Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (848)

Search Parameters:
Keywords = pricing games

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

27 pages, 1062 KiB  
Article
Dynamic Supply Chain Decision-Making of Live E-Commerce Considering Netflix Marketing Under Different Power Structures
by Yawen Liu, Mohammed Gadafi Tamimu and Junwu Chai
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 202; https://doi.org/10.3390/jtaer20030202 - 6 Aug 2025
Abstract
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This [...] Read more.
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This transition is further expedited by Netflix-like entertainment marketing methods, which have demonstrated the capacity to enhance consumer retention by as much as 40%. As organizations adjust to this evolving landscape, it is essential to optimize supply chain strategies to align with these dynamic, consumer-centric environments. This paper examines the complexity of decision-making in live e-commerce supply chains, specifically regarding Netflix-inspired marketing strategies. The primary aim of this study is to design a game-theoretic framework that examines the interactions between producers and online celebrity retailers (OCRs) across different power dynamics. As live commerce integrates digital retail with immersive experiences, businesses must optimize pricing, quality, and marketing strategies in real-time. We present engagement-driven marketing as a strategic variable and incorporate consumer regret and switching costs into the demand function. To illustrate practical trade-offs in strategy, we incorporate a multi-criteria decision-making (MCDM) layer with AHP-TOPSIS, assessing profit, consumer surplus, engagement score, and channel efficiency. The experiment results indicate that Netflix-style marketing markedly increases demand and profit in retailer-led frameworks, whereas centralized tactics enhance overall channel performance. TOPSIS analysis prioritizes high-effort, high-engagement methods, whereas the Stackelberg experiment underscores the influence of power dynamics on profit distribution. This study presents an innovative integrative decision-making methodology for enhancing live-streaming commerce tactics in data-driven and consumer-focused markets. Full article
Show Figures

Figure 1

28 pages, 2129 KiB  
Article
Research on Pricing Strategies of Knowledge Payment Products Considering the Impact of Embedded Advertising Under the User-Generated Content Model
by Xiubin Gu, Yi Qu and Minhe Wu
Systems 2025, 13(8), 665; https://doi.org/10.3390/systems13080665 - 6 Aug 2025
Abstract
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. [...] Read more.
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. This paper examines the impact of embedded advertising on the pricing of knowledge products, aims to maximize the profits of both knowledge producer and the platform. Based on Stackelberg game theory, two pricing decision models are developed under different advertising management modes: the platform-managed mode (where the platform determines the advertising intensity) and the advertiser-managed mode (where the advertiser determines the advertising intensity). The study analyzes the effects of UGC product quality, consumer sensitivity to advertising, and power structure on knowledge product pricing, and derives threshold conditions for optimal pricing. The results indicate that (1) When the quality of UGC knowledge product exceeds a certain threshold, platform-managed advertising becomes profitable. (2) Under the platform-managed mode, both the platform and knowledge producer can adopt price-increasing strategies to enhance profits. (3) Under the advertiser-managed mode, the platform can leverage differences in power structure to optimize revenue, while knowledge producer can actively enhance his pricing power to achieve mutual benefits with the platform. This study provides theoretical support and practical guidance for advertising cooperation mechanisms and pricing strategies for knowledge products in UGC-based knowledge trading platforms. Full article
Show Figures

