Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Observation of Grape Flowers Phenotype and Determination of Pollen Viability
2.3. Cytological Observation of Mature Pollen Grains
2.4. Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) Analysis of Pollen Grains Morphology
2.5. Transcriptome Sequencing Sample Preparation and Sample RNA Extraction and Quality Control
2.6. cDNA Library Construction and High-Throughput Sequencing Analysis
2.7. Screening and Enrichment Analysis of Differentially Expressed Genes (DEGs)
2.8. Expression Analysis of DEGs in Grapevine Tissues
2.9. qRT-PCR Analysis
3. Results
3.1. CPPU and TDZ Treatments Changed the Flower Phenotype and Led to Pollen Abortion
3.2. Transcriptome Sequencing Analysis to Find the Shared Pathways Responsible for Pollen Abortion
3.3. Conjoint Transcriptome Analysis to Screen Key Genes
3.4. The qRT-PCR Validation of Related Differential Genes
4. Discussion
4.1. The Treatment of CPPU and TDZ Resulted in Pollen Abortion of ‘Shine Muscat’
4.2. Major Pathways Regulating Pollen Abortion in Grape
4.3. Major Genes Regulate Pollen Abortion in Grape
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, J.; Wang, W.; Hou, X.; Tao, J. Effects of GA3 and CPPU on the synthesis of related substances and gene expression of berry russet of grapes. Jiangsu J. Agric. Sci. 2017, 34, 895–903. [Google Scholar]
- Doyğacı, Y.; Boztepe, Ö.; Kandilli, G.G.; Atak, A. Embryo recovery (rescue) studies in different Vitis species. BMC Plant Biol. 2024, 24, 822. [Google Scholar] [CrossRef] [PubMed]
- Atak, A. Challenges and strategies for table grape breeding in the face of global climate change. Acta Hortic. 2024, 1401, 33–40. [Google Scholar] [CrossRef]
- Deng, S.; Wu, L. Seedless treatment methods and supporting management measures of ‘Shine Muscat’ grape. China Fruit News 2024, 63–66. [Google Scholar] [CrossRef]
- Su, X.; Tong, Q.; Zhang, X.; Feng, M.; Yao, W.; Zhang, N. Effects of CPPU on seedless and fruit quality of Muscat Hamburg grape in greenhouse. J. Shanxi Agric. Sci. 2023, 51, 1290–1298. [Google Scholar]
- Shang, H.; Lou, Y.; Wang, Y. Characteristics and key technology of flower and fruit management of ‘Shine Muscat’ grape. North. Hortic. 2023, 4, 153–157. [Google Scholar]
- Liu, S.; Wang, J.; Tong, Z.; Dong, C.; Wang, G. Rational use of plant growth regulators on grapes. Pract. Tech. Inf. Fruit Trees 2024, 4, 16–17. [Google Scholar]
- Zhang, J.; Ren, J.; Yang, Q.; Gao, Y.; Wu, Y.; Liu, X.; Tao, J. Effect of CPPU treatments on fruit growth of ‘Summer Black’ grape. South China Fruits 2013, 42, 22–25+29. [Google Scholar]
- Visser, C.; Qureshi, J.A.; Gill, R.; Saxena, P.K. Morphoregulatory role of thidiazuron: Substitution of auxin and cytokinin requirement for the induction of somatic embryogenesis in geranium hypocotyl cultures. Plant Physiol. 1992, 99, 1704–1707. [Google Scholar] [CrossRef]
- Hou, Y.; Zeng, X.; Zhu, P.; Zeng, Y.; Yu, G.; Chen, Q.; Xia, Z. Effects of thidiazuron on cucumber (Cucumis sativus L.) growth and contents of endogenous hormones in cucumber. J. Nucl. Agric. Sci. 2011, 25, 1286–1291. [Google Scholar]
- Ren, J.; Li, X.; Song, X.; Ren, C.; Shen, Y.; Tao, J. Effects of GA3 and TDZ on fruit growth and quality of summer black grape. Acta Agric. Jiangxi 2013, 25, 21–25+30. [Google Scholar] [CrossRef]
- Zhang, M. The Influence of Plant Growth Regulator in Seedless and Large Berries Cultural Techniques of European-American Hybrid Grapes. Zhe Jiang University. 2012. Available online: https://kns.cnki.net/kcms2/article/abstract?v=_uHp55J8LtD1QbnRyIUfgl_i8na1FqI0bAci0-tfZogjRz2EvwoZcqjhPylbbcZF9KMXEJ20o3gL_Bm9Od8wStLdocEjr7iwxxDyEW80rQe7YCfQKpiLs_UXV6iaaXQ4erLJkb2qnkYER1Z9rrnlfoqoB5fp4xKeEMemwONmq0M6g_HTR5blwPwLpspip2N5CpOTTwLASLE=&uniplatform=NZKPT&language=CHS (accessed on 16 May 2025).
