Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,211)

Search Parameters:
Keywords = pro-endothelialization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 32329 KiB  
Article
D-Tryptophan Promotes Skin Wound Healing via Extracellular Matrix Remodeling in Normal and Diabetic Models
by Dawit Adisu Tadese, James Mwangi, Brenda B. Michira, Yi Wang, Kaixun Cao, Min Yang, Mehwish Khalid, Ziyi Wang, Qiumin Lu and Ren Lai
Int. J. Mol. Sci. 2025, 26(15), 7158; https://doi.org/10.3390/ijms26157158 - 24 Jul 2025
Abstract
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. [...] Read more.
Diabetic wounds are a devastating complication that cause chronic pain, recurrent infections, and limb amputations due to impaired healing. Despite advances in wound care, existing therapies often fail to address the underlying molecular dysregulation, highlighting the need for innovative and safe therapeutic approaches. Among these, D-amino acids such as D-tryptophan (D-Trp) have emerged as key regulators of cellular processes; however, their therapeutic potential in diabetic wounds remains largely unexplored. Here, we investigate the therapeutic potential of D-Trp in streptozotocin (STZ)-induced diabetic mice, comparing it with phosphate-buffered saline (PBS) controls and vascular endothelial growth factor (VEGF) as a positive control. Wound healing, inflammation, and histopathology were assessed. Protein and gene expression were analyzed via Western blot and RT-qPCR, respectively. Biolayer interferometry (BLI) measured the binding of D-Trp to hypoxia-inducible factor-1α (HIF-1α). D-Trp accelerated wound healing by modulating extracellular matrix (ECM) remodeling, signaling, and apoptosis. It upregulated matrix metalloproteinases (MMP1, MMP3, MMP-9), Janus kinase 2 (JAK2), and mitogen-activated protein kinase (MAPK) proteins while reducing pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-1β [IL-1β], IL-6). D-Trp also suppressed caspase-3 and enhanced angiogenesis through HIF-1α activation. These findings suggest that D-Trp promotes healing by boosting ECM turnover, reducing inflammation, and activating MAPK/JAK pathways. Thus, D-Trp is a promising therapeutic for diabetic wounds. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

17 pages, 896 KiB  
Review
Analysis of Phosphodiesterase-5 (PDE5) Inhibitors in Modulating Inflammatory Markers in Humans: A Systematic Review and Meta-Analysis
by Cassandra Cianciarulo, Trang H. Nguyen, Anita Zacharias, Nick Standen, Joseph Tucci and Helen Irving
Int. J. Mol. Sci. 2025, 26(15), 7155; https://doi.org/10.3390/ijms26157155 - 24 Jul 2025
Abstract
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. [...] Read more.
Phosphodiesterase type 5 (PDE5) inhibitors, including sildenafil, tadalafil, and vardenafil, are primarily prescribed for erectile dysfunction and pulmonary hypertension. Emerging evidence suggests they may also modulate inflammatory pathways and improve vascular function, but their effects on inflammatory biomarkers in humans remain incompletely defined. A systematic review and meta-analysis were conducted to evaluate the impact of PDE5 inhibitors on inflammatory and endothelial markers in adult humans. Randomized controlled trials comparing PDE5 inhibition to placebo were identified through electronic database searches. Outcomes included pro-inflammatory markers (TNF-α, IL-6, IL-8, CRP, VCAM-1, ICAM-1, P-selectin) and anti-inflammatory or signalling markers (IL-10, NO, cGMP), assessed at short-term (≤1 week), intermediate-term (4–6 weeks), or long-term (≥12 weeks) follow-up. Risk of bias was assessed using the Cochrane RoB 2 tool. A total of 20 studies comprising 1549 participants were included. Meta-analyses showed no significant short-term effects of PDE5 inhibition on TNF-α, IL-6, or CRP. Long-term treatment was associated with reduced IL-6 (SMD = −0.64, p = 0.002) and P-selectin (SMD = −0.57, p = 0.02), and increased cGMP (SMD = 0.87, p = 0.0003). Effects on IL-10 and nitric oxide were inconsistent across studies. Most trials had low risk of bias. PDE5 inhibitors may exert anti-inflammatory effects in long-term use by reducing vascular inflammation and enhancing cGMP signalling. These findings support further investigation of PDE5 in chronic inflammatory conditions. Full article
(This article belongs to the Special Issue cGMP Signaling: From Bench to Bedside)
Show Figures