Figure 1

34 pages, 1960 KiB  
Article
Parallel Export and Differentiated Production in the Supply Chain of New Energy Vehicles
by Lingzhi Shao, Ziqing Zhu, Haiqun Li and Xiaoxue Ding
Systems 2025, 13(8), 662; https://doi.org/10.3390/systems13080662 - 5 Aug 2025
Abstract
Considering the supply chain of new energy vehicles composed of a local manufacturer, an authorized distributor in the domestic market, and a competitive manufacturer in the export market, this paper studies three different cases of parallel export as well as their decisions about [...] Read more.
Considering the supply chain of new energy vehicles composed of a local manufacturer, an authorized distributor in the domestic market, and a competitive manufacturer in the export market, this paper studies three different cases of parallel export as well as their decisions about prices, sales scale, and the degree of production differentiation. Three game models are constructed and solved under the cases of no parallel exports (CN), authorized distributors’ parallel exports (CR), and third-party parallel exports (CT), respectively, and the equilibrium analysis is carried out, and finally, the influence of relevant parameters is explored through numerical simulation. It is found that (1) the manufacturer’s decisions on production and sales are influenced by the characteristics of consumer preferences in local and export markets, the cost of differentiated production, and the consumer recognition of parallel exports; (2) the manufacturers’ profits will always be damaged by parallel exports; (3) differentiated production can reduce the negative impact of parallel exports under certain conditions, and then improve the profits of manufacturers; (4) manufacturers can increase their profits by improving the purchase intention of consumers in the local market, improve the level of production differentiation in the export market, or reducing the cost of differentiation. Full article
(This article belongs to the Section Supply Chain Management)
Show Figures

Figure 1

18 pages, 1317 KiB  
Article
A Stackelberg Game for Co-Optimization of Distribution System Operator Revenue and Virtual Power Plant Costs with Integrated Data Center Flexibility
by Qi Li, Shihao Liu, Bokang Zou, Yulong Jin, Yi Ge, Yan Li, Qirui Chen, Xinye Du, Feng Li and Chenyi Zheng
Energies 2025, 18(15), 4123; https://doi.org/10.3390/en18154123 - 3 Aug 2025
Viewed by 208
Abstract
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and [...] Read more.
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and curtailment of renewable generation. To address these issues, this paper proposes a hierarchical pricing and dispatch framework modeled as a tri-level Stackelberg game that coordinates interactions among an upstream grid, a distribution system operator (DSO), and multiple virtual power plants (VPPs). At the upper level, the DSO acts as the leader, formulating dynamic time-varying purchase and sale prices to maximize its revenue based on upstream grid conditions. In response, at the lower level, each VPP acts as a follower, optimally scheduling its portfolio of distributed energy resources—including microturbines, energy storage, and interruptible loads—to minimize its operating costs under the announced tariffs. A key innovation is the integration of a schedulable data center within one VPP, which responds to a specially designed wind-linked incentive tariff by shifting computational workloads to periods of high renewable availability. The resulting high-dimensional bilevel optimization problem is solved using a Kriging-based surrogate methodology to ensure computational tractability. Simulation results verify that, compared to a static-pricing baseline, the proposed strategy increases DSO revenue by 18.9% and reduces total VPP operating costs by over 28%, demonstrating a robust framework for enhancing system-wide economic and operational efficiency. Full article
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 258
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

14 pages, 765 KiB  
Article
Reverse-Demand-Response-Based Power Stabilization in Isolated Microgrid
by Seungchan Jeon, Jangkyum Kim and Seong Gon Choi
Energies 2025, 18(15), 4081; https://doi.org/10.3390/en18154081 - 1 Aug 2025
Viewed by 129
Abstract
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy [...] Read more.
This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy production, while electric vehicles seek to charge energy at a lower price. In our system model, the operator determines the incentive to encourage more charging facilities and electric vehicles to participate in the reverse demand response program. Charging facilities, acting as brokers, use a portion of these incentives to further encourage electric vehicle engagement. Electric vehicles follow the decisions made by the broker and system operator to determine their charging strategy within the system. Consequently, charging energy and incentives are allocated to the electric vehicles in proportion to their decisions. The paper investigates the economic benefits of individual participants and the contribution of power stabilization by implementing a hierarchical decision-making heterogeneous multi-leaders multi-followers Stackelberg game. By demonstrating the existence of a unique Nash Equilibrium, we show the effectiveness of the proposed model in an isolated microgrid environment. Full article
Show Figures

