Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,546)

Search Parameters:
Keywords = preclinical animal model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 - 4 Aug 2025
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

19 pages, 1959 KiB  
Review
Role of High-Fat Diet Alone on Lipids, Arterial Wall and Hippocampal Neural Cell Alterations in Animal Models and Their Implications for Humans
by Gayathri S. Prabhu, Mohandas Rao KG, Preethi Lavina Concessao and Kiranmai S. Rai
Biology 2025, 14(8), 971; https://doi.org/10.3390/biology14080971 (registering DOI) - 1 Aug 2025
Viewed by 231
Abstract
Background: A high-fat diet has been shown to have an impact on metabolism resulting in changes in arterial wall thickness and degeneration of surviving neural cells of the hippocampus. The present review focuses on the various animal models used to induce high-fat diet [...] Read more.
Background: A high-fat diet has been shown to have an impact on metabolism resulting in changes in arterial wall thickness and degeneration of surviving neural cells of the hippocampus. The present review focuses on the various animal models used to induce high-fat diet conditions for studying obesity-induced atherosclerosis, along with the associated changes observed in surviving neural cells of the hippocampus. It also highlights the limitations of rodent models and discusses their implications for human research. Methods: The sources for the literature search were Scopus, PubMed, Medline and Google Scholar. Both animal and human studies published were considered and are cited. Results: High-fat-diet-induced vascular changes, mainly in the tunica media, has been shown to have more impact on medium-sized arteries and on the Cornu Ammonis three subregions and outer dentatae gyrus of the hippocampus. Conclusions: High-fat-diet-induced neurovascular changes have been studied radically in animal models, and more supporting studies representing preclinical research should be advanced to humans. Full article
(This article belongs to the Special Issue The Role of Lipids in Cardiovascular and Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 937 KiB  
Technical Note
Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model
by Stefan Wanderer, Michael von Gunten, Daniela Casoni, Stefano Di Santo, Jürgen Konczalla and Ali-Reza Fathi
Brain Sci. 2025, 15(8), 826; https://doi.org/10.3390/brainsci15080826 (registering DOI) - 31 Jul 2025
Viewed by 173
Abstract
Introduction: Given the impact of aneurysmal subarachnoid hemorrhage (aSAH) on patients’ health, preclinical research is substantial to understand its pathophysiology and improve treatment strategies, which necessitates reliable and comprehensive animal models. Traditionally, aSAH models utilize iliac or subclavian access for angiography, requiring invasive [...] Read more.
Introduction: Given the impact of aneurysmal subarachnoid hemorrhage (aSAH) on patients’ health, preclinical research is substantial to understand its pathophysiology and improve treatment strategies, which necessitates reliable and comprehensive animal models. Traditionally, aSAH models utilize iliac or subclavian access for angiography, requiring invasive procedures that are associated with significant risks and animal burden. This pilot study explores a less invasive method of digital subtraction angiography (DSA) by using the auricular artery (AA) as an alternative access point. Our aim was to demonstrate the feasibility of this refined technique, with the intention of reducing procedural risks, providing shorter operation times with enhanced neurological recovery, and simplifying the process for both researchers and animals. Materials and Methods: In this study, six female New Zealand white rabbits (3.2–4.1 kg body weight) underwent experimental induction of aSAH via a subclavian-cisternal shunt. The initial steps of this procedure followed traditional techniques, consisting of subclavian access through microsurgical preparation, followed by DSA to analyze retrograde filling of the basilar artery (BA). To evaluate the alternative method, on day 3 after induction of aSAH, DSA was performed via the AA instead of the traditional subclavian or femoral access. A catheter was placed in the AA to allow retrograde filling of the BA. This approach aimed to simplify the procedure while maintaining comparable imaging quality. Results: All rabbits survived until the study endpoint. Postoperatively, two rabbits showed signs of hemisyndrome, which significantly improved by the time of follow-up. No additional morbidities were observed. Upon euthanasia and necropsy, all animals showed clear subarachnoid bleeding patterns. DSA via the AA produced strong contrasting of the BA comparable to the traditional method. Conclusions: This technical note presents an initial evaluation of AA access as a feasible and potentially advantageous method for DSA in a rabbit model of blood shunt subarachnoid hemorrhage. The method shows promise in reducing invasiveness and procedural complexity, but further studies are required to fully establish its efficacy and safety. Future research should focus on expanding the sample size, refining the anatomical understanding of the AA, and continuing to align with ethical considerations regarding animal welfare. Full article
(This article belongs to the Special Issue Current Research in Neurosurgery)
Show Figures

