The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment
2.3. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Vital Signs
3.3. Laboratory Findings
3.4. Clinical Outcomes
3.5. Predictive Value of eGFR
4. Discussion
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [CrossRef] [PubMed]
- Bohn, M.K.; Hall, A.; Sepiashvili, L.; Jung, B.; Steele, S.; Adeli, K. Pathophysiology of COVID-19: Mechanisms Underlying Disease Severity and Progression. Physiology 2020, 35, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Izcovich, A.; Ragusa, M.A.; Tortosa, F.; Lavena Marzio, M.A.; Agnoletti, C.; Bengolea, A.; Ceirano, A.; Espinosa, F.; Saavedra, E.; Sanguine, V.; et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS ONE 2020, 15, e0241955. [Google Scholar] [CrossRef] [PubMed]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ai, H.; Fu, Y.; Li, Q.; Cui, R.; Ma, X.; Ma, Y.F.; Wang, Z.; Liu, T.; Long, Y.; et al. Development of an Early Warning Model for Predicting the Death Risk of Coronavirus Disease 2019 Based on Data Immediately Available on Admission. Front Med. 2021, 8, 699243. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Piza, P.M.T.; De Freitas, V.M.; Aguiar-Brito, I.; Calsolari-Oliveira, B.M.; Rangel, E.B. Impact of Hyponatremia on COVID-19-Related Outcomes: A Retrospective Analysis. Biomedicines 2024, 12, 1997. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, V.M.; Chiloff, D.M.; Bosso, G.G.; Teixeira, J.O.P.; Hernandes, I.C.G.; Padilha, M.D.P.; Moura, G.C.; de Andrade, L.G.M.; Mancuso, F.; Finamor, F.E.; et al. A Machine Learning Model for Predicting Hospitalization in Patients with Respiratory Symptoms during the COVID-19 Pandemic. J. Clin. Med. 2022, 11, 4574. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.A.; Colley, L.; Agbaedeng, T.A.; Ellison-Hughes, G.M.; Ross, M.D. Vascular Manifestations of COVID-19—Thromboembolism and Microvascular Dysfunction. Front. Cardiovasc. Med. 2020, 7, 598400. [Google Scholar] [CrossRef] [PubMed]
- Jayarangaiah, A.; Kariyanna, P.T.; Chen, X.; Jayarangaiah, A.; Kumar, A. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620943293. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, M.; Radhakrishnan, Y.; Sedor, J.; Vachharajani, T.; Vachharajani, V.T.; Augustine, J.; Demirjian, S.; Thomas, G. COVID-19 and the kidney. Clevel. Clin. J. Med. 2020, 87, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Glowacka, M.; Lipka, S.; Mlynarska, E.; Franczyk, B.; Rysz, J. Acute Kidney Injury in COVID-19. Int. J. Mol. Sci. 2021, 22, 8081. [Google Scholar] [CrossRef] [PubMed]
- Legrand, M.; Bell, S.; Forni, L.; Joannidis, M.; Koyner, J.L.; Liu, K.; Cantaluppi, V. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Koch, E.; Lovett, S.; Nghiem, T.; Riggs, R.A.; Rech, M.A. Shock index in the emergency department: Utility and limitations. Open Access Emerg. Med. 2019, 11, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Roca, O.; Messika, J.; Caralt, B.; Garcia-de-Acilu, M.; Sztrymf, B.; Ricard, J.D.; Masclans, J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit Care 2016, 35, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lin, M.; Deng, Y.; Huang, H. The causal relationship between COVID-19 and estimated glomerular filtration rate: A bidirectional Mendelian randomization study. BMC Nephrol. 2024, 25, 21. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.; Lee, M.H.; Lee, S.K.; Jeong, S.; Han, H.W. Increased Estimated GFR Is Negatively Associated with the Risk of SARS-CoV-2 Infection and Severe COVID-19 within Normal to Mildly Decreased Levels: Nested Case-Control Study. J. Korean Med. Sci. 2023, 38, e415. [Google Scholar] [CrossRef] [PubMed]