Figure 1

79 pages, 12542 KiB  
Article
Evolutionary Game-Theoretic Approach to Enhancing User-Grid Cooperation in Peak Shaving: Integrating Whole-Process Democracy (Deliberative Governance) in Renewable Energy Systems
by Kun Wang, Lefeng Cheng and Ruikun Wang
Mathematics 2025, 13(15), 2463; https://doi.org/10.3390/math13152463 - 31 Jul 2025
Viewed by 292
Abstract
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced [...] Read more.
The integration of renewable energy into power grids is imperative for reducing carbon emissions and mitigating reliance on depleting fossil fuels. In this paper, we develop symmetric and asymmetric evolutionary game-theoretic models to analyze how user–grid cooperation in peak shaving can be enhanced by incorporating whole-process democracy (deliberative governance) into decision-making. Our framework captures excess returns, cooperation-driven profits, energy pricing, participation costs, and benefit-sharing coefficients to identify equilibrium conditions under varied subsidy, cost, and market scenarios. Furthermore, this study integrates the theory, path, and mechanism of deliberative procedures under the perspective of whole-process democracy, exploring how inclusive and participatory decision-making processes can enhance cooperation in renewable energy systems. We simulate seven scenarios that systematically adjust subsidy rates, cost–benefit structures, dynamic pricing, and renewable-versus-conventional competitiveness, revealing that robust cooperation emerges only under well-aligned incentives, equitable profit sharing, and targeted financial policies. These scenarios systematically vary these key parameters to assess the robustness of cooperative equilibria under diverse economic and policy conditions. Our findings indicate that policy efficacy hinges on deliberative stakeholder engagement, fair profit allocation, and adaptive subsidy mechanisms. These results furnish actionable guidelines for regulators and grid operators to foster sustainable, low-carbon energy systems and inform future research on demand response and multi-source integration. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

27 pages, 4008 KiB  
Article
Evolutionary Dynamics and Policy Coordination in the Vehicle–Grid Interaction Market: A Tripartite Evolutionary Game Analysis
by Qin Shao, Ying Lyu and Jian Cao
Mathematics 2025, 13(15), 2356; https://doi.org/10.3390/math13152356 - 23 Jul 2025
Viewed by 201
Abstract
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three [...] Read more.
This study introduces a novel tripartite evolutionary game model to analyze the strategic interactions among electric vehicle (EV) aggregators, local governments, and EV users in vehicle–grid interaction (VGI) markets. The core novelty lies in capturing bounded rationality and dynamic decision-making across the three stakeholders, revealing how policy incentives and market mechanisms drive the transition from disordered charging to bidirectional VGI. Key findings include the following: (1) The system exhibits five stable equilibrium points, corresponding to three distinct developmental phases of the VGI market: disordered charging (V0G), unidirectional VGI (V1G), and bidirectional VGI (V2G). (2) Peak–valley price differences are the primary driver for transitioning from V0G to V1G. (3) EV aggregators’ willingness to adopt V2G is influenced by upgrade costs, while local governments’ subsidy strategies depend on peak-shaving benefits and regulatory costs. (4) Increasing the subsidy differential between V1G and V2G accelerates market evolution toward V2G. The framework offers actionable policy insights for sustainable VGI development, while advancing evolutionary game theory applications in energy systems. Full article
Show Figures