Figure 1

24 pages, 1055 KiB  
Review
Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
by Przemysław Niziński, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył and Anna Oniszczuk
Molecules 2025, 30(15), 3096; https://doi.org/10.3390/molecules30153096 - 24 Jul 2025
Abstract
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of [...] Read more.
Quercetin (QE) is a naturally occurring flavonoid found in many fruits, vegetables, and other plant-based foods. It is recognized for its diverse pharmacological activities. Among its many therapeutic potentials, its antidiabetic properties are of particular interest due to the growing worldwide prevalence of diabetes mellitus. QE improves glycemic control by enhancing insulin sensitivity, stimulating glucose uptake, and preserving pancreatic beta cell function. These effects are mediated by the modulation of key molecular pathways, including AMPK, PI3K/Akt, and Nrf2/ARE, as well as by the suppression of oxidative stress and pro-inflammatory cytokines, such as TNF-α and IL-6. Furthermore, QE mitigates the progression of diabetic complications such as nephropathy, retinopathy, and vascular dysfunction, reducing lipid peroxidation and protecting endothelial function. However, the clinical application of quercetin is limited by its low water solubility, poor bioavailability, and extensive phase II metabolism. Advances in formulation strategies, including the use of nanocarriers, co-crystals, and phospholipid complexes, have shown promise in improving its pharmacokinetics. This review elucidates the mechanistic basis of QE quercetin antidiabetic action and discusses strategies to enhance its therapeutic potential in clinical settings. Full article
Show Figures

Figure 1

14 pages, 1248 KiB  
Review
The Role of Inflammation in the Pathophysiology of Heart Failure
by Marwan Amara, Ohad Stoler and Edo Y. Birati
Cells 2025, 14(14), 1117; https://doi.org/10.3390/cells14141117 - 21 Jul 2025
Viewed by 291
Abstract
Heart failure (HF), a prevalent global health issue characterized by the heart’s impaired ability to pump or fill blood, affects millions worldwide and continues to pose significant challenges despite advancements in treatment. This review delves into the critical and increasingly recognized role of [...] Read more.
Heart failure (HF), a prevalent global health issue characterized by the heart’s impaired ability to pump or fill blood, affects millions worldwide and continues to pose significant challenges despite advancements in treatment. This review delves into the critical and increasingly recognized role of inflammation in the development and progression of this complex syndrome. While the incidence of HF has seen a decline in some regions due to improved cardiac care, its overall prevalence is rising, particularly among younger adults and those with heart failure with a preserved ejection fraction (HFpEF). Given the persistently high rates of hospitalization and mortality associated with HF, understanding the underlying mechanisms, including the contribution of inflammation, is crucial for identifying novel therapeutic strategies. Inflammation in heart failure is a multifaceted process involving the activation of the immune system, both innate and adaptive, and encompasses various mechanisms such as the release of pro-inflammatory mediators, endothelial dysfunction, and neurohormonal activation. Myocardial damage triggers the innate immune response, while humoral immunity and chronic systemic inflammation, often linked to cardiovascular risk factors and autoimmune diseases, also play significant roles. Notably, heart failure and inflammation have a reciprocal relationship, with HF itself contributing to inflammatory processes within the cardiac tissue and systemically. Understanding these intricate pathways, including the involvement of specific immune cells and molecular mediators, is essential for comprehending the pathogenesis of heart failure and exploring potential therapeutic interventions. The review further examines various inflammatory biomarkers that have been implicated in heart failure, such as cytokines (including TNF-α and IL-1) and C-reactive protein (CRP). While these markers often correlate with the severity and prognosis of HF, clinical trials targeting specific inflammatory mediators have largely yielded disappointing results, highlighting the complexity of the inflammatory response in this context. The exploration of these biomarkers and the challenges encountered in translating anti-inflammatory strategies into effective treatments underscore the need for continued research to unravel the precise role of inflammation across different HF subtypes and to develop more targeted and effective anti-inflammatory therapies. Full article
(This article belongs to the Special Issue Inflammation in Target Organs)
Show Figures