- Carlson, N.; Nelveg-Kristensen, K.E.; Freese, B.E.; Feldt-Rasmussen, B.; Hornum, M.; Kamper, A.L.; Gislason, G.; Torp-Pedersen, C. Increased vulnerability to COVID-19 in chronic kidney disease. J. Intern. Med. 2021, 290, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, Y.; Han, D.; Yang, A.; Wang, A.Y.; Qi, W. Cardiorenal Syndrome in COVID-19 Patients: A Systematic Review. Front. Cardiovasc. Med. 2022, 9, 915533. [Google Scholar] [CrossRef] [PubMed]
- Mirijello, A.; Piscitelli, P.; de Matthaeis, A.; Inglese, M.; D’Errico, M.M.; Massa, V.; Greco, A.; Fontana, A.; Copetti, M.; Florio, L.; et al. Low eGFR Is a Strong Predictor of Worse Outcome in Hospitalized COVID-19 Patients. J. Clin. Med. 2021, 10, 5224. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, Y.; Payab, M.; Mohammadi-Vajari, E.; Aghili, S.M.M.; Sharifi, F.; Mehrdad, N.; Kashani, E.; Shadman, Z.; Larijani, B.; Ebrahimpur, M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: A review. J. Diabetes Metab. Disord. 2021, 20, 1743–1765. [Google Scholar] [PubMed]
- Beyerstedt, S.; Casaro, E.B.; Rangel, E.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [PubMed]
- Li, J.; Zhang, K.; Zhang, Y.; Gu, Z.; Huang, C. Neutrophils in COVID-19: Recent insights and advances. Virol. J. 2023, 20, 169. [Google Scholar] [CrossRef] [PubMed]
- La, T.G.; Marte, M.; Massetti, A.P.; Carli, S.M.; Romano, F.; Mastroianni, C.M.; Minorenti, M.; Alessandri, F.; Ajassa, C.; Fusconi, M.; et al. The neutrophil/lymphocyte ratio as a prognostic factor in COVID-19 patients: A case-control study. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 1056–1064. [Google Scholar] [PubMed]
- Higaki, A.; Okayama, H.; Homma, Y.; Sano, T.; Kitai, T.; Yonetsu, T.; Torii, S.; Kohsaka, S.; Kuroda, S.; Node, K.; et al. Predictive value of neutrophil-to-lymphocyte ratio for the fatality of COVID-19 patients complicated with cardiovascular diseases and/or risk factors. Sci. Rep. 2022, 12, 13606. [Google Scholar] [CrossRef] [PubMed]
- Bando, S.Y.; Bertonha, F.B.; Vieira, S.E.; de Oliveira, D.B.L.; Chalup, V.N.; Durigon, E.L.; Palmeira, P.; Curi, A.C.P.; Faria, C.S.; Antonangelo, L.; et al. Blood leukocyte transcriptional modules and differentially expressed genes associated with disease severity and age in COVID-19 patients. Sci. Rep. 2023, 13, 898. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.N.; Tamjidifar, R.; Rahman, H.S.; Adili, A.; Ghoreishizadeh, S.; Saeedi, H.; Thangavelu, L.; Shomali, N.; Aslaminabad, R.; Marofi, F.; et al. A comprehensive review about immune responses and exhaustion during coronavirus disease (COVID-19). Cell Commun. Signal. 2022, 20, 79. [Google Scholar] [CrossRef] [PubMed]