Figure 1

31 pages, 7290 KiB  
Article
Freight Rate Decisions in Shipping Logistics Service Supply Chains Considering Blockchain Adoption Risk Preferences
by Yujing Chen, Jiao Mo and Bin Yang
Mathematics 2025, 13(15), 2339; https://doi.org/10.3390/math13152339 - 22 Jul 2025
Viewed by 230
Abstract
This paper explores the strategic implications of technological adoption within shipping logistics service supply chains, with a particular focus on blockchain technology (BCT). When integrating new technologies, supply chain stakeholders evaluate associated risks alongside complexity, profitability, and operational challenges, which influence their strategic [...] Read more.
This paper explores the strategic implications of technological adoption within shipping logistics service supply chains, with a particular focus on blockchain technology (BCT). When integrating new technologies, supply chain stakeholders evaluate associated risks alongside complexity, profitability, and operational challenges, which influence their strategic behaviors. Anchored in the concept of technology trust, this study examines how different risk preferences affect BCT adoption decisions and freight rate strategies. A game-theoretic model is constructed using a mean-variance utility framework to analyze interactions between shipping companies and freight forwarders under three adoption scenarios: no adoption (NN), partial adoption (BN), and full adoption (BB). The results indicate that risk-seeking agents are more likely to adopt BCT early but face greater freight rate volatility in the initial stages. As the technology matures, strategic variability declines and the influence of adaptability on pricing becomes less pronounced. In contrast, risk-neutral and risk-averse participants tend to adopt more conservatively, resulting in slower but more stable pricing dynamics. These findings offer new insights into how technology trust and risk attitudes shape strategic decisions in digitally transforming supply chains. The study also provides practical implications for differentiated pricing strategies, BCT adoption incentives, and collaborative policy design among logistics stakeholders. Full article
(This article belongs to the Special Issue Advances in Mathematical Optimization in Operational Research)
Show Figures

Figure 1

19 pages, 1682 KiB  
Article
The Use of Video Games in Language Learning: A Bibliometric Analysis
by Alain Presentación-Muñoz, Alberto González-Fernández, Miguel Rodal and Jesús Acevedo-Borrega
Metrics 2025, 2(3), 12; https://doi.org/10.3390/metrics2030012 - 21 Jul 2025
Viewed by 267
Abstract
Advances in technology and changes in the way people entertain themselves have made video games a cultural agent on a par with more traditional games, including language learning. In addition, the use of video games in education is becoming increasingly common and numerous [...] Read more.
Advances in technology and changes in the way people entertain themselves have made video games a cultural agent on a par with more traditional games, including language learning. In addition, the use of video games in education is becoming increasingly common and numerous benefits associated with their use have been discovered. The aim of this article is to analyze the search trends in studies dealing with the use of video games in language learning. To this end, a bibliometric analysis was carried out by applying the traditional laws of bibliometrics (Price’s law, Bradford’s law of concentration, Lotka’s law, Zipf’s law and h-index) to documents published in journals indexed in the Core Collection of the Web of Science (WoS). Annual publications between 2009 and 2022 show an exponential growth R2 = 86%. The journals with the most publications are Computer assisted language learning (Taylor & Francis) and Computers and Education (Elsevier). Jie Chi-Yang and Gwo Jen-Hwan were the most cited authors. The United States and Taiwan were the countries with the highest scientific output. The use of video games in language learning has been of particular interest in recent years, with benefits found for students who use them in their classes, although more research is needed to establish criteria and requirements for each video game for its intended purpose. Full article
Show Figures

Figure 1

34 pages, 712 KiB  
Review
Transformation of Demand-Response Aggregator Operations in Future US Electricity Markets: A Review of Technologies and Open Research Areas with Game Theory
by Styliani I. Kampezidou and Dimitri N. Mavris
Appl. Sci. 2025, 15(14), 8066; https://doi.org/10.3390/app15148066 - 20 Jul 2025
Viewed by 308
Abstract
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how [...] Read more.
The decarbonization of electricity generation by 2030 and the realization of a net-zero economy by 2050 are central to the United States’ climate strategy. However, large-scale renewable integration introduces operational challenges, including extreme ramping, unsafe dispatch, and price volatility. This review investigates how demand–response (DR) aggregators and distributed loads can support these climate goals while addressing critical operational challenges. We hypothesize that current DR aggregator frameworks fall short in the areas of distributed load operational flexibility, scalability with the number of distributed loads (prosumers), prosumer privacy preservation, DR aggregator and prosumer competition, and uncertainty management, limiting their potential to enable large-scale prosumer participation. Using a systematic review methodology, we evaluate existing DR aggregator and prosumer frameworks through the proposed FCUPS criteria—flexibility, competition, uncertainty quantification, privacy, and scalability. The main results highlight significant gaps in current frameworks: limited support for decentralized operations; inadequate privacy protections for prosumers; and insufficient capabilities for managing competition, uncertainty, and flexibility at scale. We conclude by identifying open research directions, including the need for game-theoretic and machine learning approaches that ensure privacy, scalability, and robust market participation. Addressing these gaps is essential to shape future research agendas and to enable DR aggregators to contribute meaningfully to US climate targets. Full article
Show Figures