Figure 1

37 pages, 1761 KiB  
Review
Iron–Immune Crosstalk at the Maternal–Fetal Interface: Emerging Mechanisms in the Pathogenesis of Preeclampsia
by Jieyan Zhong, Ruhe Jiang, Nan Liu, Qingqing Cai, Qi Cao, Yan Du and Hongbo Zhao
Antioxidants 2025, 14(7), 890; https://doi.org/10.3390/antiox14070890 - 19 Jul 2025
Viewed by 408
Abstract
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron [...] Read more.
Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by systemic inflammation, endothelial dysfunction, and placental insufficiency. While inadequate trophoblast invasion and impaired spiral artery remodeling have long been recognized as central to its pathogenesis, emerging evidence underscores the critical roles of dysregulated iron metabolism and its crosstalk with immune responses, particularly macrophage-mediated inflammation, in driving PE development. This review systematically explores the dynamic changes in iron metabolism during pregnancy, including increased maternal iron demand, placental iron transport mechanisms, and the molecular regulation of placental iron homeostasis. We further explore the contribution of ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, to trophoblast dysfunction and pregnancy-related diseases, including PE. Macrophages, pivotal immune regulators at the maternal–fetal interface, exhibit distinct polarization states that shape tissue remodeling and immune tolerance. We outline their origin, distribution, and polarization in pregnancy, and emphasize their aberrant phenotype and function in PE. The bidirectional crosstalk between iron and macrophages is also dissected: iron shapes macrophage polarization and function, while macrophages reciprocally modulate iron homeostasis. Notably, excessive reactive oxygen species (ROS) and pro-inflammatory cytokines secreted by M1-polarized macrophages may exacerbate trophoblast ferroptosis, amplifying placental injury. Within the context of PE, we delineate how iron overload and macrophage dysfunction synergize to potentiate placental inflammation and oxidative stress. Key iron-responsive immune pathways, such as the HO-1/hepcidin axis and IL-6/TNF-α signaling, are discussed in relation to disease severity. Finally, we highlight promising therapeutic strategies targeting the iron–immune axis, encompassing three key modalities—iron chelation therapy, precision immunomodulation, and metabolic reprogramming interventions—which may offer novel avenues for PE prevention and treatment. Full article
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 227
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

20 pages, 695 KiB  
Review
The Pathogenic Role of C-Reactive Protein in Diabetes-Linked Unstable Atherosclerosis
by Melania Sibianu and Mark Slevin
Int. J. Mol. Sci. 2025, 26(14), 6855; https://doi.org/10.3390/ijms26146855 - 17 Jul 2025
Viewed by 187
Abstract
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury [...] Read more.
C-reactive protein (CRP) has long been recognized as a biomarker of systemic inflammation and cardiovascular disease (CVD) risk. However, emerging evidence highlights the distinct and potent pro-inflammatory role of its monomeric form (mCRP), which is predominantly tissue-bound and directly implicated in vascular injury and plaque destabilization. This narrative review explores the interactions and overlapping pathways that converge within and modulate CRP, mCRP, the associated pathophysiology of diabetes mellitus, and cardiovascular disease. We examine how mCRP promotes endothelial dysfunction, leukocyte recruitment, platelet activation, and macrophage polarization, thereby contributing to the formation of unstable atherosclerotic plaques. Furthermore, we discuss the critical influence of diabetes in amplifying mCRP’s pathogenic effects through metabolic dysregulation, chronic hyperglycemia, and enhanced formation of advanced glycation end products (AGEs). The synergistic interaction of mCRP with the AGE-receptor for AGE (RAGE) axis exacerbates oxidative stress and vascular inflammation, accelerating atherosclerosis progression and increasing cardiovascular risk in diabetic patients. Understanding these mechanistic pathways implicates mCRP as both a biomarker and therapeutic target, particularly in the context of diabetes-associated CVD. This review highlights the need for further research into targeted interventions that disrupt the mCRP-[AGE-RAGE] inflammatory cycle to reduce plaque instability and improve cardiovascular outcomes in high-risk populations. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 706 KiB  
Article
Long-Term Hemostatic and Endothelial Dysregulation Associated with Cardiovascular Events in Survivors of COVID-19 Previously Admitted to the ICU
by Raquel Behar-Lagares, Ana Virseda-Berdices, Óscar Martínez-González, Rafael Blancas, Óscar Brochado-Kith, Eva Manteiga, Paula Muñoz-García, María Jose Mallol Poyato, Jorge Molina del Pozo, Marcela Homez-Guzmán, María A. Alonso Fernández, Salvador Resino, María Á. Jiménez-Sousa and Amanda Fernández-Rodríguez
Int. J. Mol. Sci. 2025, 26(14), 6854; https://doi.org/10.3390/ijms26146854 - 17 Jul 2025
Viewed by 186
Abstract
Post-acute sequelae of COVID-19 have been associated with an elevated risk of thromboembolism and adverse cardiovascular events (CVEs). We aim to evaluate whether alterations in poorly studied hemostatic and endothelial proteins are associated with CVEs in patients previously admitted to the ICU and [...] Read more.
Post-acute sequelae of COVID-19 have been associated with an elevated risk of thromboembolism and adverse cardiovascular events (CVEs). We aim to evaluate whether alterations in poorly studied hemostatic and endothelial proteins are associated with CVEs in patients previously admitted to the ICU and evaluated one year post-discharge. We carried out a cross-sectional study involving 63 COVID-19 patients previously admitted to the ICU one year post-discharge. Plasma levels of factor IX (coagulation factor), protein C, protein S (natural anticoagulant), and von Willebrand factor (VWF, an endothelial marker) were measured using a Luminex 200™ analyzer. Generalized linear models (GLMs) were used to assess the association of these coagulation proteins with CVEs and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We found that lower levels of factor IX (p = 0.011), protein C (p = 0.028), and protein S (p = 0.008) were associated with CVEs one year after ICU discharge. Additionally, at the one-year follow-up, we found lower levels of factor IX (p = 0.002) and higher levels of VWF (p = 0.006) associated with higher levels of NT-proBNP, underscoring the involvement of both hemostatic imbalance and persistent endothelial dysfunction. Our findings revealed a gender-specific pattern of associations with NT-proBNP levels. These findings highlight the significant role of persistent hemostatic imbalance and endothelial dysfunction in the development of cardiovascular abnormalities among COVID-19 survivors discharged from the ICU. Full article
Show Figures