- He, Q. Effects of Growth Regulators and New Shoot Treatments on Fruit Quality of ‘Shine Muscat’. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. Available online: https://link.cnki.net/doi/10.27244/d.cnki.gnjnu.2021.00899999901 (accessed on 16 May 2025).
- Zheng, Z. Effects of CPPU, TDZ and Different Bagging Methods on Fruit Growth and Development of ‘Shine Muscat’. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2021. Available online: https://link.cnki.net/doi/10.27244/d.cnki.gnjnu.2021.00022020021 (accessed on 16 May 2025).
- Yu, Y.H.; Li, X.F.; Yang, S.D.; Bian, L.; Yu, K.K.; Meng, X.X.; Liu, H.N.; Pei, M.S.; Wei, T.L.; Guo, D.L. CPPU-induced changes in energy status and respiration metabolism of grape young berry development in relation to Berry setting. Sci. Hortic. 2021, 283, 110084. [Google Scholar] [CrossRef]
- Wang, L.L.; Shi, Q.; Jing, P.; Wang, R.; Zhang, H.; Liu, Y.; Li, C.; Shi, T.; Zhang, L.; Yu, Y.H. VlMYB4 and VlCDF3 co-targeted the VlLOG11 promoter to regulate fruit setting in grape (Vitis vinifera L.). Plant Cell Rep. 2024, 43, 194. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, P.; Lu, Z.; Shang, H.; Zhang, X.; Wu, W. Study on the regulation of gibberellin, chlorfenuron and thibenuron on the fruit development of ‘Sunshine Rose’ grape. In Abstracts of the 2019 Academic Annual Meeting and the 90th Anniversary Commemorative Meeting of China Horticultural Society; Horticultural Research Institute of Henan Academy of Agricultural Sciences: Zhengzhou, China, 2019; p. 42. [Google Scholar]
- Lee, J.C.; Piao, Y.L.; Lee, K.S.; Kim, J.K.; Hwang, Y.S. Effects of synthetic cytokinin, thidiazuron, on berry size and quality of ‘Kyoho’ (Vitis labruscana) grapes. Korean J. Agric. Sci. 2003, 30, 115–122. [Google Scholar]
- Pasa, M.S.; Silva, C.P.D.; Carra, B.; Brighenti, A.F.; Souza, A.L.K.; Petri, J.L. Thidiazuron (TDZ) increases fruit set and yield of ‘Hosui’ and ‘Packham’s Triumph’ pear trees. An. Da Acad. Bras. De Ciencias 2017, 89, 3103–3110. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Saud, S.; Khan, F.; Hassan, S.; Amanullah Nasim, W.; Arif, M.; Wang, F.; Huang, J. Exogenously applied plant growth regulators affect heat-stressed rice pollens. J. Agron. Crop Sci. 2016, 202, 139–150. [Google Scholar] [CrossRef]
- Peng, J.; Li, R.; Zhang, L.; Wang, Y. Effects of plant growth regulators on pollen germination of Amomum villosum Lour. Chin. Herb. Med. 2012, 35, 1202–1204. Available online: https://link.cnki.net/doi/10.13863/j.issn1001-4454.2012.08.008 (accessed on 16 May 2025).
