Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes
Abstract
1. Introduction
2. Diabetes and Role of Oxidative Stress
3. Quercetin as a Natural Antioxidant: Sources and Biological Activity
3.1. Sources of Quercetin
3.2. Anticancer Properties
3.3. Anti-Microbial Properties
3.4. Anti-Allergenic Potential
3.5. Anti-Aging and Senolytic Properties
3.6. Cardiovascular Disease Treatment
3.7. Neuroprotective Properties
4. Bioavailability of Quercetin
5. Potential Antidiabetic Effects of Quercetin
5.1. Promotion of Islet β-Cell Function, Facilitation of Insulin Secretion, and Enhancement in Insulin Sensitivity
5.2. Reduction in Intestinal Glucose Absorption by the Inhibition of α-Glucosidase
5.3. Promotion of Glucose Uptake in Various Tissues
5.4. Quercetin and Complications of Chronic Hyperglycemia—Role in Organ Protection
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
6-OHDA | 6-hydroxydopamine |
AD | Alzheimer’s disease |
ADA | American Diabetes Association |
AGIs | Alpha-glucosidase inhibitors |
AMPK | AMP-activated protein kinase |
AUC | Area under the curve |
Aβ | β-amyloid |
BBB | Blood–brain barrier |
CAT | Catalase |
COMT | Catechol-O-methyltransferase |
COX-2 | Cyclooxygenase-2 |
CVD | Cardiovascular disease |
DPP-4 | Dipeptidyl peptidase 4 |
eNOS | Endothelial nitric oxide synthase |
Erα | Estrogen receptor α |
FcεRI | High-affinity IgE receptor |
GIP | Gastric inhibitory peptide |
GLP-1 | Glucagon-like peptide-1 |
GLP-1 RAs | Glucagon-like peptide-1 receptor agonists |
GLUT | Glucose transporter |
GSH-Px | Glutathione peroxidase |
HO-1 | Heme oxygenase-1 |
IFN-γ | Interferon alpha |
IL | Interleukin |
iNOS | Inducible nitric oxide synthase |
LDLs | Low-density lipoproteins |
MMPs | Matrix metalloproteinases |
NO | Nitric oxide |
OGTT | Oral glucose tolerance test |
ORAC | Oxygen radical absorbance capacity |
PD | Parkinson’s disease |
PDE3B | Phosphodiesterase 3B |
PGD2 | Prostaglandin D2 |
PKA | Protein kinase A |
PPARγ | Peroxisome proliferator-activated receptor |
QE | Quercetin |
ROS | Reactive oxygen species |
SA-β-gal | Senescence-associated β-galactosidase |
SGLT2 | Sodium–glucose cotransporter-2 |
SIRT1 | Sirtuin 1 |
SOD | Superoxide dismutase |
SphK1-S1P | Sphingosine Kinase 1—Sphingosine-1-Phosphate |
SULT | Sulfotransferase |
TNF-α | Tumor necrosis factor alpha |
UGT | Uridine-5-diphospho-glucuronosyltransferase |
VEGF | Vascular endothelial growth factor |
References
- Su, J.; Luo, Y.; Hu, S.; Tang, L.; Ouyang, S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int. J. Mol. Sci. 2023, 24, 13381. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Ismail, L.; Materwala, H.; Al Kaabi, J. Association of Risk Factors with Type 2 Diabetes: A Systematic Review. Comput. Struct. Biotechnol. J. 2021, 19, 1759–1785. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xie, Q.; Pan, X.; Zhang, R.; Zhang, X.; Peng, G.; Zhang, Y.; Shen, S.; Tong, N. Type 2 Diabetes Mellitus in Adults: Pathogenesis, Prevention and Therapy. Sig. Transduct. Target. Ther. 2024, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Clinical Pharmacology of Antidiabetic Drugs: What Can Be Expected of Their Use? La Presse Médicale 2023, 52, 104158. [Google Scholar] [CrossRef]
- Rocha, S.; Luísa Corvo, M.; Freitas, M.; Fernandes, E. Liposomal Quercetin: A Promising Strategy to Combat Hepatic Insulin Resistance and Inflammation in Type 2 Diabetes Mellitus. Int. J. Pharm. 2024, 661, 124441. [Google Scholar] [CrossRef]
- Boo, H.J.; Yoon, D.; Choi, Y.; Kim, Y.; Cha, J.S.; Yoo, J. Quercetin: Molecular Insights into Its Biological Roles. Biomolecules 2025, 15, 313. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Qi, W.; Qi, W.; Xiong, D.; Long, M. Quercetin: Its Antioxidant Mechanism, Antibacterial Properties and Potential Application in Prevention and Control of Toxipathy. Molecules 2022, 27, 6545. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.W.; Sohng, J.K.; Pandey, R.P.; Park, Y.I. The Immunostimulating Activity of Quercetin 3-O-Xyloside in Murine Macrophages via Activation of the ASK1/MAPK/NF-κB Signaling Pathway. Int. Immunopharmacol. 2016, 31, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, A.; Calderaro, A.; Patanè, G.T.; Navarra, M.; Barreca, D.; Cirmi, S.; Felice, M.R. Targets Involved in the Anti-Cancer Activity of Quercetin in Breast, Colorectal and Liver Neoplasms. Int. J. Mol. Sci. 2023, 24, 2952. [Google Scholar] [CrossRef] [PubMed]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential Mechanisms of Quercetin in Cancer Prevention: Focus on Cellular and Molecular Targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Reyes-Farias, M.; Carrasco-Pozo, C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019, 20, 3177. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, S.; Fuloria, S.; Sharma, P.K. Anti-Inflammatory and Anti-Arthritis Activity of Quercetin: A Comprehensive Review. Curr. Rheumatol. Rev. 2025, 21, 144–159. [Google Scholar] [CrossRef]