Figure 1

26 pages, 1474 KiB  
Review
Gene Therapy for Cardiac Arrhythmias: Mechanisms, Modalities and Therapeutic Applications
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Nikias Milaras, Kallirhoe Kalinderi, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Med. Sci. 2025, 13(3), 102; https://doi.org/10.3390/medsci13030102 - 30 Jul 2025
Viewed by 450
Abstract
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target [...] Read more.
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target the arrhythmogenic substrate. Across the spectrum of inherited and acquired arrhythmias—including long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, atrial fibrillation, and post-infarction ventricular tachycardia—gene-based strategies such as allele-specific silencing, gene replacement, CRISPR-mediated editing, and suppression-and-replacement constructs are showing growing translational potential. Advances in delivery platforms, including cardiotropic viral vectors, lipid nanoparticle-encapsulated mRNA, and non-viral reprogramming tools, have further enhanced the specificity and safety of these approaches. Additionally, innovative applications such as biological pacemaker development and mutation-agnostic therapies underscore the versatility of genetic modulation. Nonetheless, significant challenges remain, including vector tropism, immune responses, payload limitations, and the translational gap between preclinical models and human electrophysiology. Integration of patient-derived cardiomyocytes, computational simulations, and large-animal studies is expected to accelerate clinical translation. This review provides a comprehensive synthesis of the mechanistic rationale, therapeutic strategies, delivery platforms, and translational frontiers of gene therapy for cardiac arrhythmias. Full article
Show Figures

Figure 1

36 pages, 3201 KiB  
Review
Botulinum Toxin Effects on Biochemical Biomarkers Related to Inflammation-Associated Head and Neck Chronic Conditions: A Systematic Review of Preclinical Research
by Ines Novo Pereira, Giancarlo De la Torre Canales, Sara Durão, Rawand Shado, Ana Cristina Braga, André Mariz Almeida, Haidar Hassan, Ana Cristina Manso and Ricardo Faria-Almeida
Toxins 2025, 17(8), 377; https://doi.org/10.3390/toxins17080377 - 29 Jul 2025
Viewed by 380
Abstract
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and [...] Read more.
Current research reported that the number of clinical studies found for botulinum toxin (BoNT) key effects on biochemical biomarkers in head and neck chronic conditions linked to inflammation was very low. There are no systematic reviews of animal studies on this topic, and hence our review aimed to evaluate the quality of the preclinical evidence. We searched PubMed, Scopus, and Web of Science databases, and registries up to 29 January 2024. There were 22 eligible records, and data were available for 11 randomised controlled trials. There were concerns about the risk of bias and great variations of data obtained regarding chronic conditions, which included mostly trigeminal neuralgia. The leading biomarkers were proinflammatory cytokines (IL-1β, TNF-α) and synaptosomal-associated protein-25 (SNAP25), followed by neuron activation marker c-Fos and calcitonin gene-related peptide (CGRP). Overall, data found that BoNT significantly altered the under/over-expression of biomarkers evoked by the investigated disease models and had no effect when the levels of these biomarkers were not changed by the induced chronic conditions in animals. However, there were some mixed results and exceptions, and the certainty evidence found was very low to low. Although the sample sizes detected significant effect size (p < 0.05), most studies are based on male inferior animals, which may limit the recommendations for clinical trials. This study is registered on PROSPERO (CRD42023432411). Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Graphical abstract

16 pages, 4271 KiB  
Article
Considering Litter Effects in Preclinical Research: Evidence from E17.5 Acid-Sensing Ion Channel 2a Knockout Mice Exposed to Acute Seizures
by Junie P. Warrington, Tyranny Pryor, Maria Jones-Muhammad and Qingmei Shao
Brain Sci. 2025, 15(8), 802; https://doi.org/10.3390/brainsci15080802 - 28 Jul 2025
Viewed by 176
Abstract
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; [...] Read more.
Background: The reproducibility of research findings continues to be a challenge in many fields, including neurosciences. It is now required that biological variables such as sex and age be considered in preclinical and clinical research. Rodents are frequently used to model clinical conditions; however, litter information is rarely presented. Some studies utilize entire litters with each animal treated as an independent sample, while others equally assign animals from each litter to different groups/treatments, and others use averaged data. These methods can yield different results. Methods: This study used different analysis methods to evaluate embryo and placenta weights from E17.5 acid-sensing ion channel 2a (ASIC2a) mice with or without seizure exposure. Results: When each embryo was treated as an individual sample, fetal and placental weight significantly differed following seizures in the ASIC2a heterozygous (+/−) and homozygous (−/−) groups. Differences in fetal weight were driven by females in the ASIC2a+/− group and both sexes in the ASIC2a−/− group. These differences were lost when an average per sex/genotype/litter was used. There was no difference in placental weight when treated individually; however, female ASIC2a−/− placentas weighed less following seizures. This difference was lost with averaged data. ASIC2a−/− fetuses from −/− dams had reduced weights post-seizure exposure. Position on the uterine horn influenced embryo and placental weight. Conclusions: Our results indicate that using full litters analyzed as individual data points should be avoided, as it can lead to Type I errors. Furthermore, studies should account for litter effects and be transparent in their methods and results. Full article
Show Figures