- Bobcakova, A.; Petriskova, J.; Vysehradsky, R.; Kocan, I.; Kapustova, L.; Barnova, M.; Diamant, Z.; Jesenak, M. Immune Profile in Patients with COVID-19: Lymphocytes Exhaustion Markers in Relationship to Clinical Outcome. Front. Cell Infect. Microbiol. 2021, 11, 646688. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Di, G.M.; Greco, M.; Borro, M.; Paladin, F.; Petrarca, C.; Gangemi, S. Basophils and Mast Cells in COVID-19 Pathogenesis. Cells 2021, 10, 2754. [Google Scholar] [CrossRef] [PubMed]
- Ben, S.; Gao, F.; Xu, Z.; Zhang, R.; Zhang, X.; Wang, N.; Zhang, M.; Hou, L. The role of hematological parameters in asymptomatic and non-severe cases of Omicron variant infection. Virol. J. 2024, 21, 143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, X.; Gao, Y.; Yu, Y.; Li, C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int. J. Mol. Sci. 2023, 24, 14133. [Google Scholar] [PubMed]
- Sciaudone, A.; Corkrey, H.; Humphries, F.; Koupenova, M. Platelets and SARS-CoV-2 During COVID-19: Immunity, Thrombosis, and Beyond. Circ. Res. 2023, 132, 1272–1289. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Kannan, S.; Khanna, P.; Singh, A.K. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis. J. Med. Virol. 2022, 94, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, J.; Wardhana, A.; Maghfirah, I.; Mulia, E.P.B.; Rachmi, D.A.; A’yun, M.Q.; Septianda, I. Relationship of D-dimer with severity and mortality in SARS-CoV-2 patients: A meta-analysis. Int. J. Lab. Hematol. 2021, 43, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Nasif, W.A.; El-Moursy Ali, A.S.; Hasan, M.M.; Alhuzali, A.M.H.; Yahya Alnashri, Y.A.; Ahmed Gadah, Z.I.; Edrees, E.A.A.; Albarakati, H.A.M.; Muhji Aloufi, H.S. Elucidating the Correlation of D-Dimer Levels with COVID-19 Severity: A Scoping Review. Anemia 2022, 2022, 9104209. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, G.; Borrelli de Andreis, F.; Aronico, N.; Lenti, M.V.; Barteselli, C.; Merli, S.; Pellegrino, I.; Coppola, L.; Cremonte, E.M.; Croce, G.; et al. Anemia in patients with COVID-19: Pathogenesis and clinical significance. Clin. Exp. Med. 2021, 21, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Zuin, M.; Rigatelli, G.; Quadretti, L.; Fogato, L.; Zuliani, G.; Roncon, L. Prognostic Role of Anemia in COVID-19 Patients: A Meta-Analysis. Infect. Dis. Rep. 2021, 13, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Turtle, L.; Thorpe, M.; Drake, T.M.; Swets, M.; Palmieri, C.; Russell, C.D.; Ho, A.; Aston, S.; Wootton, D.G.; Richter, A.; et al. Outcome of COVID-19 in hospitalised immunocompromised patients: An analysis of the WHO ISARIC CCP-UK prospective cohort study. PLoS Med. 2023, 20, e1004086. [Google Scholar] [CrossRef] [PubMed]
- Aguiar-Brito, I.; de Lucena, D.D.; Veronese-Araujo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, E.B. Impact of Hypertension on COVID-19 Burden in Kidney Transplant Recipients: An Observational Cohort Study. Viruses 2022, 14, 2409. [Google Scholar] [CrossRef] [PubMed]
- Veronese-Araujo, A.; de Lucena, D.D.; Aguiar-Brito, I.; Modelli de Andrade, L.G.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O.; Rangel, E.B. Oxygen Requirement in Overweight/Obese Kidney Transplant Recipients with COVID-19: An Observational Cohort Study. Diagnostics 2023, 13, 2168. [Google Scholar] [CrossRef] [PubMed]