- Aggarwal, D.; Chaudhary, M.; Mandotra, S.K.; Tuli, H.S.; Chauhan, R.; Joshi, N.C.; Kaur, D.; Dufossé, L.; Chauhan, A. Anti-Inflammatory Potential of Quercetin: From Chemistry and Mechanistic Insight to Nanoformulations. Curr. Res. Pharmacol. Drug Discov. 2025, 8, 100217. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, R.; Huang, H. Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 692–701. [Google Scholar] [CrossRef]
- Najaf Najafi, N.; Armide, N.; Akbari, A.; Baradaran Rahimi, V.; Askari, V.R. Quercetin a Promising Functional Food Additive against Allergic Diseases: A Comprehensive and Mechanistic Review. J. Funct. Foods 2024, 116, 106152. [Google Scholar] [CrossRef]
- Bule, M.; Abdurahman, A.; Nikfar, S.; Abdollahi, M.; Amini, M. Antidiabetic Effect of Quercetin: A Systematic Review and Meta-Analysis of Animal Studies. Food Chem. Toxicol. 2019, 125, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Ansari, P.; Choudhury, S.T.; Seidel, V.; Rahman, A.B.; Aziz, M.A.; Richi, A.E.; Rahman, A.; Jafrin, U.H.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Therapeutic Potential of Quercetin in the Management of Type-2 Diabetes Mellitus. Life 2022, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Chen, X.; Xie, N.; Feng, L.; Huang, Y.; Wu, Y.; Zhu, H.; Tang, J.; Zhang, Y. Oxidative Stress in Diabetes Mellitus and Its Complications: From Pathophysiology to Therapeutic Strategies. Chin. Med. J. 2025, 138, 15–27. [Google Scholar] [CrossRef]
- Weinberg Sibony, R.; Segev, O.; Dor, S.; Raz, I. Overview of Oxidative Stress and Inflammation in Diabetes. J. Diabetes 2024, 16, e70014. [Google Scholar] [CrossRef]
- Ferreyra, M.L.F.; Serra, P.; Casati, P. Recent Advances on the Roles of Flavonoids as Plant Protective Molecules after UV and High Light Exposure. Physiol. Plant. 2021, 173, 736–749. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef]
- Zheng, Y.-Z.; Deng, G.; Liang, Q.; Chen, D.-F.; Guo, R.; Lai, R.-C. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 2017, 7, 7543. [Google Scholar] [CrossRef]
- Terao, J. Potential Role of Quercetin Glycosides as Anti-Atherosclerotic Food-Derived Factors for Human Health. Antioxidants 2023, 12, 258. [Google Scholar] [CrossRef]
- USDA Database for the Flavonoid Content of Selected Foods, Release 3.3 (March 2018). Available online: https://agdatacommons.nal.usda.gov/articles/dataset/USDA_Database_for_the_Flavonoid_Content_of_Selected_Foods_Release_3_1_May_2014_/24659802 (accessed on 24 June 2025).
- Biswas, P.; Dey, D.; Biswas, P.K.; Rahaman, T.I.; Saha, S.; Parvez, A.; Khan, D.A.; Lily, N.J.; Saha, K.; Sohel, M.; et al. A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int. J. Mol. Sci. 2022, 23, 11746. [Google Scholar] [CrossRef]
- Silva-Pinto, P.A.; de Pontes, J.T.C.; Aguilar-Morón, B.; Canales, C.S.C.; Pavan, F.R.; Roque-Borda, C.A. Phytochemical Insights into Flavonoids in Cancer: Mechanisms, Therapeutic Potential, and the Case of Quercetin. Heliyon 2025, 11, e42682. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.K.; Rao, K.V.K.; Aalinkeel, R.; Mahajan, S.; Chawda, R.; Schwartz, S.A. Inhibition of Prostate Cancer Cell Colony Formation by the Flavonoid Quercetin Correlates with Modulation of Specific Regulatory Genes. Clin. Diagn. Lab. Immunol. 2004, 11, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Cwiklinski, K.; Mahajan, S.D.; Schwartz, S.A.; Aalinkeel, R. Combination Modality Using Quercetin to Enhance the Efficacy of Docetaxel in Prostate Cancer Cells. Cancers 2023, 15, 902. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.-E.; Wang, M.-X.; Li, R. Quercetin Inhibit Human SW480 Colon Cancer Growth in Association with Inhibition of Cyclin D1 and Survivin Expression through Wnt/Beta-Catenin Signaling Pathway. Cancer Investig. 2009, 27, 604–612. [Google Scholar] [CrossRef]
- Jia, L.; Huang, S.; Yin, X.; Zan, Y.; Guo, Y.; Han, L. Quercetin Suppresses the Mobility of Breast Cancer by Suppressing Glycolysis through Akt-mTOR Pathway Mediated Autophagy Induction. Life Sci. 2018, 208, 123–130. [Google Scholar] [CrossRef]
- Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and Apoptosis-Inducing Effects of Quercetin in Vitro and in Vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef]
- Tang, S.-M.; Deng, X.-T.; Zhou, J.; Li, Q.-P.; Ge, X.-X.; Miao, L. Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomed. Pharmacother. 2020, 121, 109604. [Google Scholar] [CrossRef]
- Pratheeshkumar, P.; Budhraja, A.; Son, Y.-O.; Wang, X.; Zhang, Z.; Ding, S.; Wang, L.; Hitron, A.; Lee, J.-C.; Xu, M.; et al. Quercetin Inhibits Angiogenesis Mediated Human Prostate Tumor Growth by Targeting VEGFR- 2 Regulated AKT/mTOR/P70S6K Signaling Pathways. PLoS ONE 2012, 7, e47516. [Google Scholar] [CrossRef]