Graphical abstract

30 pages, 2595 KiB  
Review
Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions
by Gilberto Uriel Rosas-Sánchez, León Jesús Germán-Ponciano, Abraham Puga-Olguín, Mario Eduardo Flores Soto, Angélica Yanet Nápoles Medina, José Luis Muñoz-Carillo, Juan Francisco Rodríguez-Landa and César Soria-Fregozo
Biomedicines 2025, 13(8), 1831; https://doi.org/10.3390/biomedicines13081831 - 26 Jul 2025
Viewed by 920
Abstract
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood [...] Read more.
The gut microbiota and its interaction with the nervous system through the gut–brain axis (MGB) have been the subject of growing interest in biomedical research. It has been proposed that modulation of microbiota using probiotics could offer a promising therapeutic alternative for mood regulation and the treatment of anxiety and depression disorders. The findings indicate that several probiotic strains, such as Lactobacillus and Bifidobacterium, have demonstrated anxiolytic and antidepressant effects in pre and clinical studies. These effects seem to be mediated by the regulation of the hypothalamic–pituitary–adrenal axis (HPA), the synthesis of neurotransmitters such as serotonin (5-HT) and Gamma-amino-butyric acid (GABA), as well as the modulation of systemic inflammation. However, the lack of standardization in dosing and strain selection, in addition to the scarcity of large-scale clinical studies, limit the applicability of these findings in clinical therapy. Additional research is required to establish standardized therapeutic protocols and better understand the role of probiotics in mental health. The aim of this narrative review is to discuss the relationship between the gut microbiota and the MGB axis in the context of anxiety and depression disorders, the underlying neurobiological mechanisms, as well as the preclinical evidence for the effect of probiotics in modulating these disorders. In this way, an exhaustive search was carried out in scientific databases including PubMed, ScienceDirect, Scopus, and Web of Science. Preclinical research evaluating the effects of different probiotic strains in animal models during chronic treatment was selected, excluding those studies that did not provide access to the full text. Full article
Show Figures