- You, J.; Peng, J.; Li, R.; Zhang, L.; Wang, Y. Effects of plant growth regulating substances on pollen germination and tube growth in amomum Kravanh. Chin. J. Exp. Tradit. Med. Formulae 2012, 22, 172–175. [Google Scholar] [CrossRef]
- Jiao, Z. Mechanisms of Sex Conversion Induced by CPPU in Male Vitis Amurensis Rupr. Master’s Thesis, China Academy of Agricultural Sciences, Beijing, China, 2012. [Google Scholar]
- Wang, Z.; Jiao, Z.; Peilei, X.; Li, C.; Ai, J.; Liu, X.; Yiming, Y. Bisexual flower ontogeny after chemical induction and berry characteristics evaluation in male Vitis amurensis Rupr. Sci. Hortic. 2013, 162, 11–19. [Google Scholar] [CrossRef]
- Jiang, T.; Louis, F.; Wang, H.; Yang, Y.; Lin, D. Flower morphological and physiological characters between male sterile line and maintainer line in cluster pepper. North. Hortic. 2018, 11, 22–26. [Google Scholar]
- Lu, M.; Sun, W.; Kong, D.; Yang, N.; Liu, Z. Physiobiochemical characteristics and stamen development characteristics of LRCMS flower in winter rapeseed (Brassica campestris). Acta Bot. Boreali-Occident. Sin. 2014, 34, 509–515. [Google Scholar] [CrossRef]
- Li, J.; Han, S.; Ding, X.; He, T.; Dai, J.; Yang, S.; Gai, J. Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean (Glycine max (L.) Merr.). PLoS ONE 2015, 10, e0126771. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Xu, S.; Song, C.; Zhao, N.; Yang, Z.; Liu, Y.; Cui, X.; Zhang, J.; Li, Z.; Wang, X.; et al. Genome-Wide Identification, Characterization, and Expression Profile of SWEETs Gene Family in Grapevine (Vitis vinifera L.). Horticulturae 2024, 10, 428. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Gao, X.; Tian, P.; Liu, W.; Zhao, X.; Liu, H.; Pan, X.; Wu, Y. Analysis of endogenous hormones content and related gene expression in reverse thermo-sensitive genic male sterile line of eggplant. China Cucurbits Veg. 2024, 11, 27–37. [Google Scholar] [CrossRef]
- Li, Y.; Kim, J.I.; Pysh, L.; Chapple, C. Four isoforms of Arabidopsis 4-coumarate: Coa ligase have overlapping yet distinct roles in phenylpropanoid metabolism. Plant Physiol. 2015, 169, 2409–2421. [Google Scholar] [CrossRef]
- Sharma, D.; Tiwari, M.; Pandey, A.; Bhatia, C.; Sharma, A.; Trivedi, P.K. MicroRNA858 Is a Potential Regulator of Phenylpropanoid Pathway and Plant Development. Plant Physiol. 2016, 171, 944–959. [Google Scholar] [CrossRef]
- Huang, J.; Gu, M.; Lai, Z.; Fan, B.; Shi, K.; Zhou, Y.H.; Yu, J.Q.; Chen, Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol. 2010, 153, 1526–1538. [Google Scholar] [CrossRef]
- Mondol, P.C.; Xu, D.; Duan, L.; Shi, J.; Wang, C.; Chen, X.; Chen, M.; Hu, J.; Liang, W.; Zhang, D. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytol. 2020, 225, 807–822. [Google Scholar] [CrossRef]
- Aarts, M.G.; Hodge, R.; Kalantidis, K.; Florack, D.; Wilson, Z.A.; Mulligan, B.J.; Stiekema, W.J.; Scott, R.; Pereira, A. (The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J. Cell Mol. Biol. 1997, 12, 615–623. [Google Scholar] [CrossRef]