- Uttarawichien, T.; Kamnerdnond, C.; Inwisai, T.; Suwannalert, P.; Sibmooh, N.; Payuhakrit, W. Quercetin Inhibits Colorectal Cancer Cells Induced-Angiogenesis in Both Colorectal Cancer Cell and Endothelial Cell through Downregulation of VEGF-A/VEGFR2. Sci. Pharm. 2021, 89, 23. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Li, S.; Xin, Q.; Yuan, M.; Li, H.; Song, X.; Gao, H.; Pervaiz, N.; Sun, X.; et al. Quercetin Inhibits the Migration and Invasion of HCCLM3 Cells by Suppressing the Expression of P-Akt1, Matrix Metalloproteinase (MMP) MMP-2, and MMP-9. Med. Sci. Monit. 2018, 24, 2583–2589. [Google Scholar] [CrossRef]
- Davidova, S.; Galabov, A.S.; Satchanska, G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024, 12, 2502. [Google Scholar] [CrossRef]
- Hossion, A.M.L.; Zamami, Y.; Kandahary, R.K.; Tsuchiya, T.; Ogawa, W.; Iwado, A.; Sasaki, K. Quercetin Diacylglycoside Analogues Showing Dual Inhibition of DNA Gyrase and Topoisomerase IV as Novel Antibacterial Agents. J. Med. Chem. 2011, 54, 3686–3703. [Google Scholar] [CrossRef]
- Ravera, S.; Tancreda, G.; Vezzulli, L.; Schito, A.M.; Panfoli, I. Cirsiliol and Quercetin Inhibit ATP Synthesis and Decrease the Energy Balance in Methicillin-Resistant Staphylococcus Aureus (MRSA) and Methicillin-Resistant Staphylococcus Epidermidis (MRSE) Strains Isolated from Patients. Molecules 2023, 28, 6183. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the Antioxidant and Anti-Inflammatory Activities of Selected Plant Compounds and Their Metal Ions Complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
- Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence. PLoS ONE 2015, 10, e0134684. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Feng, W.; Lai, X.; Chen, Y.; Zhang, X.; Rong, L.; Sun, F.; Chen, Y. Quercetin Inhibits Pseudomonas aeruginosa Biofilm Formation via the Vfr-Mediated lasIR System. Microb. Pathog. 2020, 149, 104291. [Google Scholar] [CrossRef]
- Shastri, T.; Binsuwaidan, R.; Siddiqui, A.J.; Badraoui, R.; Jahan, S.; Alshammari, N.; Adnan, M.; Patel, M. Quercetin Exhibits Broad-Spectrum Antibiofilm and Antiquorum Sensing Activities Against Gram-Negative Bacteria: In Vitro and In Silico Investigation Targeting Antimicrobial Therapy. Can. J. Infect. Dis. Med. Microbiol. 2025, 2025, 2333207. [Google Scholar] [CrossRef]
- Roy, P.K.; Song, M.G.; Park, S.Y. The Inhibitory Effect of Quercetin on Biofilm Formation of Listeria Monocytogenes Mixed Culture and Repression of Virulence. Antioxidants 2022, 11, 1733. [Google Scholar] [CrossRef]
- Tan, Y.; Lin, Q.; Yao, J.; Zhang, G.; Peng, X.; Tian, J. In Vitro Outcomes of Quercetin on Candida Albicans Planktonic and Biofilm Cells and in Vivo Effects on Vulvovaginal Candidiasis. Evidences of Its Mechanisms of Action. Phytomedicine 2023, 114, 154800. [Google Scholar] [CrossRef]
- Al Aboody, M.S.; Mickymaray, S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antioxidants 2020, 9, 45. [Google Scholar] [CrossRef]
- Di Petrillo, A.; Orrù, G.; Fais, A.; Fantini, M.C. Quercetin and Its Derivates as Antiviral Potentials: A Comprehensive Review. Phytother. Res. 2022, 36, 266–278. [Google Scholar] [CrossRef]
- Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Quercetin and Its Anti-Allergic Immune Response. Molecules 2016, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Jafarinia, M.; Sadat Hosseini, M.; Kasiri, N.; Fazel, N.; Fathi, F.; Ganjalikhani Hakemi, M.; Eskandari, N. Quercetin with the Potential Effect on Allergic Diseases. Allergy Asthma Clin. Immunol. 2020, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-H.; Lee, S.; Son, H.-Y.; Park, S.-B.; Kim, M.-S.; Choi, E.-J.; Singh, T.S.K.; Ha, J.-H.; Lee, M.-G.; Kim, J.-E.; et al. Flavonoids Inhibit Histamine Release and Expression of Proinflammatory Cytokines in Mast Cells. Arch. Pharm. Res. 2008, 31, 1303–1311. [Google Scholar] [CrossRef]
- Min, Y.-D.; Choi, C.-H.; Bark, H.; Son, H.-Y.; Park, H.-H.; Lee, S.; Park, J.-W.; Park, E.-K.; Shin, H.-I.; Kim, S.-H. Quercetin Inhibits Expression of Inflammatory Cytokines through Attenuation of NF-κB and P38 MAPK in HMC-1 Human Mast Cell Line. Inflamm. Res. 2007, 56, 210–215. [Google Scholar] [CrossRef]
- Ding, Y.; Li, C.; Zhang, Y.; Ma, P.; Zhao, T.; Che, D.; Cao, J.; Wang, J.; Liu, R.; Zhang, T.; et al. Quercetin as a Lyn Kinase Inhibitor Inhibits IgE-Mediated Allergic Conjunctivitis. Food Chem. Toxicol. 2020, 135, 110924. [Google Scholar] [CrossRef]
- Lee, H.N.; Shin, S.A.; Choo, G.S.; Kim, H.J.; Park, Y.S.; Kim, B.S.; Kim, S.K.; Cho, S.D.; Nam, J.S.; Choi, C.S.; et al. Anti-inflammatory Effect of Quercetin and Galangin in LPS—Stimulated RAW264.7 Macrophages and DNCB—Induced Atopic Dermatitis Animal Models. Int. J. Mol. Med. 2018, 41, 888–898. [Google Scholar] [CrossRef]
- Yang, S.-C.; Chang, Z.-Y.; Hsiao, C.-Y.; Alshetaili, A.; Wei, S.-H.; Hsiao, Y.-T.; Fang, J.-Y. Topical Anti-Inflammatory Effects of Quercetin Glycosides on Atopic Dermatitis-Like Lesions: Influence of the Glycone Type on Efficacy and Skin Absorption. Inflammation 2025. open access. [Google Scholar] [CrossRef]
- Hou, D.-D.; Zhang, W.; Gao, Y.-L.; Sun, Y.-Z.; Wang, H.-X.; Qi, R.-Q.; Chen, H.-D.; Gao, X.-H. Anti-Inflammatory Effects of Quercetin in a Mouse Model of MC903-Induced Atopic Dermatitis. Int. Immunopharmacol. 2019, 74, 105676. [Google Scholar] [CrossRef]