Graphical abstract

16 pages, 4613 KiB  
Article
Perfluorononanoic Acid (PFNA) Exacerbates Atopic Dermatitis by Inducing Inflammation in Mice
by Jiali Xiao, Junchao Wang, Nuo Xu, Xulong Huang, Farid Khalilov, Xianfeng Huang, Xiangyong Zheng, Xiashun Xu, Shisheng Lin, Wengang Zhao and Elchin Khalilov
Toxics 2025, 13(7), 585; https://doi.org/10.3390/toxics13070585 - 13 Jul 2025
Viewed by 362
Abstract
Perfluorononanoic acid (PFNA) is a ubiquitous persistent environmental pollutant, and several studies have found significant links between atopic dermatitis (AD) and prenatal exposure to PFNA. However, the relationship between PFNA and AD remains unclear. In this study, 2,4-dinitrochlorobenzene (DNCB)-treated female BALB/c mice were [...] Read more.
Perfluorononanoic acid (PFNA) is a ubiquitous persistent environmental pollutant, and several studies have found significant links between atopic dermatitis (AD) and prenatal exposure to PFNA. However, the relationship between PFNA and AD remains unclear. In this study, 2,4-dinitrochlorobenzene (DNCB)-treated female BALB/c mice were used as AD models to investigate the effects of PFNA and its potential mechanisms. These mice were topically applied with 5 mg/kg PFNA per day for 15 days. The results demonstrated that PFNA significantly increased AD lesion severity and clinical symptoms, including dermatitis score, ear thickness, and epidermal thickness. In addition, PFNA also increased the serum IgE level, splenic atrophy, and upregulated the expression of TNF-α, IL-6, and IL-, genes that are associated with skin inflammatory factors. In addition, Western blot results showed that PFNA treatment upregulated the expression of p-JNK protein. Additionally, cellular experiments indicated that RAW264.7 macrophages and mouse brain microvascular endothelial (bEnd.3) cells treated with PFNA at concentrations of 0.01–100 μM for 72 h showed no changes in cell viability. However, 100 μM PFNA upregulated the mRNA expression levels of the pro-inflammatory cytokines IL-1β and IL-6, as well as the protein expression of p-JNK, in RAW264.7 cells induced with 1 mg/mL LPS for 2 h. Similarly, PFNA increased TNF-α and IL-6 mRNA expression and p-JNK protein expression in bEnd.3 cells stimulated with 20 ng/mL TNF-α for 0.5 h. Based on these findings, we can conclude that PFNA may aggravate atopic dermatitis by promoting inflammation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