- Rangel, E.B.; de Lucena, D.D.; Aguiar-Brito, I.; de Andrade, L.G.M.; Veronese-Araujo, A.; Cristelli, M.P.; Tedesco-Silva, H.; Medina-Pestana, J.O. COVID-19 in Kidney Transplant Recipients with Diabetes Mellitus: A Propensity Score Matching Analysis. Transpl. Int. 2022, 35, 10375. [Google Scholar] [CrossRef] [PubMed]
- Rangel, E.B. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert. Opin. Drug Metab Toxicol. 2012, 8, 1531–1548. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Villar, S.; Poza-Hernandez, P.; Freigang, S.; Zubizarreta-Ormazabal, I.; Paz-Martin, D.; Holl, E.; Perez-Pardo, O.C.; Tovar-Doncel, M.S.; Wissa, S.M.; Cimadevilla-Calvo, B.; et al. Automatic real-time analysis and interpretation of arterial blood gas sample for Point-of-care testing: Clinical validation. PLoS ONE 2021, 16, e0248264. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, H.; Bansal, S.; Parmar, V.; Shah, R. Study of Arterial Blood Gas Analysis in Moderate-to-Severe COVID-19 Patients. Cureus 2022, 14, e26715. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | Statistical Test | p-Value |
---|---|---|---|---|---|
Female (%) | 42.6 | 47.2 | 37.9 | 3.169 | 0.075 |
Male (%) | 57.4 | 52.8 | 62.1 | ||
Age (years) | 60 [48.5; 70.0] | 64 [53.0; 74.0] | 58 [46; 67.7] | −3.121 | 0.002 |
SAH (%) | 48.6 | 57.1 | 41.6 | 8.541 | 0.003 |
DM (%) | 28.4 | 29.8 | 27.3 | 0.282 | 0.595 |
CKD (%) | 13.6 | 25.5 | 4.0 | 35.580 | <0.001 |
Solid organ transplantation (%) | 15.0 | 25.5 | 6.6 | 24.820 | <0.001 |
Immunosuppression (%) | 12.3 | 18.0 | 7.6 | 8.994 | 0.003 |
Cardiovascular disease (%) | 14.0 | 17.4 | 11.2 | 2.856 | 0.091 |
Cerebrovascular disease (%) | 3.9 | 3.1 | 4.5 | 0.419 | 0.483 |
COPD (%) | 2.5 | 1.9 | 3.0 | 0.495 | 0.482 |
Asthma (%) | 3.3 | 1.9 | 4.5 | 1.977 | 0.160 |
Other respiratory illness (%) | 2.5 | 2.5 | 2.5 | 0.006 | 0.980 |
Neoplasia (%) | 6.1 | 8.1 | 4.5 | 1.966 | 0.161 |
Obesity (%) | 11.4 | 9.3 | 13.1 | 1.277 | 0.258 |
Smoking (%) | 8.6 | 11.2 | 6.6 | 2.397 | 0.122 |
Previous hospitalization (%) | 4.5 | 4.3 | 4.5 | 0.008 | 0.928 |
Variables | Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | ||||||
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | |
Age | 0.042 | 16.830 | <0.001 | 0.047 | 8.805 | 0.003 | 0.249 | 66.160 | <0.001 |
SAH | 0.028 | 11.330 | <0.001 | 0.009 | 2.404 | 0.123 | 0.065 | 14.670 | <0.001 |
Cardiovascular disease | 0.014 | 6.034 | 0.015 | −0.006 | 0.087 | 0.768 | 0.032 | 7.402 | 0.007 |
CKD | 0.152 | 65.190 | 0.001 | 0.136 | 26.240 | <0.001 | 0.004 | 1.811 | 0.180 |
Immunosuppression | 0.037 | 14.660 | <0.001 | 0.004 | 1.637 | 0.203 | 0.021 | 5.138 | 0.025 |
Solid organ transplantation | 0.075 | 30.130 | <0.001 | 0.005 | 1.739 | 0.189 | 0.008 | 2.606 | 0.108 |
Obesity | −0.002 | 0.108 | 0.743 | 0.001 | 1.239 | 0.267 | 0.029 | 6.932 | 0.009 |
Variables | Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | t-Test | p-Value |
---|---|---|---|---|---|
SBP (mmHg) | 128 [115; 143.2] | 126 [110; 144.5] | 129 [118; 143] | 1.304 | 0.193 |
DBP (mmHg) | 79 [70; 89] | 75 [65.7; 84] | 80 [71; 90.8] | 3.144 | 0.002 |
MAP (mmHg) | 95 [85; 106] | 92.5 [81; 103.2] | 96 [87; 107] | 2.576 | 0.011 |
Heart Rate (bpm) | 93.5 [81; 109.2] | 88.5 [79.00; 104.00] | 98.4 [87.00; 111.7] | 2.655 | 0.008 |
Shock Index | 0.74 [0.63; 0.86] | 0.73 [0.58; 0.86] | 0.75 [0.65; 0.85] | 0.042 | 0.966 |