- Chondrogianni, N.; Kapeta, S.; Chinou, I.; Vassilatou, K.; Papassideri, I.; Gonos, E.S. Anti-Ageing and Rejuvenating Effects of Quercetin. Exp. Gerontol. 2010, 45, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [PubMed]
- Sohn, E.-J.; Kim, J.M.; Kang, S.-H.; Kwon, J.; An, H.J.; Sung, J.-S.; Cho, K.A.; Jang, I.-S.; Choi, J.-S. Restoring Effects of Natural Anti-Oxidant Quercetin on Cellular Senescent Human Dermal Fibroblasts. Am. J. Chin. Med. 2018, 46, 853–873. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Pirtskhalava, T.; Farr, J.N.; Weigand, B.M.; Palmer, A.K.; Weivoda, M.M.; Inman, C.L.; Ogrodnik, M.B.; Hachfeld, C.M.; Fraser, D.G.; et al. Senolytics Improve Physical Function and Increase Lifespan in Old Age. Nat. Med. 2018, 24, 1246–1256. [Google Scholar] [CrossRef]
- de Oliveira, M.R.; Nabavi, S.M.; Braidy, N.; Setzer, W.N.; Ahmed, T.; Nabavi, S.F. Quercetin and the Mitochondria: A Mechanistic View. Biotechnol. Adv. 2016, 34, 532–549. [Google Scholar] [CrossRef]
- Carrillo-Garmendia, A.; Madrigal-Perez, L.A.; Regalado-Gonzalez, C. The Multifaceted Role of Quercetin Derived from Its Mitochondrial Mechanism. Mol. Cell Biochem. 2024, 479, 1985–1997. [Google Scholar] [CrossRef]
- Lee, M.-S.; Doo, M.; Kim, Y. Effects of Quercetin Nanoemulsion on SIRT1 Activation and Mitochondrial Biogenesis in the Skeletal Muscle of High-Fat Diet-Fed Mice. Nutr. Res. Pract. 2024, 18, 806–817. [Google Scholar] [CrossRef]
- Cui, Z.; Zhao, X.; Amevor, F.K.; Du, X.; Wang, Y.; Li, D.; Shu, G.; Tian, Y.; Zhao, X. Therapeutic Application of Quercetin in Aging-Related Diseases: SIRT1 as a Potential Mechanism. Front. Immunol. 2022, 13, 943321. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Du, X.; Liu, Z.; Zhu, C.; Mao, W.; Liu, G.; Jiang, Q. Anti-Aging Effects of Quercetin in Cladocera Simocephalus Vetulus Using Proteomics. ACS Omega 2023, 8, 17609–17619. [Google Scholar] [CrossRef]
- Nambiar, A.; Kellogg, D.; Justice, J.; Goros, M.; Gelfond, J.; Pascual, R.; Hashmi, S.; Masternak, M.; Prata, L.; LeBrasseur, N.; et al. Senolytics Dasatinib and Quercetin in Idiopathic Pulmonary Fibrosis: Results of a Phase I, Single-Blind, Single-Center, Randomized, Placebo-Controlled Pilot Trial on Feasibility and Tolerability. EBioMedicine 2023, 90, 104481. [Google Scholar] [CrossRef]
- Millar, C.L.; Iloputaife, I.; Baldyga, K.; Norling, A.M.; Boulougoura, A.; Vichos, T.; Tchkonia, T.; Deisinger, A.; Pirtskhalava, T.; Kirkland, J.L.; et al. A Pilot Study of Senolytics to Improve Cognition and Mobility in Older Adults at Risk for Alzheimer’s Disease. EBioMedicine 2025, 113, 105612. [Google Scholar] [CrossRef]
- Home | ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ (accessed on 19 June 2025).
- Papakyriakopoulou, P.; Velidakis, N.; Khattab, E.; Valsami, G.; Korakianitis, I.; Kadoglou, N.P. Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals 2022, 15, 1019. [Google Scholar] [CrossRef]
- Sánchez, M.; Galisteo, M.; Vera, R.; Villar, I.C.; Zarzuelo, A.; Tamargo, J.; Pérez-Vizcaíno, F.; Duarte, J. Quercetin Downregulates NADPH Oxidase, Increases eNOS Activity and Prevents Endothelial Dysfunction in Spontaneously Hypertensive Rats. J. Hypertens. 2006, 24, 75–84. [Google Scholar] [CrossRef]
- Yamagata, K. Onion Quercetin Inhibits Vascular Endothelial Cell Dysfunction and Prevents Hypertension. Eur. Food Res. Technol. 2024, 250, 1–13. [Google Scholar] [CrossRef]
- Serban, M.-C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; et al. Effects of Quercetin on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016, 5, e002713. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Li, X.X.; Fang, Y.; Chen, X.; Xue, J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. Evid.-Based Complement. Altern. Med. 2020, 2020, 5926381. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Sudhakaran, P.R.; Helen, A. Quercetin Attenuates Atherosclerotic Inflammation and Adhesion Molecule Expression by Modulating TLR-NF-κB Signaling Pathway. Cell Immunol. 2016, 310, 131–140. [Google Scholar] [CrossRef]
- Kobori, M.; Masumoto, S.; Akimoto, Y.; Oike, H. Chronic Dietary Intake of Quercetin Alleviates Hepatic Fat Accumulation Associated with Consumption of a Western-Style Diet in C57/BL6J Mice. Mol. Nutr. Food Res. 2011, 55, 530–540. [Google Scholar] [CrossRef]
- Espírito-Santo, D.A.; Cordeiro, G.S.; Santos, L.S.; Silva, R.T.; Pereira, M.U.; Matos, R.J.B.; Boaventura, G.T.; Barreto-Medeiros, J.M. Cardioprotective Effect of the Quercetin on Cardiovascular Remodeling and Atherosclerosis in Rodents Fed a High-Fat Diet: A Systematic Review. Chem. -Biol. Interact. 2023, 384, 110700. [Google Scholar] [CrossRef]
- Albadrani, G.M.; Binmowyna, M.N.; Bin-Jumah, M.N.; El-Akabawy, G.; Aldera, H.; Al-Farga, A.M. Quercetin Protects against Experimentally-Induced Myocardial Infarction in Rats by an Antioxidant Potential and Concomitant Activation of Signal Transducer and Activator of Transcription 3. J. Physiol. Pharmacol. 2020, 71, 875–890. [Google Scholar] [CrossRef]