Figure 1

15 pages, 2863 KiB  
Review
Gut–Brain Interactions in Neuronal Ceroid Lipofuscinoses: A Systematic Review Beyond the Brain in Paediatric Dementias
by Stefania Della Vecchia, Maria Marchese, Alessandro Simonati and Filippo Maria Santorelli
Int. J. Mol. Sci. 2025, 26(15), 7192; https://doi.org/10.3390/ijms26157192 - 25 Jul 2025
Viewed by 203
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are paediatric neurodegenerative disorders that primarily affect the central nervous system (CNS). The high prevalence of gastrointestinal (GI) symptoms has prompted researchers and clinicians to move beyond an exclusively “brain-centric” perspective. At the molecular level, mutations in CLN genes [...] Read more.
Neuronal ceroid lipofuscinoses (NCLs) are paediatric neurodegenerative disorders that primarily affect the central nervous system (CNS). The high prevalence of gastrointestinal (GI) symptoms has prompted researchers and clinicians to move beyond an exclusively “brain-centric” perspective. At the molecular level, mutations in CLN genes lead to lysosomal dysfunction and impaired autophagy, resulting in intracellular accumulation of storage material that disrupts both central and enteric neuronal homeostasis. To systematically examine current clinical and preclinical knowledge on gut involvement in NCLs, with a focus on recent findings related to the enteric nervous system and gut microbiota. We conducted a systematic review following the PRISMA guidelines using PubMed as the sole database. Both clinical (human) and preclinical (animal) studies were included. A total of 18 studies met the inclusion criteria, focusing on gastrointestinal dysfunction, nervous system involvement, and gut microbiota. We found that the nature of GI symptoms was multifactorial in NCLs, involving not only the CNS but also the autonomic and enteric nervous systems, which were affected early by lysosomal deposits and enteric neuron degeneration. Of note, preclinical studies showed that gene therapy could improve not only CNS manifestations but also GI ones, which may have beneficial implications for patient care. While the role of the ENS seems to be clearer, that of gut microbiota needs to be further clarified. Current evidence from preclinical models highlighted alterations in the composition of the microbiota and suggested a possible influence on the progression and modulation of neurological symptoms. However, these results need to be confirmed by further studies demonstrating the causality of this relationship. GI involvement is a key feature of NCLs, with early impact on the enteric nervous system and possible links to gut microbiota. Although preclinical findings—particularly on gene therapy—are encouraging due to their dual impact on both CNS and GI manifestations, the causal role of the gut microbiota remains to be fully elucidated. In this context, the development of sensitive and specific outcome measures to assess GI symptoms in clinical trials is crucial for evaluating the efficacy of future therapeutic interventions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 1301 KiB  
Article
Translational Pitfalls in SCI Bladder Research: The Hidden Role of Urinary Drainage Techniques in the Rat Model
by Sophina Bauer, Michael Kleindorfer, Karin Roider, Evelyn Beyerer, Martha Georgina Brandtner, Peter Törzsök, Lukas Lusuardi, Ludwig Aigner and Elena Esra Keller
Biology 2025, 14(8), 928; https://doi.org/10.3390/biology14080928 - 23 Jul 2025
Viewed by 279
Abstract
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate [...] Read more.
Spinal cord injury (SCI) frequently leads to neurogenic lower urinary tract dysfunction, for which appropriate bladder management is essential. While clinical care relies on continuous low-pressure drainage in the acute phase, rat models commonly use twice-daily manual bladder expression—a method known to generate high intravesical pressures and retention. This study evaluated the impact of this standard practice on bladder tissue remodeling by comparing it to continuous drainage via high vesicostomy in a rat SCI model. 32 female Lewis rats underwent thoracic contusion SCI and were assigned to either manual expression or vesicostomy-based bladder management. Over eight weeks, locomotor recovery, wound healing, and bladder histology were assessed. Vesicostomy proved technically simple but required tailored wound care and calibration. Results showed significantly greater bladder wall thickness, detrusor muscle hypertrophy, urothelial thickening, collagen deposition, and mast cell infiltration in the manual expression group compared to both vesicostomy and controls. In contrast, vesicostomy animals exhibited near-control levels across most parameters. These findings highlight that commonly used bladder emptying protocols in rat SCI models may overestimate structural bladder changes and inflammatory responses. Refined drainage strategies such as vesicostomy can minimize secondary damage and improve the translational relevance of preclinical SCI research. Full article
(This article belongs to the Special Issue Advances in the Fields of Neurotrauma and Neuroregeneration)
Show Figures

Figure 1

11 pages, 786 KiB  
Article
Methylene Blue Increases Active Mitochondria and Cellular Survival Through Modulation of miR16–UPR Signaling Axis
by Carlos Garcia-Padilla, David García-Serrano and Diego Franco
J. Mol. Pathol. 2025, 6(3), 16; https://doi.org/10.3390/jmp6030016 - 23 Jul 2025
Viewed by 1144
Abstract
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial [...] Read more.
Background: Methylene blue (MB), a versatile redox agent, is emerging as a promising therapeutic in diseases associated with mitochondrial dysfunction. Its ability to optimize the electron transport chain increases ATP synthesis (30–40%) and reduces oxidative stress, protecting cellular components such as mitochondrial DNA. The protective role of this compound has been described in several neurodegenerative disease such as Alzheimer’s and Parkinson’s diseases. However, its role in cardiovascular disease has been poorly explored. Methods: In this study, we explored the impact of MB on murine (HL1) and human (AC16) cardiomyocyte redox signaling and cellular survival using RT-Qpcr analysis and immunochemistry assays. Results: Our results revealed that MB increased functional mitochondria, reversed H2O2-induced oxidative damage, and modulated antioxidant gene expression. Furthermore, it regulated the microRNA16–UPR signaling axis, reducing CHOP expression and promoting cell survival. Conclusions: These findings underscore its potential in cardioprotective therapy; however, its putative use as a drug requires in vivo validation in preclinical animal models. Full article
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Determination of Biochemical and Metabolomic Characteristics of Sheep Blood Serum and Their Application in Clinical Practice
by Peter Očenáš, Matej Baloga, Marcela Valko-Rokytovská and Sonja Ivašková
Life 2025, 15(7), 1141; https://doi.org/10.3390/life15071141 - 20 Jul 2025
Viewed by 406
Abstract
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the [...] Read more.
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the biochemical composition of biofluids, which can be qualitatively and quantitatively analyzed using methods such as high-performance liquid chromatography (HPLC) at various stages of clinical intervention. This study focuses on establishing physiological reference ranges for selected biochemical and metabolomic indicators by analyzing blood serum samples from domestic sheep. A total of sixty samples are examined using standard biochemical assays and HPLC, resulting in the determination of experimental reference values for twenty-one biochemical and eight metabolomic parameters. Reliable and reproducible preclinical testing is essential before any diagnostic method can be introduced into clinical use. A thorough understanding of the safety and efficacy of such methods in animal models is a prerequisite for initiating human trials. Species selection and the definition of physiological biomarker ranges are therefore critical components in the development of effective preclinical protocols. This work contributes to the foundation needed for further clinical testing by establishing reference values for relevant biomarkers in a commonly used animal model. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