Temperature (°C) | 36.5 [36.0; 37.0] | 36 [36.0; 36.9] | 36.6 [36.0; 37.0] | 0.119 | 0.905 |
Respiratory rate (bpm) | 25 [21.0; 29.0] | 25 [20.0; 29.0] | 24 [22.0; 29.0] | −0.366 | 0.715 |
SpO2 (%) | 93 [89.0; 95.0] | 93 [89.0; 95.0] | 92 [89.0; 95.0] | 0.763 | 0.446 |
ROX Index | 17.8 [14.9; 20.9] | 17.7 [14.9; 21.6] | 17.9 [14.8; 20.3] | 0.990 | 0.324 |
Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | |||||||
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | |
SBP (mmHg) | 0.011 | 4.596 | 0.033 | 0.018 | 3.451 | 0.065 | −0.001 | 0.787 | 0.376 |
DBP (mmHg) | 0.041 | 14.150 | <0.001 | 0.002 | 1.317 | 0.253 | 0.009 | 2.619 | 0.107 |
MAP (mmHg) | 0.032 | 11.130 | <0.001 | 0.010 | 2.323 | 0.130 | 0.006 | 2.043 | 0.155 |
Heart rate (bpm) | 0.036 | 12.640 | <0.001 | −0.006 | 0.188 | 0.665 | 0.085 | 17.140 | <0.001 |
Shock Index | −0.003 | 0.005 | 0.945 | 0.018 | 3.481 | 0.064 | 0.030 | 6.128 | 0.014 |
Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | t-Test | p-Value | |
---|---|---|---|---|---|
pH | 7.44 [7.39; 7.47] | 7.40 [7.35; 7.45] | 7.46 [7.42; 7.48] | 1.924 | 0.056 |
pCO2 (mmHg) | 32.3 [28.1; 36.3] | 31.9 [26.0; 35.7] | 32.5 [29.2; 36.4] | 1.585 | 0.114 |
pO2 (mmHg) | 62.9 [53.4; 73.4] | 63.3 [53.0; 79.3] | 62.7 [53.8; 71.2] | −0.496 | 0.620 |
Bicarbonate (mEq/L) | 21.3 [18.5; 23.5] | 19.3 [16.6; 22.6] | 22.4 [20.8; 24.7] | 7.117 | <0.001 |
Base excess | −1.7 [−4.6; 0.8] | −4.1 [−7.7; −1.6] | −0.3 [−1.9; 1.7] | 8.057 | <0.001 |
Lactate (mg/dL) | 13.2 [9.0; 19.0] | 13.0 [9.0; 19.0] | 14.0 [10.0; 19.0] | −0.457 | 0.648 |
Arterial blood glucose (mg/dL) | 135.0 [112.0; 196.0] | 129.0 [110.0; 187.0] | 139.5 [113.0; 201.7] | −0.008 | 0.994 |
Hemoglobin (g/dL) | 13.5 [12.0; 14.6] | 12.7 [10.8; 14.1] | 13.9 [12.7; 15.0] | 5.603 | <0.001 |
Hematocrit (%) | 39.9 [36.0; 43.3] | 38.2 [31.9; 42.0] | 40.8 [37.6; 44.1] | 4.811 | <0.001 |
Leukocytes (/µL) | 7610 [5270; 10,280] | 7720 [5330; 10,280] | 7505 [5212; 10,267] | −0.750 | 0.454 |
Band neutrophils (/µL) | 0 [0; 233] | 0 [0; 362] | 0 [0; 173] | −2.107 | 0.036 |
Neutrophils (/µL) | 5862 [3771; 8164] | 5978 [3939; 8016] | 5776 [3727; 8297] | −0.954 | 0.341 |
Eosinophils (/µL) | 4 [0; 33] | 2 [0; 33] | 4 [0; 33] | 0.692 | 0.489 |
Basophils (/µL) | 9 [0; 21] | 6 [0; 20] | 11 [0; 24] | 2.099 | 0.037 |
Lymphocytes (/µL) | 995 [643; 1375] | 858 [507; 1291] | 1029 [719; 1487] | 2.252 | 0.025 |
Atypical lymphocytes (/µL) | 0 [0;0] | 0 [0;0] | 0 [0;0] | 0.155 | 0.877 |
Monocytes (/µL) | 437 [283; 649] | 449 [275; 685] | 434 [287; 640] | −0.475 | 0.635 |
Neutrophil-to-lymphocyte ratio | 6.3 [3.6; 9.8] | 7.1 [4.0; 12.1] | 5.2 [3.4; 8.6] | −2.723 | 0.007 |
Platelets (/µL), ×103 | 189 [148; 239] | 183.5 [131.5; 232.5] | 191 [157; 242.5] | 0.875 | 0.382 |
Platelets-to-lymphocytes ratio | 189.4 [125.8; 304.4] | 210.7 [128.4; 345.1] | 183.0 [125.0; 256.1] | −2.566 | 0.011 |
C-Reactive protein (mg/L) | 94.3 [52.2; 179.3] | 84.0 [47.8; 177.8] | 96.6 [53.8; 183.6] | −0.154 | 0.878 |
Urea (mg/dL) | 41.5 [28.0; 73.0] | 78.0 [56.0; 117.0] | 29.0 [24.0; 37.0] | 13.758 | <0.001 |
Creatinine (mg/dL) | 1.09 [0.84; 1.95] | 2.13 [1.47; 3.42] | 0.86 [0.72; 1.00] | −9.024 | <0.001 |
Urea-to-creatinine ratio | 34.5 [27.7; 43.6] | 34.3 [26.9; 44.2] | 34.5 [28.0; 43.1] | 0.490 | 0.624 |