- Hubbard, G.P.; Wolffram, S.; Lovegrove, J.A.; Gibbins, J.M. Ingestion of Quercetin Inhibits Platelet Aggregation and Essential Components of the Collagen-Stimulated Platelet Activation Pathway in Humans. J. Thromb. Haemost. 2004, 2, 2138–2145. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Y.; Yan, F.; Dong, M.; Ren, Y. Research Progress of Quercetin in Cardiovascular Disease. Front. Cardiovasc. Med. 2023, 10, 1203713. [Google Scholar] [CrossRef]
- Cummings, J. Disease Modification and Neuroprotection in Neurodegenerative Disorders. Transl. Neurodegener. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; Garrick, J.M.; Roquè, P.J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cell Longev. 2016, 2016, 2986796. [Google Scholar] [CrossRef] [PubMed]
- Haq, S.H.; AlAmro, A.A. Neuroprotective Effect of Quercetin in Murine Cortical Brain Tissue Cultures. Clin. Nutr. Exp. 2019, 23, 89–96. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Mu, X. Effect of Quercetin on PC12 Alzheimer’s Disease Cell Model Induced by Aβ25-35 and Its Mechanism Based on Sirtuin1/Nrf2/HO-1 Pathway. Biomed. Res. Int. 2020, 2020, 8210578. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Cheang, L.C.V.; Wang, M.W.; Lee, S.M.-Y. Quercetin Exerts a Neuroprotective Effect through Inhibition of the iNOS/NO System and pro-Inflammation Gene Expression in PC12 Cells and in Zebrafish. Int. J. Mol. Med. 2011, 27, 195–203. [Google Scholar] [CrossRef]
- Bao, D.; Wang, J.; Pang, X.; Liu, H. Protective Effect of Quercetin against Oxidative Stress-Induced Cytotoxicity in Rat Pheochromocytoma (PC-12) Cells. Molecules 2017, 22, 1122. [Google Scholar] [CrossRef]
- de Oliveira Vian, C.; Marinho, M.A.G.; da Silva Marques, M.; Hort, M.A.; Cordeiro, M.F.; Horn, A.P. Effects of Quercetin in Preclinical Models of Parkinson’s Disease: A Systematic Review. Basic. Clin. Pharmacol. Toxicol. 2024, 135, 3–22. [Google Scholar] [CrossRef]
- Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective Effect of Quercetin Against the Detrimental Effects of LPS in the Adult Mouse Brain. Front. Pharmacol. 2018, 9, 1383. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, J.; Yang, F.; Li, S.; Ma, W.; Chang, X.; Yang, L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front. Pharmacol. 2022, 13, 854249. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.-C.; Tsai, T.-Y.; Wang, C.-J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24, 6328. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Fang, Z.; Dou, J.; Yu, A.; Zhai, G. Bioavailability of Quercetin: Problems and Promises. Curr. Med. Chem. 2013, 20, 2572–2582. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, K.; Tomas, M.; McClements, D.J.; Capanoglu, E. Recent Advances on the Improvement of Quercetin Bioavailability. Trends Food Sci. Technol. 2022, 119, 192–200. [Google Scholar] [CrossRef]
- Yang, L.-L.; Xiao, N.; Li, X.-W.; Fan, Y.; Alolga, R.N.; Sun, X.-Y.; Wang, S.-L.; Li, P.; Qi, L.-W. Pharmacokinetic Comparison between Quercetin and Quercetin 3-O-β-Glucuronide in Rats by UHPLC-MS/MS. Sci. Rep. 2016, 6, 35460. [Google Scholar] [CrossRef]
- Hai, Y.; Zhang, Y.; Liang, Y.; Ma, X.; Qi, X.; Xiao, J.; Xue, W.; Luo, Y.; Yue, T. Advance on the Absorption, Metabolism, and Efficacy Exertion of Quercetin and Its Important Derivatives. Food Front. 2020, 1, 420–434. [Google Scholar] [CrossRef]
- Sesink, A.L.A.; Arts, I.C.W.; Faassen-Peters, M.; Hollman, P.C.H. Intestinal Uptake of Quercetin-3-Glucoside in Rats Involves Hydrolysis by Lactase Phlorizin Hydrolase. J. Nutr. 2003, 133, 773–776. [Google Scholar] [CrossRef]
- Day, A.J.; Gee, J.M.; DuPont, M.S.; Johnson, I.T.; Williamson, G. Absorption of Quercetin-3-Glucoside and Quercetin-4′-Glucoside in the Rat Small Intestine: The Role of Lactase Phlorizin Hydrolase and the Sodium-Dependent Glucose Transporter. Biochem. Pharmacol. 2003, 65, 1199–1206. [Google Scholar] [CrossRef]
- Cho, J.M.; Chang, S.-Y.; Kim, D.-B.; Needs, P.W.; Jo, Y.-H.; Kim, M.-J. Effects of Physiological Quercetin Metabolites on Interleukin-1β-Induced Inducible NOS Expression. J. Nutr. Biochem. 2012, 23, 1394–1402. [Google Scholar] [CrossRef]
- Shabbir, U.; Rubab, M.; Daliri, E.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef]
- Liu, L.; Barber, E.; Kellow, N.J.; Williamson, G. Improving Quercetin Bioavailability: A Systematic Review and Meta-Analysis of Human Intervention Studies. Food Chem. 2025, 477, 143630. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, Y.; Ren, J.; Zeng, A.; Liu, J. Preparation of Quercetin–Nicotinamide Cocrystals and Their Evaluation under in Vivo and in Vitro Conditions. RSC Adv. 2020, 10, 21852–21859. [Google Scholar] [CrossRef]