28 pages, 2285 KiB  
Review
The Impact of Flavonoids and Omega-3 in Mitigating Frailty Syndrome to Improve Treatment Outcomes in Peripheral Artery Disease (PAD) Patients
by Sanaz Jamshidi, Zahra Eskandari, Amirhossein Faghih Ojaroodi, Shayan Keramat and Agata Stanek
Nutrients 2025, 17(14), 2303; https://doi.org/10.3390/nu17142303 - 12 Jul 2025
Viewed by 688
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the elderly, often accompanied by frailty syndrome, which is associated with increased inflammation, oxidative stress, and functional decline. Nutritional strategies, particularly those involving bioactive compounds like flavonoids and omega-3 fatty acids, have been [...] Read more.
Peripheral artery disease (PAD) is a common vascular disorder in the elderly, often accompanied by frailty syndrome, which is associated with increased inflammation, oxidative stress, and functional decline. Nutritional strategies, particularly those involving bioactive compounds like flavonoids and omega-3 fatty acids, have been suggested as potential approaches to modulate these pathological processes. This narrative review summarizes current evidence regarding the anti-inflammatory and antioxidant effects of flavonoids and omega-3 fatty acids, and their possible roles in mitigating frailty syndrome in patients with PAD. We examine mechanistic pathways including NF-κB, AMPK, PI3K/Akt/mTOR, and Nrf2, which are implicated in chronic inflammation, endothelial dysfunction, and muscle wasting. Although studies in general and aging populations suggest beneficial effects of these compounds on vascular and muscle health, specific evidence in PAD patients remains limited. Flavonoids may reduce pro-inflammatory cytokine production and enhance antioxidant responses, while omega-3 fatty acids have shown potential in modulating inflammatory signaling and supporting vascular repair. Current data provide a basis for further investigation into the dietary modulation of frailty syndrome in PAD. Understanding the impact of these nutrients may offer insights into adjunctive strategies for improving patient outcomes. Full article
(This article belongs to the Special Issue Featured Reviews on Geriatric Nutrition)
Show Figures

Graphical abstract

16 pages, 2268 KiB  
Article
Hydnocarpin, a Natural Flavonolignan, Induces the ROS-Mediated Apoptosis of Ovarian Cancer Cells and Reprograms Tumor-Associated Immune Cells
by Jae-Yoon Kim, Yejin Kim, Soo-Yeon Woo, Jin-Ok Kim, Hyunsoo Kim, So-Ri Son, Dae Sik Jang and Jung-Hye Choi
Antioxidants 2025, 14(7), 846; https://doi.org/10.3390/antiox14070846 - 10 Jul 2025
Viewed by 397
Abstract
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, [...] Read more.
Ovarian cancer, the most lethal form of gynecological cancer worldwide with a poor prognosis, is largely driven by an immunosuppressive tumor microenvironment. In this study, we investigated the anticancer effects of hydnocarpin, a natural flavonolignan derived from the flowers of Pueraria lobata, focusing on its effects on ovarian cancer and tumor-associated immune cells, including ovarian cancer-stimulated macrophages (MQs) and T cells. Hydnocarpin exhibited potent cytotoxicity against multiple ovarian cancer cell lines but only minimal toxicity against normal ovarian surface epithelial cells. Mechanistically, hydnocarpin triggered caspase-dependent apoptosis, as evidenced by the activation of caspase-9 and -3, with limited involvement of caspase-8, indicating the activation of the intrinsic apoptotic pathway. Experimental data implicated reactive oxygen species generation as a key mediator of hydnocarpin cytotoxicity, and reactive oxygen species inhibition significantly inhibited this cytotoxicity. In addition to its direct tumoricidal effects, hydnocarpin reprogrammed the tumor-associated immune cells, ovarian cancer-stimulated macrophages and T cells, by downregulating the levels of M2 MQ markers and pro-tumoral factors (matrix metalloproteinase-2/9, C–C motif chemokine ligand 5, transforming growth factor-β, and vascular endothelial growth factor) and enhancing MQ phagocytosis. Additionally, hydnocarpin promoted T-cell activation (interferon-γ and interleukin-2) and reduced the expression levels of immune evasion markers (CD80, CD86, and VISTA). Overall, this study demonstrated the dual anti-tumor effects of hydnocarpin on both ovarian cancer cells and immunosuppressive immune components in the tumor microenvironment, highlighting its potential as a novel therapeutic candidate for ovarian cancer. Full article
Show Figures