Sodium (mEq/L) | 136 [132; 139] | 136 [131; 139] | 136 [133; 140] | 1.598 | 0.111 |
Potassium (mEq/L) | 4.5 [4.0; 4.9] | 4.8 [4.4; 5.5] | 4.2 [3.9; 4.6] | −7.262 | <0.001 |
ALT (U/L) | 29 [18; 49] | 23.5 [15; 39] | 33 [23; 55] | −0.521 | 0.603 |
D-Dimer (µg/mL) | 1.3 [0.8; 2.2] | 1.6 [0.9; 2.5] | 1.1 [0.6; 1.8] | −2.601 | 0.010 |
Total (n = 369) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | |||||||
---|---|---|---|---|---|---|---|---|---|
Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | Adjusted R2 | F-Test | p-Value | |
pH | 0.009 | 3.768 | 0.053 | 0.198 | 34.070 | <0.001 | 0.000 | 1.027 | 0.312 |
pCO2 (mmHg) | 0.014 | 5.197 | 0.023 | −0.001 | 0.914 | 0.341 | 0.010 | 2.621 | 0.108 |
Bicarbonate (mEq/L) | 0.225 | 85.560 | <0.001 | 0.149 | 24.400 | <0.001 | 0.034 | 6.450 | 0.012 |
Base excess | 0.273 | 109.600 | <0.001 | 0.228 | 40.480 | <0.001 | 0.029 | 5.629 | 0.019 |
Hemoglobin (g/dL) | 0.100 | 40.500 | <0.001 | 0.118 | 22.310 | <0.001 | 0.000 | 0.915 | 0.340 |
Hematocrit (%) | 0.078 | 30.890 | <0.001 | 0.107 | 20.040 | <0.001 | 0.001 | 1.273 | 0.261 |
Eosinophils (/µL) | −0.001 | 0.482 | 0.488 | 0.027 | 5.436 | 0.021 | 0.012 | 3.301 | 0.071 |
Basophils (/µL) | 0.013 | 5.631 | 0.018 | −0.006 | 0.100 | 0.753 | −0.005 | 0.009 | 0.893 |
Lymphocytes (/µL) | 0.020 | 8.220 | 0.004 | 0.009 | 2.464 | 0.118 | −0.002 | 0.656 | 0.419 |
Neutrophil-to-lymphocyte ratio | 0.015 | 6.247 | 0.013 | −0.005 | 0.202 | 0.654 | −0.005 | 0.054 | 0.817 |
Platelet-to-lymphocyte ratio | 0.011 | 4.946 | 0.027 | −0.003 | 0.461 | 0.498 | −0.003 | 0.385 | 0.536 |
Urea (mg/dL) | 0.561 | 456.900 | <0.001 | 0.444 | 128.900 | <0.001 | 0.245 | 64.450 | <0.001 |
Creatinine (mg/dL) | 0.387 | 226.700 | <0.001 | 0.450 | 131.700 | <0.001 | 0.487 | 187.700 | <0.001 |
Urea-to-creatinine ratio | 0.006 | 3.029 | 0.083 | 0.156 | 30.610 | <0.001 | 0.006 | 2.214 | 0.138 |
Potassium (mEq/L) | 0.195 | 84.830 | <0.001 | 0.058 | 10.420 | 0.002 | 0.059 | 12.980 | <0.001 |
D-Dimer (µg/mL) | 0.047 | 13.360 | <0.001 | 0.023 | 3.688 | 0.057 | 0.015 | 3.148 | 0.078 |
Total (n = 359) | eGFR < 60 (n = 161) | eGFR ≥ 60 (n = 198) | χ2 | p-Value | |
---|---|---|---|---|---|
Mortality (%) | 29.2 | 41.6 | 19.2 | 21.6 | <0.001 |
Hemodialysis (%) | 18.8 | 32.3 | 9.6 | 28.8 | <0.001 |
Intensive care unit (%) | 43.1 | 50.9 | 37.9 | 6.1 | 0.013 |
Mechanical ventilation (%) | 29.0 | 39.8 | 21.2 | 14.7 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas, V.M.; Rangel, É.B. The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis. Infect. Dis. Rep. 2025, 17, 79. https://doi.org/10.3390/idr17040079
de Freitas VM, Rangel ÉB. The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis. Infectious Disease Reports. 2025; 17(4):79. https://doi.org/10.3390/idr17040079
Chicago/Turabian Stylede Freitas, Victor Muniz, and Érika Bevilaqua Rangel. 2025. "The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis" Infectious Disease Reports 17, no. 4: 79. https://doi.org/10.3390/idr17040079
APA Stylede Freitas, V. M., & Rangel, É. B. (2025). The Role of Kidney Function in Predicting COVID-19 Severity and Clinical Outcomes: A Retrospective Analysis. Infectious Disease Reports, 17(4), 79. https://doi.org/10.3390/idr17040079