- Chen, W.; Ju, X.; Aluko, R.E.; Zou, Y.; Wang, Z.; Liu, M.; He, R. Rice Bran Protein-Based Nanoemulsion Carrier for Improving Stability and Bioavailability of Quercetin. Food Hydrocoll. 2020, 108, 106042. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kang, M.-J.; Choi, H.-N.; Jeong, S.-M.; Lee, Y.-M.; Kim, J.-I. Quercetin Attenuates Fasting and Postprandial Hyperglycemia in Animal Models of Diabetes Mellitus. Nutr. Res. Pract. 2011, 5, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, T.; Menon, V.P. Quercetin Allievates Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Phytother. Res. 2004, 18, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, S.; Sharma, M.; Upadhyay, N.; Kumar, S.; Ahmed, Z.; Mahindroo, N. Anti-Diabetic, Anti-Oxidant and Anti-Adipogenic Potential of Quercetin Rich Ethyl Acetate Fraction of Prunus Persica. Pharmacogn. J. 2018, 10, 463–469. [Google Scholar] [CrossRef]
- Srinivasan, P.; Vijayakumar, S.; Kothandaraman, S.; Palani, M. Anti-Diabetic Activity of Quercetin Extracted from Phyllanthus Emblica, L. Fruit: In Silico and in Vivo Approaches. J. Pharm. Anal. 2018, 8, 109–118. [Google Scholar] [CrossRef]
- Yang, D.K.; Kang, H.-S. Anti-Diabetic Effect of Cotreatment with Quercetin and Resveratrol in Streptozotocin-Induced Diabetic Rats. Biomol. Ther. 2018, 26, 130–138. [Google Scholar] [CrossRef]
- Vessal, M.; Hemmati, M.; Vasei, M. Antidiabetic Effects of Quercetin in Streptozocin-Induced Diabetic Rats. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 357–364. [Google Scholar] [CrossRef]
- Alam, M.M.; Meerza, D.; Naseem, I. Protective Effect of Quercetin on Hyperglycemia, Oxidative Stress and DNA Damage in Alloxan Induced Type 2 Diabetic Mice. Life Sci. 2014, 109, 8–14. [Google Scholar] [CrossRef]
- Gaballah, H.H.; Zakaria, S.S.; Mwafy, S.E.; Tahoon, N.M.; Ebeid, A.M. Mechanistic Insights into the Effects of Quercetin and/or GLP-1 Analogue Liraglutide on High-Fat Diet/Streptozotocin-Induced Type 2 Diabetes in Rats. Biomed. Pharmacother. 2017, 92, 331–339. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Kang, M.-J.; Choi, H.-N.; Kim, J.-H.; Kim, J.-I. Quercetin Ameliorates Hyperglycemia and Dyslipidemia and Improves Antioxidant Status in Type 2 Diabetic Db/Db Mice. Nutr. Res. Pract. 2012, 6, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.-J.; Li, Y.; Cao, Q.-H.; Wu, H.-X.; Tang, X.-Y.; Gao, X.-H.; Yu, J.-Q.; Chen, Z.; Yang, Y. In Vitro and in Vivo Evidence That Quercetin Protects against Diabetes and Its Complications: A Systematic Review of the Literature. Biomed. Pharmacother. 2019, 109, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-M.; Wang, W.; Fan, C.-Y.; Wang, M.-X.; Zhang, X.; Hu, Q.-H.; Kong, L.-D. Quercetin Preserves β-Cell Mass and Function in Fructose-Induced Hyperinsulinemia through Modulating Pancreatic Akt/FoxO1 Activation. Evid.-Based Complement. Altern. Med. 2013, 2013, 303902. [Google Scholar] [CrossRef]
- Adewole, S.O.; Caxton-Martins, E.A.; Ojewole, J.a.O. Protective Effect of Quercetin on the Morphology of Pancreatic β-Cells of Streptozotocin-Treated Diabetic Rats. Afr. J. Tradit. Complement. Altern. Med. 2007, 4, 64–74. [Google Scholar] [CrossRef]
- Youl, E.; Bardy, G.; Magous, R.; Cros, G.; Sejalon, F.; Virsolvy, A.; Richard, S.; Quignard, J.; Gross, R.; Petit, P.; et al. Quercetin Potentiates Insulin Secretion and Protects INS-1 Pancreatic β-Cells against Oxidative Damage via the ERK1/2 Pathway. Br. J. Pharmacol. 2010, 161, 799–814. [Google Scholar] [CrossRef]
- Choi, H.-N.; Jeong, S.-M.; Huh, G.H.; Kim, J.-I. Quercetin Ameliorates Insulin Sensitivity and Liver Steatosis Partly by Increasing Adiponectin Expression in Ob/Ob Mice. Food Sci. Biotechnol. 2015, 24, 273–279. [Google Scholar] [CrossRef]
- Babacanoglu, C.; Yildirim, N.; Sadi, G.; Pektas, M.B.; Akar, F. Resveratrol Prevents High-Fructose Corn Syrup-Induced Vascular Insulin Resistance and Dysfunction in Rats. Food Chem. Toxicol. 2013, 60, 160–167. [Google Scholar] [CrossRef]
- Zhao, L.-R.; Du, Y.-J.; Chen, L.; Liu, Z.-G.; Pan, Y.-H.; Liu, J.-F.; Liu, B. Quercetin Protects against High Glucose-Induced Damage in Bone Marrow-Derived Endothelial Progenitor Cells. Int. J. Mol. Med. 2014, 34, 1025–1031. [Google Scholar] [CrossRef]
- Rodríguez, V.; Plavnik, L.; Tolosa de Talamoni, N. Naringin Attenuates Liver Damage in Streptozotocin-Induced Diabetic Rats. Biomed. Pharmacother. 2018, 105, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Soltesova-Prnova, M.; Milackova, I.; Stefek, M. 3′-O-(3-Chloropivaloyl)Quercetin, α-Glucosidase Inhibitor with Multi-Targeted Therapeutic Potential in Relation to Diabetic Complications. Chem. Pap. 2016, 70, 1439–1444. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Tong, J.; Li, J.; Ding, H. Quercetin Analogs as α-Glucosidase Inhibitors with Antidiabetic Activity. Food Biosci. 2024, 58, 103713. [Google Scholar] [CrossRef]
- Alam, F.; Islam, M.A.; Khalil, M.I.; Gan, S.H. Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches. Curr. Pharm. Des. 2016, 22, 3034–3049. [Google Scholar] [CrossRef]
- Hamilton, K.E.; Rekman, J.F.; Gunnink, L.K.; Busscher, B.M.; Scott, J.L.; Tidball, A.M.; Stehouwer, N.R.; Johnecheck, G.N.; Looyenga, B.D.; Louters, L.L. Quercetin Inhibits Glucose Transport by Binding to an Exofacial Site on GLUT1. Biochimie 2018, 151, 107–114. [Google Scholar] [CrossRef]
- Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Bao, L.; Li, Y. Quercetin But Not Quercitrin Ameliorates Tumor Necrosis Factor-Alpha-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Biol. Pharm. Bull. 2013, 36, 788–795. [Google Scholar] [CrossRef]
- Dhanya, R.; Arya, A.D.; Nisha, P.; Jayamurthy, P. Quercetin, a Lead Compound against Type 2 Diabetes Ameliorates Glucose Uptake via AMPK Pathway in Skeletal Muscle Cell Line. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef]
- Li, D.; Jiang, C.; Mei, G.; Zhao, Y.; Chen, L.; Liu, J.; Tang, Y.; Gao, C.; Yao, P. Quercetin Alleviates Ferroptosis of Pancreatic β Cells in Type 2 Diabetes. Nutrients 2020, 12, 2954. [Google Scholar] [CrossRef]
- Khaki, A.; Fathiazad, F.; Ahmadi-Ashtiani, H.R.; Rezazadeh, S.; Rastegar, H.; Imani, A.M. Compartments of Quercetin & Allium Cepa (Onion) on Blood Glucose in Diabetic Rats. J. Med. Plants 2010, 9, 107–112. [Google Scholar]
- Abdelmoaty, M.A.; Ibrahim, M.A.; Ahmed, N.S.; Abdelaziz, M.A. Confirmatory Studies on the Antioxidant and Antidiabetic Effect of Quercetin in Rats. Indian. J. Clin. Biochem. 2010, 25, 188–192. [Google Scholar] [CrossRef]
- Wang, Y.; Xin, X.; Jin, Z.; Hu, Y.; Li, X.; Wu, J.; Jin, M. Anti-Diabetic Effects of Pentamethylquercetin in Neonatally Streptozotocin-Induced Diabetic Rats. Eur. J. Pharmacol. 2011, 668, 347–353. [Google Scholar] [CrossRef]
- Jaishree, V.; Narsimha, S. Swertiamarin and Quercetin Combination Ameliorates Hyperglycemia, Hyperlipidemia and Oxidative Stress in Streptozotocin-Induced Type 2 Diabetes Mellitus in Wistar Rats. Biomed. Pharmacother. 2020, 130, 110561. [Google Scholar] [CrossRef]
- Dong, B.; Shi, Z.; Dong, Y.; Chen, J.; Wu, Z.-X.; Wu, W.; Chen, Z.-S.; Han, C. Quercetin Ameliorates Oxidative Stress-induced Cell Apoptosis of Seminal Vesicles via Activating Nrf2 in Type 1 Diabetic Rats. Biomed. Pharmacother. 2022, 151, 113108. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Sun, N.-N.; Chan, Z.; Chen, C.-J.; Wu, Y.-C.; Chau, C.-F. Enhancement of Digestion Resistance and Glycemic Control of Corn Starch through Conjugation with Gallic Acid and Quercetin Using the Free Radical Grafting Method. Processes 2022, 10, 2610. [Google Scholar] [CrossRef]
- Mahadev, M.; Nandini, H.S.; Ramu, R.; Gowda, D.V.; Almarhoon, Z.M.; Al-Ghorbani, M.; Mabkhot, Y.N. Fabrication and Evaluation of Quercetin Nanoemulsion: A Delivery System with Improved Bioavailability and Therapeutic Efficacy in Diabetes Mellitus. Pharmaceuticals 2022, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-F.; Xu, H.-X.; Yin, Z.-P.; Chen, J.-G.; Zhang, Q.-F. The Combination Effects of Quercetin on Starch and Digestive Enzymes Reduce Postprandial Blood Glucose in Rats. Eur. Food Res. Technol. 2024, 250, 1189–1199. [Google Scholar] [CrossRef]
- Korkmaz, Y.; Dik, B. The Comparison of the Antidiabetic Effects of Exenatide, Empagliflozin, Quercetin, and Combination of the Drugs in Type 2 Diabetic Rats. Fundam. Clin. Pharmacol. 2024, 38, 511–522. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, Q.; Ma, S.; Zhou, X. Effect of Quercetin on the in Vitro Tartary Buckwheat Starch Digestibility. Int. J. Biol. Macromol. 2021, 183, 818–830. [Google Scholar] [CrossRef]
- Altmann, C.; Schmidt, M.H.H. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int. J. Mol. Sci. 2018, 19, 110. [Google Scholar] [CrossRef]
- Thomas, A.A.; Feng, B.; Chakrabarti, S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 470–480. [Google Scholar] [CrossRef]
- Sonawane, R.D.; Vishwakarma, S.L.; Lakshmi, S.; Rajani, M.; Padh, H.; Goyal, R.K. Amelioration of STZ-Induced Type 1 Diabetic Nephropathy by Aqueous Extract of Enicostemma Littorale Blume and Swertiamarin in Rats. Mol. Cell Biochem. 2010, 340, 1–6. [Google Scholar] [CrossRef]
- Peeyush, K.T.; Gireesh, G.; Jobin, M.; Paulose, C.S. Neuroprotective Role of Curcumin in the Cerebellum of Streptozotocin-Induced Diabetic Rats. Life Sci. 2009, 85, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Xin, X.; Wang, Y.; Wu, J.; Jin, Z.; Ma, L.; Nie, C.; Xiao, X.; Hu, Y.; Jin, M. Pentamethylquercetin Protects Against Diabetes-Related Cognitive Deficits in Diabetic Goto-Kakizaki Rats. J. Alzheimer’s Dis. 2013, 34, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, X.; Zheng, H.; Cai, F. GW28-E0635 Quercetin Retards Progression of Diabetic Cardiomyopathy through Modulations of SIRT1 and AMP-Activated Protein Kinase. J. Am. Coll. Cardiol. 2017, 70, C63–C64. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Hu, J.; Lin, J.; Wang, T.; Duan, Y.; Man, W.; Feng, J.; Sun, L.; Jia, H.; et al. MST1 Coordinately Regulates Autophagy and Apoptosis in Diabetic Cardiomyopathy in Mice. Diabetologia 2016, 59, 2435–2447. [Google Scholar] [CrossRef]