Figure 1

28 pages, 2701 KiB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 - 17 Jul 2025
Viewed by 192
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

23 pages, 841 KiB  
Article
Green Investment Strategies and Pricing Decisions in a Supply Chain Considering Blockchain Technology
by Songshi Shao, Yutong Li, Xu Cheng and Jinzhu Qu
Sustainability 2025, 17(14), 6491; https://doi.org/10.3390/su17146491 - 16 Jul 2025
Viewed by 328
Abstract
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building [...] Read more.
With rising environmental awareness, numerous firms are transitioning to green investment, such as low-carbon production. However, the consumer adoption of low-carbon products remains low due to transparency concerns. Many firms are leveraging blockchain to address information asymmetry in the supply chain, thereby building consumer confidence in low-carbon products. The purpose of this work is to provide decision support for business firms by analyzing the strategic choices regarding the manufacturer’s green investment and the e-retailer’s adoption of blockchain technology. Three strategy combinations are considered, including the baseline strategy combination without green investment and blockchain technology (NN), the strategy combination with only green investment (LN), and the strategy combination with both green investment and blockchain technology (LB). The optimal pricing and green level decisions are derived, and the conditions under which green investment and blockchain technology are beneficial to the supply chain members are examined. The findings suggest that the e-retailer can obtain the highest profit without adopting blockchain technology if it holds a substantial or extremely low market share, if the consumers’ low-carbon preference is at a low to medium level, or if the consumer green trust coefficient is high when the manufacturer implements the green investment strategy. When consumers exhibit a weak preference for low-carbon products, the strategy combination NN is optimal for the supply chain members. The strategy combination LB becomes optimal if the consumer green trust coefficient is near or below the moderate threshold, if the market share of a channel is neither extremely high nor low, or if consumers exhibit a strong preference for low-carbon products. Full article
Show Figures

Figure 1

22 pages, 749 KiB  
Article
Pricing Strategy and Blockchain-Enabled Data Sharing in Cross-Border Port Systems
by Huida Zhao and Chanjuan Liu
Mathematics 2025, 13(14), 2281; https://doi.org/10.3390/math13142281 - 15 Jul 2025
Viewed by 253
Abstract
The study examines the impact of pricing strategies on the competition and cooperation of cross-border ports, focusing on unified pricing and differential pricing. The results show that the inside border port can adopt a differentiation strategy to enhance its benefits, as this strategy [...] Read more.
The study examines the impact of pricing strategies on the competition and cooperation of cross-border ports, focusing on unified pricing and differential pricing. The results show that the inside border port can adopt a differentiation strategy to enhance its benefits, as this strategy allows for better control. Additionally, while the differentiated pricing strategy is an equilibrium strategy for the inside border port, blockchain technology can enhance the economic benefits of the inside border port under certain conditions, which also demonstrates the commercial value of blockchain in data sharing. Moreover, the expansion of port capacity can reduce the congestion of the inside border port to some extent under specific conditions. Finally, the study analyzes the environmental impact, tariff impact, and influence of port cooperation, which provides some management implications for inside border port. In summary, the findings highlight the potential of blockchain to optimize pricing strategy and promote cooperation between regional ports, thus improving economic benefits. Full article
Show Figures

Figure 1

Back to TopTop