- Gupta, R.; Ting, J.T.; Sokolov, L.N.; Johnson, S.A.; Luan, S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 2002, 14, 2495–2507. [Google Scholar] [CrossRef]
- Shen, L. Gene Mining and Mechanism of Fertility Based on the Transcriptome of ms1 Mutant in Gossypium hirsutum L. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2020. Available online: https://link.cnki.net/doi/10.27786/d.cnki.gzjlg.2020.000979 (accessed on 16 May 2025). [CrossRef]
- Pu, Y.; Hou, L.; Guo, Y.; Ullah, I.; Yang, Y.; Yue, Y. Genome-wide analysis of the callose enzyme families of fertile and sterile flower buds of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). FEBS Open Bio 2019, 9, 1432–1449. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Xue, Q.; Zhang, Z.; Shu, P.; Deng, H.; Bouzayen, M.; Hong, Y.; Liu, M. β-1,3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition. Plant Physiol. 2023, 192, 2785–2802. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Tao, J.; Nong, H.; Xu, Y.; Geng, Y.; Ling, Q.; Zheng, H. Analysis of antioxidant enzymes activities and endogenous hormone contents in male sterile plant of ‘shine muscat’ seeding during bud development. Acta Bot. Boreali-Occident. Sin. 2022, 42, 444–452. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Sulaiman, A.; Sun, F.; Wu, G. Determination of pollen viability and selection of suitable storage temperature of different grape cultivars. Acta Agric. Jiangxi 2022, 34, 13–16. [Google Scholar]
- Guo, P.; Sun, F.; Luo, Q. Study on paraffin section technology of grape ovule. Agric. Henan 2014, 12, 37+39. [Google Scholar]
- Crawford, B.J.; Burke, R.D. TEM and SEM methods. In Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 2004; Volume 74, pp. 411–441. [Google Scholar] [CrossRef]
- Fasoli, M.; Dal Santo, S.; Zenoni, S.; Tornielli, G.B.; Farina, L.; Zamboni, A.; Porceddu, A.; Venturini, L.; Bicego, M.; Murino, V.; et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 2012, 24, 3489–3505. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, X.; Yuan, Y.; Zhang, Y.; Zhang, Z.; Zhang, J.; Zhang, M.; Ji, C.; Liu, Q.; Tao, J. The VviMYB80 Gene is Abnormally Expressed in Vitis vinifera L. cv. ‘Zhong Shan Hong’ and its Expression in Tobacco Driven by the 35S Promoter Causes Male Sterility. Plant Cell Physiol. 2016, 57, 540–557. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, R.; Trivedi, P.C.; Vyas, G.; Khandelwal, V. Traditional and novel references towards systematic normalization of qRT-PCR data in plants. Aust. J. Crop Sci. 2011, 5, 1455–1468. [Google Scholar]
- Yue, L.; Kang, Y.; Zhong, M.; Kang, D.; Zhao, P.; Chai, X.; Yang, X. Melatonin Delays Postharvest Senescence through Suppressing the Inhibition of BrERF2/BrERF109 on Flavonoid Biosynthesis in Flowering Chinese Cabbage. Int. J. Mol. Sci. 2023, 24, 2933. [Google Scholar] [CrossRef]
- Grunewald, S.; Marillonnet, S.; Hause, G.; Haferkamp, I.; Neuhaus, H.E.; Veß, A.; Hollemann, T.; Vogt, T. The Tapetal Major Facilitator NPF2.8 Is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thaliana. Plant Cell 2020, 32, 1727–1748. [Google Scholar] [CrossRef]
- Persson, S.; Paredez, A.; Carroll, A.; Palsdottir, H.; Doblin, M.; Poindexter, P.; Khitrov, N.; Auer, M.; Somerville, C.R. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 15566–15571. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.; Xiong, H.; Wang, S.; Yang, Z.N. Anther Endothecium-Derived Very-Long-Chain Fatty Acids Facilitate Pollen Hydration in Arabidopsis. Mol. Plant 2018, 11, 1101–1104. [Google Scholar] [CrossRef]
- Mo, Z.; Ke, Y.; Huang, Y.; Duan, L.; Wang, P.; Luo, W.; Que, Y.; Pi, K.; Zeng, S.; Liu, R. Integrated transcriptome and proteome analysis provides insights into the mechanism of cytoplasmic male sterility (CMS) in tobacco (Nicotiana tabacum L.). J. Proteom. 2023, 275, 104825. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, M.A.; O’Leary, S.J.B.; Gagnon, C.; Chabot, D.; Wu, S.; Hubbard, K.; Tran, F.; Sprott, D.; Hassan, D.; Vucurevich, T.; et al. A triticale tapetal non-specific lipid transfer protein (nsLTP) is translocated to the pollen cell wall. Plant Cell Rep. 2020, 39, 1185–1197. [Google Scholar] [CrossRef]
- Razzaq, M.K.; Rani, R.; Xing, G.; Xu, Y.; Raza, G.; Aleem, M.; Iqbal, S.; Arif, M.; Mukhtar, Z.; Nguyen, H.T.; et al. Genome-Wide Identification and Analysis of the Hsp40/J-Protein Family Reveals Its Role in Soybean (Glycine max) Growth and Development. Genes 2023, 14, 1254. [Google Scholar] [CrossRef]
- Suzuki, N.; Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Mittler, R. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 2005, 139, 1313–1322. [Google Scholar] [CrossRef]
- Suzuki, N.; Bajad, S.; Shuman, J.; Shulaev, V.; Mittler, R. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. Chem. 2008, 283, 9269–9275. [Google Scholar] [CrossRef]
- Su, Q.; Ru, Z.; Qin, Z.; Cao, Y.; Liu, F.; Li, Y. Differential Expression of Small Heat Shock Protein Gene(hsp23.5) between Wheat (Triticum aestivum) BNS Male Sterile Line and Its Conversion Line. J. Agric. Biotechnol. 2013, 21, 29–37. [Google Scholar] [CrossRef]
- Yang, X.; Wang, K.; Ge, L.; Chen, X.; Zhang, L.; Song, X. Transcription factor TaGAMYB from wheat (Triticum aestivum L.) regulates flowering time and fertility in transgenic Arabidopsis thaliana. Planta 2022, 257, 16. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, Y.; Wang, J.; Tao, J. Morphological and cytological observation of grape semi-sterile pollen grains and analysis of related gene expression. Acta Bot. Boreali-Occident. Sin. 2015, 35, 1317–1325. [Google Scholar]
- Yue, L.; Wang, Q.; Liu, Z.; Kong, S.; Gao, L. Morphological characteristics and cytological study on anther abortion of male sterility in Chinese onion. China Veg. 2023, 58–68. Available online: https://link.cnki.net/doi/10.19928/j.cnki.1000-6346.2023.5047 (accessed on 16 May 2025).
- Quan, Z.; Dong, C.; Zheng, X.; Qian, Y.; Xu, Y.; Wang, Y.; Li, W. Discovery and identification of litchi male sterile line MS1. J. Fruit Sci. 2023, 40, 1832–1838. [Google Scholar]
- Hu, L. Mechanism of Ogura-Type Cytoplasmic Male Sterility in Chinese Cabbage Based on RNA-Seq. Master’s Thesis, Zhengzhou University, Zhengzhou, China, 2022. [Google Scholar]
- Nibau, C.; Di Stilio, V.S.; Wu, H.M.; Cheung, A.Y. Arabidopsis and Tobacco SUPERMAN regulate hormone signalling and mediate cell proliferation and differentiation. J. Exp. Bot. 2011, 62, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Marsch-Martínez, N.; Ramos-Cruz, D.; Irepan Reyes-Olalde, J.; Lozano-Sotomayor, P.; Zúñiga-Mayo, V.M.; De Folter, S. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J. 2012, 72, 222–234. [Google Scholar] [CrossRef]
- Terceros, G.C.; Resentini, F.; Cucinotta, M.; Manrique, S.; Colombo, L.; Mendes, M.A. The importance of cytokinins during reproductive development in Arabidopsis and beyond. Int. J. Mol. Sci. 2020, 21, 8161. [Google Scholar] [CrossRef]
- Santiago, J.P.; Sharkey, T.D. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 2019, 42, 2759–2775. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, L. Specification of tapetum and microsporocyte cells within the anther. Curr. Opin. Plant Biol. 2014, 17, 49–55. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Toriyama, K.; Yoshikawa, M.; Ejiri, S.; Hinata, K. Tapetum-specific expression of the gene for an endo-beta-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol. 1995, 36, 487–494. [Google Scholar] [CrossRef]
- Francis, K.E.; Lam, S.Y.; Copenhaver, G.P. Separation of Arabidopsis pollen tetrads is regulated by QUARTET1, a pectin methylesterase gene. Plant Physiol. 2006, 142, 1004–1013. [Google Scholar] [CrossRef]
- Yu, S.M.; Lo, S.F.; Ho, T.D. Source-Sink Communication: Regulated by Hormone, Nutrient, and Stress Cross-Signaling. Trends Plant Sci. 2015, 20, 844–857. [Google Scholar] [CrossRef]
- Zhang, X.; Bei, Z.; Li, J.; Ma, H.; Wang, C.; Xu, W.; Ren, Y.; Zhou, J.; Yan, X. Regulatory Mechanisms of Pollen Development: Transcriptomic and Bioinformatic Insights into the Role of β-1,3 Glucanase Gene (LbGlu1) in Lycium barbarum. Horticulturae 2024, 10, 512. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Wu, S.; Wan, X. The essential roles of sugar metabolism for pollen development and male fertility in plants. Crop J. 2021, 9, 1223–1236. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Liu, J.; Xia, M.; Wang, W.; Shen, F. Transcriptome analysis of early anther development of cotton revealed male sterility genes for major metabolic pathways. J. Plant Growth Regul. 2015, 34, 223–232. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Zhang, L.; Yang, Y.; Wu, Q.; Hu, G.; Wang, W.; Li, J.; Huang, Z. Integrated transcriptomic and proteomic analysis of a cytoplasmic male sterility line and associated maintainer line in soybean. Front. Plant Sci. 2023, 14, 1098125. [Google Scholar] [CrossRef]
- Otsu, C.T.; daSilva, I.; de Molfetta, J.B.; da Silva, L.R.; de Almeida-Engler, J.; Engler, G.; Torraca, P.C.; Goldman, G.H.; Goldman, M.H. NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs. J. Exp. Bot. 2004, 55, 1643–1654. [Google Scholar] [CrossRef]
- Theodoulou, F.L. Plant ABC transporters. Biochim. Biophys. Acta 2000, 1465, 79–103. [Google Scholar] [CrossRef]
- Quilichini, T.D.; Friedmann, M.C.; Samuels, A.L.; Douglas, C.J. ATP-Binding Cassette Transporter G26 Is Required for Male Fertility and Pollen Exine Formation in Arabidopsis. Plant Physiol. 2010, 154, 678–690. [Google Scholar] [CrossRef]
- Quilichini, T.D.; Samuels, A.L.; Douglas, C.J. ABCG26-Mediated Polyketide Trafficking and Hydroxycinnamoyl Spermidines Contribute to Pollen Wall Exine Formation in Arabidopsis. Plant Cell 2014, 26, 4483–4498. [Google Scholar] [CrossRef]
- Wang, L.; Lam, P.Y.; Lui, A.C.W.; Zhu, F.Y.; Chen, M.X.; Liu, H.; Zhang, J.; Lo, C. Flavonoids are indispensable for complete male fertility in rice. J. Exp. Bot. 2020, 71, 4715–4728. [Google Scholar] [CrossRef]
- Xue, J.S.; Zhang, B.; Zhan, H.; Lv, Y.L.; Jia, X.L.; Wang, T.; Yang, N.Y.; Lou, Y.X.; Zhang, Z.B.; Hu, W.J.; et al. Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants. Mol. Plant 2020, 13, 1644–1653. [Google Scholar] [CrossRef]
- Yang, W.; Yao, D.; Duan, H.; Zhang, J.; Cai, Y.; Lan, C.; Zhao, B.; Mei, Y.; Zheng, Y.; Yang, E.; et al. VAMP726 from maize and Arabidopsis confers pollen resistance to heat and UV radiation by influencing lignin content of sporopollenin. Plant Commun. 2023, 4, 100682. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.; Phalake, S.; Tetali, S.; Barvkar, V.T.; Patil, R. Comparative gametogenesis and genomic signatures associated with pollen sterility in the seedless mutant of grapevine. BMC Plant Biol. 2025, 25, 138. [Google Scholar] [CrossRef]
- Ingrosso, I.; Bonsegna, S.; De Domenico, S.; Laddomada, B.; Blando, F.; Santino, A.; Giovinazzo, G. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol. Biochem. 2011, 49, 1092–1099. [Google Scholar] [CrossRef]
- Kumar, M.; Mishra, L.; Carr, P.; Pilling, M.; Gardner, P.; Mansfield, S.D.; Turner, S. Exploiting CELLULOSE SYNTHASE (CESA) Class Specificity to Probe Cellulose Microfibril Biosynthesis. Plant Physiol. 2018, 177, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Preuss, D.; Lemieux, B.; Yen, G.; Davis, R.W. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993, 7, 974–985. [Google Scholar] [CrossRef]
- Haslam, T.M.; Mañas-Fernández, A.; Zhao, L.; Kunst, L. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol. 2012, 160, 1164–1174. [Google Scholar] [CrossRef]
- Haslam, T.M.; Haslam, R.; Thoraval, D.; Pascal, S.; Delude, C.; Domergue, F.; Fernández, A.M.; Beaudoin, F.; Napier, J.A.; Kunst, L.; et al. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol. 2015, 167, 682–692. [Google Scholar] [CrossRef]
- Liang, Y.; Tan, Z.M.; Zhu, L.; Niu, Q.K.; Zhou, J.J.; Li, M.; Chen, L.Q.; Zhang, X.Q.; Ye, D. MYB97, MYB101 and MYB120 function as male factors that control pollen tube-synergid interaction in Arabidopsis thaliana fertilization. PLoS Genet. 2013, 9, e1003933. [Google Scholar] [CrossRef]
- Xue, J.S.; Qiu, S.; Jia, X.L.; Shen, S.Y.; Shen, C.W.; Wang, S.; Xu, P.; Tong, Q.; Lou, Y.X.; Yang, N.Y.; et al. Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. Plant Physiol. 2023, 193, 627–642. [Google Scholar] [CrossRef]
- Wang, J.; Tang, F.; Gao, C.; Gao, X.; Xu, B.; Shi, F. Comparative transcriptome between male fertile and male sterile alfalfa (Medicago varia). Physiol. Mol. Biol. Plants 2021, 27, 1487–1498. [Google Scholar] [CrossRef]
Treatments | Total Number of Pollen Grain | Number of Germinated Pollen Grains | Germination Rate (%) |
---|---|---|---|
CK | 351 | 203 | 57.83 ± 6.43 a |
CPPU_3 | 333 | 115 | 34.39 ± 4.30 b |
CPPU_5 | 298 | 69 | 23.28 ± 3.95 c |
CPPU_10 | 234 | 0 | 0 d |
TDZ_3 | 216 | 0 | 0 d |
TDZ_5 | 261 | 0 | 0 d |
TDZ_10 | 380 | 0 | 0 d |
Treatments | Polar Axis (μm) | Equatorial Axis (μm) | P/E Ratio | Pollen Shape | Germinal | Deformation Rate |
---|---|---|---|---|---|---|
CK | 30.90 ± 0.91 a | 15.95 ± 1.69 a | 1.95 ± 0.20 a | Prolate | Three | 23.80% b |
TDZ_10 | 17.93 ± 1.96 b | 15.88 ± 3.33 a | 1.15 ± 0.17 b | Sub prolate | None | 100.00% a |
CPPU_10 | 19.39 ± 1.05 b | 11.35 ± 0.68 b | 1.71 ± 0.05 a | Prolate | None | 100.00% a |
Gene Name | Homologous Gene | Homologous Gene Description | Homologous Gene Function |
---|---|---|---|
VvCESA4 (LOC100241197) | AtCESA4 | Cellulose synthase A4 | CesA is an enzyme that catalyzes the synthesis of cellulose, which is an important component of the pollen wall [49]. |
VvNPF2.11 (LOC100244038) | AtNPF2.11 | Major facilitator superfamily protein | The AtNPF2.8/fst1 is specifically expressed in tapetum [48]. |
VvCER2 (LOC100245757) | AtCER2 | HXXXD-type acyl-transferase family protein | cer2 cer2l2 Arabidopsis double mutant leads to male sterility [50]. |
VvMBF1C (LOC100249249) | AtMBF1C | Multiprotein bridging factor 1C | MBF1c overexpression increased seed yield in Arabidopsis and Glycine max [54,55]. |
VvMYB101 (LOC100253438) | AtMYB101 | myb domain protein 101 | Arabidopsis triple mutant myb97 myb101 myb120 leads to defects in fertilization and partial plant male sterility [57]. |
VvCAJ1 (LOC100260760) | AtDJC77 | DNAJ heat shock N-terminal domain-containing protein | J-domain protein J3 in Arabidopsis plays a role in integrating flowering signals [53]. |
VvHSP23.6 (LOC100253548) | TaSusHSP | 24.1 kDa heat shock protein, mitochondrial isoform X1 | Small heat shock protein gene (such as hsp23.5) is significantly down-regulated in male sterile lines of wheat BNS (Bainong sterility) [56]. |
VvNLTP6 (LOC100260175) | TansLTP3 | Non-specific lipid-transfer protein 3-like | The three nsLTPs from the tobacco CMS line MSYY87 were significantly down-regulated [51]. Triticeae anther-expressed type III nsLTP with possible roles in pollen cell wall formation [52]. |
NtnsLTP | Non-specific lipid-transfer protein-like | ||
VvERF109 (LOC104879921) | BrERF109 | Ethylene-responsive transcription factor ERF109-like | Silencing BrERF109 can promote flavonoid biosynthesis [47], and flavonoid synthesis is crucial for the normal development of pollen. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Wang, Y.; Yi, S.; Chen, J.; Zhang, W.; Li, H.; Du, K.; Tao, J.; Zheng, H. Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment. Horticulturae 2025, 11, 549. https://doi.org/10.3390/horticulturae11050549
Ren M, Wang Y, Yi S, Chen J, Zhang W, Li H, Du K, Tao J, Zheng H. Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment. Horticulturae. 2025; 11(5):549. https://doi.org/10.3390/horticulturae11050549
Chicago/Turabian StyleRen, Mengfan, Yixu Wang, Siyi Yi, Jingyi Chen, Wen Zhang, Haoran Li, Ke Du, Jianmin Tao, and Huan Zheng. 2025. "Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment" Horticulturae 11, no. 5: 549. https://doi.org/10.3390/horticulturae11050549
APA StyleRen, M., Wang, Y., Yi, S., Chen, J., Zhang, W., Li, H., Du, K., Tao, J., & Zheng, H. (2025). Combined Transcriptome Analysis Reveals the Mechanism of ‘Shine Muscat’ Pollen Abortion Induced by CPPU and TDZ Treatment. Horticulturae, 11(5), 549. https://doi.org/10.3390/horticulturae11050549