- Bostancıeri, N.; Elbe, H.; Eşrefoğlu, M.; Vardı, N. Cardioprotective Potential of Melatonin, Quercetin and Resveratrol in an Experimental Model of Diabetes. Biotech. Histochem. 2022, 97, 152–157. [Google Scholar] [CrossRef]
- Popiolek-Kalisz, J.; Fornal, E. The Effects of Quercetin Supplementation on Blood Pressure-Meta-Analysis. Curr. Probl. Cardiol. 2022, 47, 101350. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Yang, Y.; Ma, L. Iron Metabolism and Type 2 Diabetes Mellitus: A Meta-Analysis and Systematic Review. J. Diabetes Investig. 2020, 11, 946–955. [Google Scholar] [CrossRef]
Number | Common Name | Scientific Name | QE Content [mg/100 g] |
---|---|---|---|
1 | Capers, raw | Capparis spinosa | 233.84 |
2 | Capers, canned | Capparis spinosa | 172.55 |
3 | Lovage leaves | Levisticum officinale | 170 |
4 | Radish leaves | Raphanus sativus | 70 |
5 | Dill weed, fresh | Anethum graveolens | 55.15 |
6 | Coriander leaves (cilantro) | Coriandrum sativum | 53 |
7 | Onion, yellow, raw | Allium cepa | 39.21 |
8 | Chili pepper, hot, green | Capsicum annuum | 15 |
9 | Cranberries, raw | Vaccinium macrocarpon | 14.02 |
10 | Lingonberries | Vaccinium vitis-idaea | 12 |
11 | Blueberries, raw | Vaccinium corymbosum | 7.71 |
12 | Buckwheat flour, whole | Fagopyrum esculentum | 9.03 |
13 | Apple, skin only | Malus domestica | 19.36 |
14 | Black grapes | Vitis vinifera | 4.47 |
15 | Black currants | Ribes nigrum | 3.87 |
16 | Kale, raw | Brassica oleracea var. sabellica | 3.71 |
17 | Chokeberries (Aronia) | Aronia melanocarpa | 3.8 |
18 | Broccoli, raw | Brassica oleracea var. italica | 3.48 |
19 | Tea, black, brewed | Camellia sinensis | 2.07 |
20 | Tea, green, brewed | Camellia sinensis | 2.2 |
21 | Elderberries | Sambucus nigra | 2.42 |
22 | Rocket (arugula), raw | Eruca sativa | 2.25 |
23 | Sorrel, raw | Rumex acetosa | 2.1 |
24 | Apple, Gala, with skin | Malus domestica | 3.8 |
25 | Chokeberries (Aronia) | Aronia melanocarpa | 3.8 |
26 | Broccoli, raw | Brassica oleracea var. italica | 3.48 |
27 | Red wine | Vitis vinifera | 2 |
28 | Tea, black, brewed | Camellia sinensis | 2.07 |
Animal Model | Dosage | Effect | Ref. |
---|---|---|---|
C57BL/6J mice | 1.5 mg/kg bw, 4 months | ↓ insulin resistance ↓ serum glucose level ↑ insulin intensity per islet cell ↑ protective effect on size and structure of pancreatic β-cells | [130] |
STZ at a dose of 55 mg/kg bw, ip, Wistar albino rats | Orally QE 15 mg/kg/day for 28 days | ↓ blood glucose ↑ serum insulin level | [131] |
STZ at a dose of 55 mg/kg bw, ip, Wistar albino rats | Orally QE 15 mg/kg/day for 28 days | ↓ blood glucose ↑ serum insulin level | [132] |
i.p. of STZ 90 mg/kg.bw in SD rats | QE 2.5, 5, 10, and 20 mg/kg/day orally for 10 weeks | ↓ glucose intolerance ↓ endogenous creatinine clearance rate ↓ postprandial glucose and triglyceride levels | [133] |
Streptozotocin (50 mg/kg)-induced type 2 diabetes Albino Wistar rats | 50 and 100 mg/kg bw of sertiamarin from Enicostemma axillare and QE, 28 days | ↓ blood glucose protective effect on size and structure of pancreatic β-cells | [134] |
Streptozotocin (65 mg/kg)-induced type 1 diabetes in Wistar rats | 30, 60, 120 mg/kg bw, 4 months | no impact on blood glucose level | [135] |
Sprague–Dawley rats | 1 g in 5 mL water (corn starch–QE complex), oral gavage after fasting for 12–14 h | ↓ AUC values for blood glucose levels QE at higher level was more effective | [136] |
Streptozotocin (40 mg/kg)-induced Albino Wistar rats | 50 mg/kg bw in nanoemulsion form, 21 days | ↓ blood glucose protective effect on size and structure of pancreatic β-cells | [137] |
Sprague–Dawley rats | 0.25 g/mL of QE (1.25%, 2.5%, and 5%) in starch complex, postprandial consumption | ↓ blood glucose ↑ blood glucose peak time | [138] |
Albino Wistar rats | 50 mg/kg bw, 8 weeks | protective effect on size and structure of pancreatic β-cells | [139] |
Sprague–Dawley rats | 18.75, 37.5, and 75 mg/kg bw, postprandial consumption of sucrose and maltose (0.25 g/mL) | ↓ blood glucose ↑ blood glucose peak time | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niziński, P.; Hawrył, A.; Polak, P.; Kondracka, A.; Oniszczuk, T.; Soja, J.; Hawrył, M.; Oniszczuk, A. Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes. Molecules 2025, 30, 3096. https://doi.org/10.3390/molecules30153096
Niziński P, Hawrył A, Polak P, Kondracka A, Oniszczuk T, Soja J, Hawrył M, Oniszczuk A. Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes. Molecules. 2025; 30(15):3096. https://doi.org/10.3390/molecules30153096
Chicago/Turabian StyleNiziński, Przemysław, Anna Hawrył, Paweł Polak, Adrianna Kondracka, Tomasz Oniszczuk, Jakub Soja, Mirosław Hawrył, and Anna Oniszczuk. 2025. "Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes" Molecules 30, no. 15: 3096. https://doi.org/10.3390/molecules30153096
APA StyleNiziński, P., Hawrył, A., Polak, P., Kondracka, A., Oniszczuk, T., Soja, J., Hawrył, M., & Oniszczuk, A. (2025). Potential of Quercetin as a Promising Therapeutic Agent Against Type 2 Diabetes. Molecules, 30(15), 3096. https://doi.org/10.3390/molecules30153096