecular markers that detect maintainer lines (Nrfrf) are BC1F2B1 × C1-14, BC1F2B1 × C3-10, and BC1F2B1 × C3-11. The 3336-last2-SCAR (1639 bp) and CMS-SCAR130/140 markers successfully identified the male-sterile line (Srfrf) and maintainer line (Nrfrf), and 4162-SCAR (1046 bp) detected the presence of the RfRf or Rfrf genotype in chilies at the seedling stage. The use of these markers was highly accurate and confirmed the results at the early generation stage of a conventional breeding program. It can be concluded that the CGMS and maintainer gene in chilies were successfully transferred during early generation using the backcross method. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

14 pages, 3370 KiB  
Article
Dihydromyricetin Inhibits Pseudorabies Virus Multiplication In Vitro by Regulating NF-κB Signaling Pathway and Apoptosis
by Xufan Zhao, Yaqin Chen, Wenrui Zhang, Hui Zhang, Yilong Hu, Fengyu Yang, Yingying Zhang and Xu Song
Vet. Sci. 2023, 10(2), 111; https://doi.org/10.3390/vetsci10020111 - 2 Feb 2023
Cited by 8 | Viewed by 3033
Abstract
Pseudorabies virus (PRV) infections have caused huge economic losses to the breeding industry worldwide, especially pig husbandry. PRV could threaten human health as an easily ignored zoonotic pathogen. The emergence of new mutants significantly reduced the protective effect of vaccination, indicating an urgent [...] Read more.
Pseudorabies virus (PRV) infections have caused huge economic losses to the breeding industry worldwide, especially pig husbandry. PRV could threaten human health as an easily ignored zoonotic pathogen. The emergence of new mutants significantly reduced the protective effect of vaccination, indicating an urgent need to develop specific therapeutic drugs for PRV infection. In this study, we found that dihydromyricetin (DMY) could dose-dependently restrain PRV infection in vitro with an IC50 of 161.34 μM; the inhibition rate of DMY at a concentration of 500 μM was 92.16 %. Moreover, the mode of action showed that DMY directly inactivated PRV virion and inhibited viral adsorption and cellular replication. DMY treatment could improve PRV-induced abnormal changes of the NF-κB signaling pathway and excessive inflammatory response through regulation of the contents of IκBα and p-P65/P65 and the transcriptional levels of cytokines (TNF-α, IL-1β and IL-6). Furthermore, DMY promoted the apoptosis of PRV-infected cells through the regulation of the expressions of Bax and Bcl-xl and the transcriptional levels of Caspase-3, Bax, Bcl-2 and Bcl-xl, thereby limiting the production of progeny virus. These findings indicated that DMY could be a candidate drug for the treatment of PRV infection. Full article
(This article belongs to the Special Issue Latest Research on the Swine Pseudorabies)
Show Figures

Figure 1

12 pages, 2225 KiB  
Article
Possible Third Step Preventing Conjugation between Different Species of Blepharisma
by Ayu Sugino, Mayumi Kobayashi, Mayumi Sugiura and Terue Harumoto
Microorganisms 2023, 11(1), 188; https://doi.org/10.3390/microorganisms11010188 - 12 Jan 2023
Cited by 2 | Viewed by 2054
Abstract
In the genus Blepharisma, reproductive isolation between different species appears to be established at least by two barriers: (1) a mating pheromone, i.e., gamone 1, and (2) a factor involved in pair formation. Using four species, we experimentally investigated other potential barriers [...] Read more.
In the genus Blepharisma, reproductive isolation between different species appears to be established at least by two barriers: (1) a mating pheromone, i.e., gamone 1, and (2) a factor involved in pair formation. Using four species, we experimentally investigated other potential barriers to interspecific conjugation in Blepharisma, as well as the first and second barriers. Cell-free fluid from type I cells (CFF1) of B. americanum had no effect on B. undulans, B. japonicum, or B. stoltei. Type II cells of B. americanum responded to CFF1 from B. americanum but not to CFF1 from B. undulans, B. japonicum, or B. stoltei. Gamone 1, therefore, seems to be the first reproductive barrier (with the inclusion of B. americanum species [megakaryotype 3]) as reported previously. In pretreated cells with complementary gamones in B. undulans and B. americanum, inter-species pair formation was rare, but pair formation between B. americanum and B. japonicum and between B. americanum and B. stoltei occurred at relatively high frequency. Most of the inter-species B. americanumB. stoltei pairs underwent nuclear changes specific to conjugation. No significant difference was observed between the intra- and inter-species pairs over the time course of the nuclear changes, but the percentage of abnormal cells was higher in inter-species pairs than in intra-species pairs, and no progenies were produced by inter-species pairs. These results suggest a third barrier or step, in addition to the first and second ones, in nuclear changes after pair formation that prevents interspecific conjugation in Blepharisma. Full article
Show Figures

Figure 1

Back to TopTop