Graphical abstract

27 pages, 3554 KiB  
Article
Impact of Poly(Lactic Acid) and Graphene Oxide Nanocomposite on Cellular Viability and Proliferation
by Karina Torres Pomini, Júlia Carolina Ferreira, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Monique Gonçalves Alves, Eliana de Souza Bastos Mazuqueli Pereira, Marcelo Melo Soares, Durvanei Augusto Maria and Rose Eli Grassi Rici
Pharmaceutics 2025, 17(7), 892; https://doi.org/10.3390/pharmaceutics17070892 - 9 Jul 2025
Viewed by 326
Abstract
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human [...] Read more.
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human fibroblasts (FN1 cells), murine mesenchymal stem cells (mBMSCs), and human umbilical vein endothelial cells (HUVECs). Methods: Morphological analyses were performed using optical and scanning electron microscopy, while proliferation dynamics were assessed via CFSE staining. Cell cycle progression was evaluated using flow cytometry, mitochondrial activity was examined through TMRE staining, and inflammatory cytokine profiling was performed via Cytometric Bead Array (CBA). Results: PLLA-GO exhibited primary biocompatibility across all evaluated cell lines, characterized by efficient adhesion and proliferation. However, significant cell-type-dependent modulations were observed. The FN1 cells exhibited proliferative adaptation but induced accelerated scaffold degradation, as evidenced by a substantial increase in cellular debris (5.93% control vs. 34.38% PLLA-GO; p = 0.03). mBMSCs showed a transient initial proliferative response and a significant 21.66% increase in TNF-α production (179.67 pg/mL vs. 147.68 pg/mL in control; p = 0.03). HUVECs demonstrated heightened mitochondrial sensitivity, exhibiting a 32.19% reduction in mitochondrial electrical potential (97.07% control vs. 65.82% PLLA-GO; p ≤ 0.05), alongside reductions in pro-inflammatory cytokines TNF-α (8.73%) and IL-6 (12.47%). Conclusions: The PLLA-GO processing method is crucial for its properties and subsequent cellular interactions. Therefore, rigorous and specific preclinical evaluations—considering both cellular contexts and fabrication—are indispensable to ensure the safety and therapeutic potential of PLLA-GO in tissue engineering and regenerative medicine. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