19 pages, 1329 KiB  
Review
Autosomal Dominant Polycystic Kidney Disease: From Pathogenesis to Organoid Disease Models
by Alexandru Scarlat, Susanna Tomasoni and Piera Trionfini
Biomedicines 2025, 13(7), 1766; https://doi.org/10.3390/biomedicines13071766 - 18 Jul 2025
Viewed by 597
Abstract
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), the most common renal genetic disease, leading to the dysregulation of renal tubules and the development of cystic growth that compromises kidney function. Despite significant advances in recent decades, there remains [...] Read more.
Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), the most common renal genetic disease, leading to the dysregulation of renal tubules and the development of cystic growth that compromises kidney function. Despite significant advances in recent decades, there remains a considerable unmet clinical need, as current therapeutics are not effective at slowing or halting disease progression. Although preclinical animal models have been used extensively, the translatability of such findings is uncertain and human-relevant disease models are urgently needed. The advent of pluripotent stem cells (PSCs) and their ability to more accurately recapitulate organ architecture and function has allowed for the study of renal disease in a more physiological and human-relevant setting. To date, many research groups have studied ADPKD using PSC-derived kidney organoids, identifying many dysregulated pathways and screening drug candidates that may yield effective therapies in the clinic. In this review article, we discuss in detail the development of PSC-derived kidney organoids as ADPKD models and how they have advanced our understanding of the disease’s pathogenesis, as well as their limitations and potential strategies to address them. Full article
(This article belongs to the Special Issue Human Stem Cells in Disease Modelling and Treatment)
Show Figures

Figure 1

19 pages, 746 KiB  
Review
Endophytic Bioactive Compounds for Wound Healing: A Review of Biological Activities and Therapeutic Potential
by Octavio Calvo-Gomez, Farkhod Eshboev, Kamilla Mullaiarova and Dilfuza Egamberdieva
Microorganisms 2025, 13(7), 1691; https://doi.org/10.3390/microorganisms13071691 - 18 Jul 2025
Viewed by 884
Abstract
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as [...] Read more.
Endophytic microorganisms inhabiting plant tissues constitute a unique and largely untapped reservoir of bioactive metabolites, including phenolics, terpenoids, alkaloids, polysaccharides, and anthraquinones, among others. This review focuses on the potential of these compounds to modulate the complex processes of wound repair, such as hemostasis, inflammation, proliferation, and remodeling. Uniquely, this review delineates the specific mechanisms supported not only by indirect evidence but by primary research directly linking endophytic metabolites to wound repair. We synthesized and evaluated evidence from 18 studies, of which over 75% directly assessed wound healing effects through in vitro and in vivo models. Metabolites from endophytic microorganisms promoted wound contraction, suppressed biofilm formation by key pathogens (e.g., MRSA, P. aeruginosa), and accelerated tissue re-epithelialization in animal models. Other compounds demonstrated >99% wound closure in rats, while several extracts showed anti-inflammatory and cytocompatible profiles. Nevertheless, the majority of studies applied unstandardized methods and used crude extracts, hindering precise structure–activity assessment. The originality of this review lies in drawing attention to direct evidence for wound healing from diverse endophytic sources and systematically identifying gaps between preclinical promise and clinical translation, positioning endophytes as a sustainable platform for next-generation wound therapeutics. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

30 pages, 1661 KiB  
Review
Gut Hormones and Inflammatory Bowel Disease
by Jonathan Weng and Chunmin C. Lo
Biomolecules 2025, 15(7), 1013; https://doi.org/10.3390/biom15071013 - 14 Jul 2025
Viewed by 549
Abstract
Obesity-driven inflammation disrupts gut barrier integrity and promotes inflammatory bowel disease (IBD). Emerging evidence highlights gut hormones—including glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide YY (PYY), cholecystokinin (CCK), and apolipoprotein A4 (APOA4)—as key regulators of metabolism and mucosal immunity. [...] Read more.
Obesity-driven inflammation disrupts gut barrier integrity and promotes inflammatory bowel disease (IBD). Emerging evidence highlights gut hormones—including glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide YY (PYY), cholecystokinin (CCK), and apolipoprotein A4 (APOA4)—as key regulators of metabolism and mucosal immunity. This review outlines known mechanisms and explores therapeutic prospects in IBD. GLP-1 improves glycemic control, induces weight loss, and preserves intestinal barrier function, while GLP-2 enhances epithelial repair and reduces pro-inflammatory cytokine expression in animal models of colitis. GIP facilitates lipid clearance, enhances insulin sensitivity, and limits systemic inflammation. PYY and CCK slow gastric emptying, suppress appetite, and attenuate colonic inflammation via neural pathways. APOA4 regulates lipid transport, increases energy expenditure, and exerts antioxidant and anti-inflammatory effects that alleviate experimental colitis. Synergistic interactions—such as GLP-1/PYY co-administration, PYY-stimulated APOA4 production, and APOA4-enhanced CCK activity—suggest that multi-hormone combinations may offer amplified therapeutic benefits. While preclinical data are promising, clinical evidence supporting gut hormone therapies in IBD remains limited. Dual GIP/GLP-1 receptor agonists improve metabolic and inflammatory parameters, but in clinical use, they are associated with gastrointestinal side effects that warrant further investigation. Future research should evaluate combination therapies in preclinical IBD models, elucidate shared neural and receptor-mediated pathways, and define optimal strategies for applying gut hormone synergy in human IBD. These efforts may uncover safer, metabolically tailored treatments for IBD, particularly in patients with coexisting obesity or metabolic dysfunction. Full article
(This article belongs to the Special Issue Metabolic Inflammation and Insulin Resistance in Obesity)
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
MWB_Analyzer: An Automated Embedded System for Real-Time Quantitative Analysis of Morphine Withdrawal Behaviors in Rodents
by Moran Zhang, Qianqian Li, Shunhang Li, Binxian Sun, Zhuli Wu, Jinxuan Liu, Xingchao Geng and Fangyi Chen
Toxics 2025, 13(7), 586; https://doi.org/10.3390/toxics13070586 - 14 Jul 2025
Viewed by 432
Abstract
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating [...] Read more.
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating the neurotoxicological effects of chronic opioid exposure and withdrawal. However, conventional behavioral assessments rely on manual observation, limiting objectivity, reproducibility, and scalability—critical constraints in modern drug toxicity evaluation. This study introduces MWB_Analyzer, an automated and high-throughput system designed to quantitatively and objectively assess morphine withdrawal behaviors in rats. The goal is to enhance toxicological assessments of CNS-active substances through robust, scalable behavioral phenotyping. Methods: MWB_Analyzer integrates optimized multi-angle video capture, real-time signal processing, and machine learning-driven behavioral classification. An improved YOLO-based architecture was developed for the accurate detection and categorization of withdrawal-associated behaviors in video frames, while a parallel pipeline processed audio signals. The system incorporates behavior-specific duration thresholds to isolate pharmacologically and toxicologically relevant behavioral events. Experimental animals were assigned to high-dose, low-dose, and control groups. Withdrawal was induced and monitored under standardized toxicological protocols. Results: MWB_Analyzer achieved over 95% reduction in redundant frame processing, markedly improving computational efficiency. It demonstrated high classification accuracy: >94% for video-based behaviors (93% on edge devices) and >92% for audio-based events. The use of behavioral thresholds enabled sensitive differentiation between dosage groups, revealing clear dose–response relationships and supporting its application in neuropharmacological and neurotoxicological profiling. Conclusions: MWB_Analyzer offers a robust, reproducible, and objective platform for the automated evaluation of opioid withdrawal syndromes in rodent models. It enhances throughput, precision, and standardization in addiction research. Importantly, this tool supports toxicological investigations of CNS drug effects, preclinical pharmacokinetic and pharmacodynamic evaluations, drug safety profiling, and regulatory assessment of novel opioid and CNS-active therapeutics. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Graphical abstract

Back to TopTop