16 pages, 1737 KiB  
Article
The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis
by Victor Muniz de Freitas and Érika Bevilaqua Rangel
Infect. Dis. Rep. 2025, 17(4), 79; https://doi.org/10.3390/idr17040079 - 7 Jul 2025
Viewed by 466
Abstract
Background: Coronavirus disease 2019 (COVID-19) involves a complex interplay of dysregulated immune responses, a pro-inflammatory cytokine storm, endothelial injury, and thrombotic complications. This study aimed to evaluate the impact of kidney function on clinical, laboratory, and outcome parameters in patients hospitalized with COVID-19. [...] Read more.
Background: Coronavirus disease 2019 (COVID-19) involves a complex interplay of dysregulated immune responses, a pro-inflammatory cytokine storm, endothelial injury, and thrombotic complications. This study aimed to evaluate the impact of kidney function on clinical, laboratory, and outcome parameters in patients hospitalized with COVID-19. Methods: We conducted a retrospective analysis of 359 patients admitted during the first wave of COVID-19, stratified by estimated glomerular filtration rate (eGFR < 60 vs. ≥60 mL/min/1.73 m2). Data on demographics, vital signs, laboratory values, and clinical outcomes—including mortality, hemodialysis requirement, intensive care unit (ICU) admission, and mechanical ventilation (MV)—were collected. Univariate and multivariate linear regression, as well as area under the receiver operating characteristic curve (AUC-ROC) analyses, were performed. A p-value < 0.05 was considered statistically significant. Results: Patients with an eGFR < 60 were older and more likely to have systemic hypertension, chronic kidney disease, a history of solid organ transplantation, and immunosuppressive therapy. This group showed higher rates of mortality (41.6% vs. 19.2%), hemodialysis requirement (32.3% vs. 9.6%), ICU admission (50.9% vs. 37.9%), and MV (39.8% vs. 21.2%). Laboratory results revealed acidosis, anemia, lymphopenia, elevated inflammatory markers, and hyperkalemia. Conclusions: An admission eGFR < 60 mL/min/1.73 m2 is associated with worse clinical outcomes in COVID-19 and may serve as a simple, early marker for risk stratification. Full article
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Exploring Molecular Signatures Associated with Inflammation and Angiogenesis in the Aqueous Humor of Patients with Non-Proliferative Diabetic Retinopathy
by Víctor Alegre-Ituarte, Irene Andrés-Blasco, David Peña-Ruiz, Salvatore Di Lauro, Sara Crespo-Millas, Alessio Martucci, Jorge Vila-Arteaga, María Dolores Pinazo-Durán, David Galarreta and Julián García-Feijoo
Int. J. Mol. Sci. 2025, 26(13), 6461; https://doi.org/10.3390/ijms26136461 - 4 Jul 2025
Viewed by 430
Abstract
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous [...] Read more.
Type 2 diabetes mellitus (T2DM) is a major public health concern that significantly increases the risk of diabetic retinopathy (DR), a leading cause of visual impairment worldwide. This study aimed to identify molecular markers of inflammation (INF) and angiogenesis (ANG) in the aqueous humor (AH) of patients with non-proliferative diabetic retinopathy (NPDR). We conducted an observational, multicenter, case–control study including 116 participants classified into T2DM with NPDR, T2DM without DR, and non-diabetic controls (SCG) undergoing cataract surgery. AH samples were collected intraoperatively and analyzed for 27 cytokines using multiplex immunoassay. Eighteen immune mediators were detected in AH samples, and several were significantly elevated in the NPDR group, including the interleukins (IL) -1β, -6, -8, -15, -17, as well as the granulocyte–macrophage colony stimulating factor (GM-CSF), basic fibroblast growth factor (bFGF), interferon gamma-induced protein (IP-10), macrophage inflammatory protein 1 beta (MIP-1b), monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell-expressed and -secreted protein (RANTES), and the vascular endothelial growth factor (VEGF). These molecules are involved in retinal INF, blood–retinal barrier breakdown, and pathological neovascularization. Our findings reveal a distinct pro-INF and pro-ANG profile in the AH of NPDR patients, suggesting that these cytokines may serve as early diagnostic/prognostic biomarkers for DR. Targeting these molecules could provide novel therapeutic strategies to mitigate retinal damage and vision loss in diabetic patients. Full article
(This article belongs to the Special Issue Advanced Research in Retina: 3rd Edition)
Show Figures

Figure 1

24 pages, 6571 KiB  
Article
Leech Extract Enhances the Pro-Angiogenic Effects of Endothelial Cell-Derived Exosomes in a Mouse Model of Ischemic Stroke
by Yushuang Cao, Jin Sun, Lichen Guo, Meng Wang, Linlin Su, Tong Zhang, Shaoxia Wang, Lijuan Chai, Qing Yuan and Limin Hu
Curr. Issues Mol. Biol. 2025, 47(7), 499; https://doi.org/10.3390/cimb47070499 - 1 Jul 2025
Viewed by 297
Abstract
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech [...] Read more.
Background: Intercellular communication, facilitated by exosomes (Exos) derived from endothelial cells (ECs), significantly influences the regulation of angiogenesis. Leech extract significantly reduces ischemia–reperfusion injury, promotes angiogenesis, and improves neurological function in mice with stroke. However, further investigation is required to determine whether leech promotes angiogenesis through EC-Exo. Objective: This study aims to further explore whether leech regulates Exos to promote the establishment of collateral circulation in mice with ischemic stroke (IS) and the specific mechanisms involved. Methods: Here, we utilized an in vitro co-culture system comprising ECs and pericytes to investigate the impact of Leech-EC-Exo on enhancing the proliferation and migration of mouse brain microvascular pericytes (MBVPs). We further established an in vivo mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R) to investigate the effects and underlying mechanisms of leech on collateral circulation establishment. Results: The findings demonstrated that leech significantly enhanced the in vitro cell migration number and migration number of pericytes. Therefore, it can also enhance the effect of EC-Exo on improving the infarct area and gait of mice, as well as modulating the HIFα-VEGF-DLL4-Notch1 signaling pathway to promote cerebral angiogenesis and facilitating the stable maturation of neovascularization in vivo. Conclusions: These results suggest that leech has the potential to enhance collateral circulation establishment, and its mechanism may involve the modulation of miRNA content in Exos and the promotion of signaling pathways associated with angiogenesis and vascular maturation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop