Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions
Abstract
1. Introduction
2. Method
2.1. Design
2.2. Article Criteria
2.3. Article Research
3. General Aspects of the Microbiota and Its Relationship with the Microbiota–Gut–Brain Axis
3.1. The Microbiota–Gut–Brain Axis
3.2. Hypothalamic–Pituitary–Adrenal Axis
3.3. Vagus Nerve
3.4. Intestinal Permeability and Blood–Brain–Barrier Permeability
3.5. Immunological Pathway
3.6. Microbial Metabolites
3.7. Short-Chain Fatty Acids
4. Neurobiology of Anxiety and Depression
5. Treatment of Anxiety and Depression in Preclinical Studies
6. Experimental Evidence of Anxiolytic and Antidepressant Effects of Probiotics
7. Conclusions
8. Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MGB | The microbiota–gut–brain axis |
HPA | The hypothalamic–pituitary–adrenal axis |
5-HT | Serotonin |
GABA | Gamma-amino-butyric acid |
WHO | World Health Organization |
CNS | The central nervous system |
DA | Dopamine |
BBB | Blood–brain barrier |
SCFAs | Short-chain fatty acids |
ACTH | Adrenocorticotropic hormone |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
TNF-α | Tumor necrosis factor alpha |
NE | Norepinephrine |
IgA | Immunoglobulin A |
LPS | Lipopolysaccharides |
I-FABP | Intestinal fatty acid-binding protein |
IL-10 | Interleukin-10 |
IFNγ | Interferon gamma |
NF-κB | Nuclear factor kappa B |
GLP-1 | Glucagon-like peptide-1 |
PYY | Peptide YY |
TCAs | Tricyclic antidepressants |
MAOIs | Monoamine oxidase inhibitors |
SSRIs | Selective 5-HT reuptake inhibitors |
SNRIs | 5-HT and NE reuptake inhibitors |
mPFC | Medial prefrontal cortex |
SGPA | Periaqueductal gray matter |
MDD | Major depressive disorder |
COX-2 | Cyclooxygenase-2 |
PGE2 | Prostaglandins E2 |
TGF-β1 | Transforming growth factor beta-1 |
BDNF | Brain-derived neurotrophic factor |
NGF | Nerve growth factor |
CREB | cAMP response element binding protein |
H1 | Histamine-1 |
TrkB | Tyrosine kinase B |
NMDA | N-Methyl-D-Aspartate |
HSCL-90 | Hopkins symptom checklist |
CUMS | Chronic unpredictable mild stress |
CFU | Colony-forming unit |
FST | Forced swim test |
EPM | Elevated plus maze |
TST | Tail suspension test |
SPT | Sucrose preference test |
OFT | Open field test |
CRP | C-reactive protein |
TPH1 | Tryptophan hydroxylase 1 |
PM-DAT | Plus maze discriminative avoidance test |
References
- World Mental Health Report: Transforming Mental Health for All. Available online: https://iris.who.int/bitstream/handle/10665/356119/9789240049338-eng.pdf?sequence=1 (accessed on 21 March 2025).
- Barbagallo, M.; Marotta, F.; Dominguez, L.J. Oxidative Stress in Patients with Alzheimer’s Disease: Effect of Extracts of Fermented Papaya Powder. Mediat. Inflamm. 2015, 2015, 624801. [Google Scholar] [CrossRef]
- Leonard, B.E. Inflammation and Depression: A Causal or Coincidental Link to the Pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef]
- Allen, A.P.; Hutch, W.; Borre, Y.E.; Kennedy, P.J.; Temko, A.; Boylan, G.; Murphy, E.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Bifidobacterium Longum 1714 as a Translational Psychobiotic: Modulation of Stress, Electrophysiology and Neurocognition in Healthy Volunteers. Transl. Psychiatry 2016, 6, e939. [Google Scholar] [CrossRef]
- Cheng, L.H.; Liu, Y.W.; Wu, C.C.; Wang, S.; Tsai, Y.C. Psychobiotics in Mental Health, Neurodegenerative and Neurodevelopmental Disorders. J. Food Drug Anal. 2019, 27, 632–648. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Stilling, R.M.; Dinan, T.G.; Cryan, J.F. Microbial Genes, Brain & Behaviour—Epigenetic Regulation of the Gut-Brain Axis. Genes Brain Behav. 2014, 13, 69–86. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible Association of Firmicutes in the Gut Microbiota of Patients with Major Depressive Disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef]
- Goh, K.K.; Liu, Y.W.; Kuo, P.H.; Chung, Y.C.E.; Lu, M.L.; Chen, C.H. Effect of Probiotics on Depressive Symptoms: A Meta-Analysis of Human Studies. Psychiatry Res. 2019, 282, 112568. [Google Scholar] [CrossRef]
- Nikolova, V.L.; Hall, M.R.B.; Hall, L.J.; Cleare, A.J.; Stone, J.M.; Young, A.H. Perturbations in Gut Microbiota Composition in Psychiatric Disorders: A Review and Meta-Analysis. JAMA Psychiatry 2021, 78, 1343–1354. [Google Scholar] [CrossRef]
- Liu, B.; He, Y.; Wang, M.; Liu, J.; Ju, Y.; Zhang, Y.; Liu, T.; Li, L.; Li, Q. Efficacy of Probiotics on Anxiety—A Meta-Analysis of Randomized Controlled Trials. Depress. Anxiety 2018, 35, 935–945. [Google Scholar] [CrossRef]
- Merkouris, E.; Mavroudi, T.; Miliotas, D.; Tsiptsios, D.; Serdari, A.; Christidi, F.; Doskas, T.K.; Mueller, C.; Tsamakis, K. Probiotics’ Effects in the Treatment of Anxiety and Depression: A Comprehensive Review of 2014–2023 Clinical Trials. Microorganisms 2024, 12, 411. [Google Scholar] [CrossRef]
- D’Mello, C.; Swain, M.G. Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. Curr. Top. Behav. Neurosci. 2017, 31, 73–94. [Google Scholar] [CrossRef]
- Munir, M.U.; Ali, S.A.; Chung, K.H.K.; Kakinen, A.; Javed, I.; Davis, T.P. Reverse Engineering the Gut-Brain Axis and Microbiome-Metabolomics for Symbiotic/Pathogenic Balance in Neurodegenerative Diseases. Gut Microbes 2024, 16, 2422468. [Google Scholar] [CrossRef]
- Lai, W.T.; Deng, W.F.; Xu, S.X.; Zhao, J.; Xu, D.; Liu, Y.H.; Guo, Y.Y.; Wang, M.B.; He, F.S.; Ye, S.W.; et al. Shotgun Metagenomics Reveals Both Taxonomic and Tryptophan Pathway Differences of Gut Microbiota in Major Depressive Disorder Patients. Psychol. Med. 2021, 51, 90–101. [Google Scholar] [CrossRef]
- Li, W.; Liang, H.; He, W.; Gao, X.; Wu, Z.; Hu, T.; Lin, X.; Wang, M.; Zhong, Y.; Zhang, H.; et al. Genomic and Functional Diversity of Cultivated Bifidobacterium from Human Gut Microbiota. Heliyon 2024, 10, e27270. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, X.; Wang, Z.; Kong, L.; Jiang, Z.; Shang, R.; Zhong, X.; Lv, S.; Zhang, G.; Gao, H.; et al. Microbiota–Gut–Brain Axis: Natural Antidepressants Molecular Mechanism. Phytomedicine 2024, 134, 156012. [Google Scholar] [CrossRef]
- Thakur, P.; Baraskar, K.; Shrivastava, V.K.; Medhi, B. Cross-Talk between Adipose Tissue and Microbiota-Gut-Brain-Axis in Brain Development and Neurological Disorder. Brain Res. 2024, 1844, 149176. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Tojo, R.; Suárez, A.; Clemente, M.G.; De Los Reyes-Gavilán, C.G.; Margolles, A.; Gueimonde, M.; Ruas-Madiedo, P. Intestinal Microbiota in Health and Disease: Role of Bifidobacteria in Gut Homeostasis. World J. Gastroenterol. 2014, 20, 15163–15176. [Google Scholar] [CrossRef]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef]
- Singh, J.; Vanlallawmzuali; Singh, A.; Biswal, S.; Zomuansangi, R.; Lalbiaktluangi, C.; Singh, B.P.; Singh, P.K.; Vellingiri, B.; Iyer, M.; et al. Microbiota-Brain Axis: Exploring the Role of Gut Microbiota in Psychiatric Disorders—A Comprehensive Review. Asian J. Psychiatr. 2024, 97, 104068. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the Human Gut Microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An Insight into Gut Microbiota and Its Functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Shin, C. The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Curr. Neuropharmacol. 2018, 15, 559–573. [Google Scholar] [CrossRef]
- Misiak, B.; Łoniewski, I.; Marlicz, W.; Frydecka, D.; Szulc, A.; Rudzki, L.; Samochowiec, J. The HPA Axis Dysregulation in Severe Mental Illness: Can We Shift the Blame to Gut Microbiota? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 102, 109951. [Google Scholar] [CrossRef]
- Noemi, C.-N.; Bob, P.; Bókkon, I. Long-Term Implicit Epigenetic Stress Information in the Enteric Nervous System and Its Contribution to Developing and Perpetuating IBS. Curr. Neuropharmacol. 2024, 22, 2100–2112. [Google Scholar] [CrossRef]
- Breit, S.; Kupferberg, A.; Rogler, G.; Hasler, G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front. Psychiatry 2018, 9, 44. [Google Scholar] [CrossRef]
- Cao, Y.; Li, R.; Bai, L. Vagal Sensory Pathway for the Gut-Brain Communication. Semin. Cell Dev. Biol. 2024, 156, 228–243. [Google Scholar] [CrossRef]
- López-Ojeda, W.; Hurley, R.A. The Vagus Nerve and the Brain-Gut Axis: Implications for Neuropsychiatric Disorders. J. Neuropsychiatry Clin. Neurosci. 2024, 36, 278–282. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Farstad, I.N.; Johansen, F.E.; Morton, H.C.; Norderhaug, I.N.; Yamanaka, T. The B-Cell System of Human Mucosae and Exocrine Glands. Immunol. Rev. 1999, 171, 45–87. [Google Scholar] [CrossRef]
- Hooper, L.V.; MacPherson, A.J. Immune Adaptations That Maintain Homeostasis with the Intestinal Microbiota. Nat. Rev. Immunol. 2010, 10, 159–169. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Tan, C.; Yan, Q.; Ma, Y.; Fang, J.; Yang, Y. Recognizing the Role of the Vagus Nerve in Depression from Microbiota-Gut Brain Axis. Front. Neurol. 2022, 13, 1015175. [Google Scholar] [CrossRef]
- Yun, S.W.; Kim, J.K.; Lee, K.E.; Oh, Y.J.; Choi, H.J.; Han, M.J.; Kim, D.H. A Probiotic Lactobacillus Gasseri Alleviates Escherichia Coli-Induced Cognitive Impairment and Depression in Mice by Regulating Il-1β Expression and Gut Microbiota. Nutrients 2020, 12, 3441. [Google Scholar] [CrossRef]
- Stolfi, C.; Maresca, C.; Monteleone, G.; Laudisi, F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022, 10, 289. [Google Scholar] [CrossRef]
- Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef]
- Calarge, C.A.; Devaraj, S.; Shulman, R.J. Gut Permeability and Depressive Symptom Severity in Unmedicated Adolescents. J. Affect. Disord. 2019, 246, 586–594. [Google Scholar] [CrossRef]
- Buscarinu, M.C.; Romano, S.; Mechelli, R.; Pizzolato Umeton, R.; Ferraldeschi, M.; Fornasiero, A.; Reniè, R.; Cerasoli, B.; Morena, E.; Romano, C.; et al. Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis. Neurotherapeutics 2018, 15, 68–74. [Google Scholar] [CrossRef]
- Missiego-Beltrán, J.; Beltrán-Velasco, A.I. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases—Therapeutic Approaches: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 10041. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Teng, T.; Yin, B.; He, Y.; Jiang, Y.; Liu, X.; Yu, Y.; Li, X.; Zhou, X. Biomarkers of Intestinal Permeability and Blood-Brain Barrier Permeability in Adolescents with Major Depressive Disorder. J. Affect. Disord. 2023, 323, 659–666. [Google Scholar] [CrossRef]
- Sun, N.; Hu, H.; Wang, F.; Li, L.; Zhu, W.; Shen, Y.; Xiu, J.; Xu, Q. Antibiotic-Induced Microbiome Depletion in Adult Mice Disrupts Blood-Brain Barrier and Facilitates Brain Infiltration of Monocytes after Bone-Marrow Transplantation. Brain. Behav. Immun. 2021, 92, 102–114. [Google Scholar] [CrossRef]
- Bemark, M.; Pitcher, M.J.; Dionisi, C.; Spencer, J. Gut-Associated Lymphoid Tissue: A Microbiota-Driven Hub of B Cell Immunity. Trends Immunol. 2024, 45, 211–223. [Google Scholar] [CrossRef]
- Siddiqui, K.R.R.; Powrie, F. CD103+ GALT DCs Promote Foxp3+ Regulatory T Cells. Mucosal Immunol. 2008, 1, 34–38. [Google Scholar] [CrossRef]
- Kim, C.H. Complex Regulatory Effects of Gut Microbial Short-Chain Fatty Acids on Immune Tolerance and Autoimmunity. Cell. Mol. Immunol. 2023, 20, 341–350. [Google Scholar] [CrossRef]
- McCusker, R.H.; Kelley, K.W. Immune-Neural Connections: How the Immune System’s Response to Infectious Agents Influences Behavior. J. Exp. Biol. 2013, 216, 84–98. [Google Scholar] [CrossRef]
- Rolland, A.; Douard, V.; Lapaque, N.; Taras, D.C.B.; Kufer, T.A.; Thakali, K.; Sindhu, S. Role of Pattern Recognition Receptors and Microbiota-Derived Ligands in Obesity. Front. Microbiomes 2024, 3, 1324476. [Google Scholar] [CrossRef]
- Zheng, L.; Wen, X.L.; Duan, S.L. Role of Metabolites Derived from Gut Microbiota in Inflammatory Bowel Disease. World J. Clin. Cases 2022, 10, 2660–2677. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Havenaar, R. Intestinal Health Functions of Colonic Microbial Metabolites: A Review. Benef. Microbes 2011, 2, 103–114. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, P.; Huang, Y.; Wang, F. Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cell. Physiol. Biochem. 2018, 49, 190–205. [Google Scholar] [CrossRef]
- Diz-Chaves, Y.; Herrera-Pérez, S.; González-Matías, L.C.; Mallo, F. Effects of Glucagon-like Peptide 1 (GLP-1) Analogs in the Hippocampus. Vitam. Horm. 2022, 118, 457–478. [Google Scholar] [CrossRef]
- Naomi, R.; Embong, H.; Othman, F.; Ghazi, H.F.; Maruthey, N.; Bahari, H. Probiotics for Alzheimer’s Disease: A Systematic Review. Nutrients 2022, 14, 20. [Google Scholar] [CrossRef]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; Van Der Veeken, J.; Deroos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef]
- Haghikia, A.; Jörg, S.; Duscha, A.; Berg, J.; Manzel, A.; Waschbisch, A.; Hammer, A.; Lee, D.H.; May, C.; Wilck, N.; et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 2015, 43, 817–829. [Google Scholar] [CrossRef]
- Mathias, K.; Machado, R.S.; Stork, S.; Martins, C.D.; dos Santos, D.; Lippert, F.W.; Prophiro, J.S.; Petronilho, F. Short-Chain Fatty Acid on Blood-Brain Barrier and Glial Function in Ischemic Stroke. Life Sci. 2024, 354, 122979. [Google Scholar] [CrossRef]
- Palepu, M.S.K.; Gajula, S.N.R.; Malleshwari, K.; Sonti, R.; Dandekar, M.P. SCFAs Supplementation Rescues Anxiety- and Depression-like Phenotypes Generated by Fecal Engraftment of Treatment-Resistant Depression Rats. ACS Chem. Neurosci. 2024, 15, 1010–1025. [Google Scholar] [CrossRef]
- Cristiano, C.; Cuozzo, M.; Coretti, L.; Liguori, F.M.; Cimmino, F.; Turco, L.; Avagliano, C.; Aviello, G.; Mollica, M.P.; Lembo, F.; et al. Oral Sodium Butyrate Supplementation Ameliorates Paclitaxel-Induced Behavioral and Intestinal Dysfunction. Biomed. Pharmacother. 2022, 153, 113528. [Google Scholar] [CrossRef]
- Wu, J.T.; Sun, C.L.; Lai, T.T.; Liou, C.W.; Lin, Y.Y.; Xue, J.Y.; Wang, H.W.; Chai, L.M.X.; Lee, Y.J.; Chen, S.L.; et al. Oral Short-Chain Fatty Acids Administration Regulates Innate Anxiety in Adult Microbiome-Depleted Mice. Neuropharmacology 2022, 214, 109140. [Google Scholar] [CrossRef]
- World Health Organization Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 3 June 2025).
- Santomauro, D.F.; Mantilla Herrera, A.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y.; et al. Global Prevalence and Burden of Depressive and Anxiety Disorders in 204 Countries and Territories in 2020 Due to the COVID-19 Pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-Wide Meta-Analysis of Depression Identifies 102 Independent Variants and Highlights the Importance of the Prefrontal Brain Regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- McEwen, B.S. Neurobiological and Systemic Effects of Chronic Stress. Chronic Stress 2017, 1. [Google Scholar] [CrossRef]
- Teicher, M.H.; Samson, J.A. Annual Research Review: Enduring Neurobiological Effects of Childhood Abuse and Neglect. J. Child Psychol. Psychiatry Allied Discip. 2016, 57, 241–266. [Google Scholar] [CrossRef]
- Nutt, D.J. Relationship of Neurotransmitters to the Symptoms of Major Depressive Disorder. J. Clin. Psychiatry 2008, 69 (Suppl. E1), 4–7. [Google Scholar]
- Cleare, A.J.; Rane, L.J. Biological Models of Unipolar Depression. In The Wiley-Blackwell Handbook of Mood Disorders, 2nd ed.; Power, M., Ed.; John Wiley & Sons, Ltd.: New York, NY, USA, 2013; pp. 39–67. [Google Scholar]
- Mann, J.J. The Medical Management of Depression. N. Engl. J. Med. 2005, 353, 1819–1834. [Google Scholar] [CrossRef]
- Craske, M.G.; Stein, M.B.; Eley, T.C.; Milad, M.R.; Holmes, A.; Rapee, R.M.; Wittchen, H.U. Anxiety Disorders. Nat. Rev. Dis. Prim. 2017, 3, 1–19. [Google Scholar] [CrossRef]
- Park, C.; Rosenblat, J.D.; Lee, Y.; Pan, Z.; Cao, B.; Iacobucci, M.; McIntyre, R.S. The Neural Systems of Emotion Regulation and Abnormalities in Major Depressive Disorder. Behav. Brain Res. 2019, 367, 181–188. [Google Scholar] [CrossRef]
- Yu, X.; Ruan, Y.; Zhang, Y.; Wang, J.; Liu, Y.; Zhang, J.; Zhang, L. Cognitive Neural Mechanism of Social Anxiety Disorder: A Meta-Analysis Based on Fmri Studies. Int. J. Environ. Res. Public Health 2021, 18, 5556. [Google Scholar] [CrossRef]
- Villas Boas, G.R.; Boerngen de Lacerda, R.; Paes, M.M.; Gubert, P.; Almeida, W.L.d.C.; Rescia, V.C.; de Carvalho, P.M.G.; de Carvalho, A.A.V.; Oesterreich, S.A. Molecular Aspects of Depression: A Review from Neurobiology to Treatment. Eur. J. Pharmacol. 2019, 851, 99–121. [Google Scholar] [CrossRef]
- Ferrari, F.; Villa, R.F. The Neurobiology of Depression: An Integrated Overview from Biological Theories to Clinical Evidence. Mol. Neurobiol. 2017, 54, 4847–4865. [Google Scholar] [CrossRef]
- Tafet, G.E.; Nemeroff, C.B. Pharmacological Treatment of Anxiety Disorders: The Role of the HPA Axis. Front. Psychiatry 2020, 11, 443. [Google Scholar] [CrossRef]
- Belleau, E.L.; Treadway, M.T.; Pizzagalli, D.A. The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol. Psychiatry 2019, 85, 443–453. [Google Scholar] [CrossRef]
- Nikkheslat, N.; Pariante, C.M.; Zunszain, P.A. Neuroendocrine Abnormalities in Major Depression: An Insight Into Glucocorticoids, Cytokines, and the Kynurenine Pathway. Inflamm. Immun. Depress. Basic Sci. Clin. Appl. 2018, 45–60. [Google Scholar] [CrossRef]
- Hinkelmann, K.; Moritz, S.; Botzenhardt, J.; Riedesel, K.; Wiedemann, K.; Kellner, M.; Otte, C. Cognitive Impairment in Major Depression: Association with Salivary Cortisol. Biol. Psychiatry 2009, 66, 879–885. [Google Scholar] [CrossRef]
- Brown, G.M.; McIntyre, R.S.; Rosenblat, J.; Hardeland, R. Depressive Disorders: Processes Leading to Neurogeneration and Potential Novel Treatments. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 189–204. [Google Scholar] [CrossRef]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral Cytokine and Chemokine Alterations in Depression: A Meta-Analysis of 82 Studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From Inflammation to Sickness and Depression: When the Immune System Subjugates the Brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of Depression with C-Reactive Protein, IL-1, and IL-6: A Meta-Analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef]
- Miller, A.H. Depression and Immunity: A Role for T Cells? Brain. Behav. Immun. 2010, 24, 1–8. [Google Scholar] [CrossRef]
- Iwata, M.; Ota, K.T.; Duman, R.S. The Inflammasome: Pathways Linking Psychological Stress, Depression, and Systemic Illnesses. Brain. Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef]
- Felger, J.C.; Miller, A.H. Neurotherapeutic Implications of Brain-Immune Interactions. Neuropsychopharmacology 2014, 39, 242–243. [Google Scholar] [CrossRef]
- Zhang, H.X.; Xu, Y.Q.; Li, Y.Y.; Lu, M.F.; Shi, S.X.; Ji, J.L.; Wang, L.W. Difference in Proinflammatory Cytokines Produced by Monocytes between Patients with Major Depressive Disorder and Healthy Controls. J. Affect. Disord. 2018, 234, 305–310. [Google Scholar] [CrossRef]
- Caraci, F.; Copani, A.; Nicoletti, F.; Drago, F. Depression and Alzheimer’s Disease: Neurobiological Links and Common Pharmacological Targets. Eur. J. Pharmacol. 2010, 626, 64–71. [Google Scholar] [CrossRef]
- Maes, M.; Nowak, G.; Caso, J.R.; Leza, J.C.; Song, C.; Kubera, M.; Klein, H.; Galecki, P.; Noto, C.; Glaab, E.; et al. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research. Mol. Neurobiol. 2016, 53, 2927–2935. [Google Scholar] [CrossRef]
- Sutcigil, L.; Oktenli, C.; Musabak, U.; Bozkurt, A.; Cansever, A.; Uzun, O.; Sanisoglu, S.Y.; Yesilova, Z.; Ozmenler, N.; Ozsahin, A.; et al. Pro- and Anti-Inflammatory Cytokine Balance in Major Depression: Effect of Sertraline Therapy. Clin. Dev. Immunol. 2007, 2007, 076396. [Google Scholar] [CrossRef]
- Ferrari, F.; Gorini, A.; Villa, R.F. Functional Proteomics of Synaptic Plasma Membrane ATP-Ases of Rat Hippocampus: Effect of l-Acetylcarnitine and Relationships with Dementia and Depression Pathophysiology. Eur. J. Pharmacol. 2015, 756, 67–74. [Google Scholar] [CrossRef]
- Gould, E.; Tanapat, P.; Rydel, T.; Hastings, N. Regulation of Hippocampal Neurogenesis in Adulthood. Biol. Psychiatry 2000, 48, 715–720. [Google Scholar] [CrossRef]
- Manji, H.K.; Drevets, W.C.; Charney, D.S. The Cellular Neurobiology of Depression. Nat. Med. 2001, 7, 541–547. [Google Scholar] [CrossRef]
- Rajkowska, G. Postmortem Studies in Mood Disorders Indicate Altered Numbers of Neurons and Glial Cells. Biol. Psychiatry 2000, 48, 766–777. [Google Scholar] [CrossRef]
- Duman, R.S. Pathophysiology of Depression: The Concept of Synaptic Plasticity. Eur. Psychiatry 2002, 17, 306–310. [Google Scholar] [CrossRef]
- Siuciak, J.A.; Boylan, C.; Fritsche, M.; Altar, C.A.; Lindsay, R.M. BDNF Increases Monoaminergic Activity in Rat Brain Following Intracerebroventricular or Intraparenchymal Administration. Brain Res. 1996, 710, 11–20. [Google Scholar] [CrossRef]
- Lyte, M. Probiotics Function Mechanistically as Delivery Vehicles for Neuroactive Compounds: Microbial Endocrinology in the Design and Use of Probiotics. BioEssays 2011, 33, 574–581. [Google Scholar] [CrossRef]
- Sanada, K.; Nakajima, S.; Kurokawa, S.; Barceló-Soler, A.; Ikuse, D.; Hirata, A.; Yoshizawa, A.; Tomizawa, Y.; Salas-Valero, M.; Noda, Y.; et al. Gut Microbiota and Major Depressive Disorder: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2020, 266, 1–13. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef]
- Maes, M.; Kubera, M.; Leunis, J.C.; Berk, M.; Geffard, M.; Bosmans, E. In Depression, Bacterial Translocation May Drive Inflammatory Responses, Oxidative and Nitrosative Stress (O&NS), and Autoimmune Responses Directed against O&NS-Damaged Neoepitopes. Acta Psychiatr. Scand. 2013, 127, 344–354. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome Axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Bystritsky, A.; Khalsa, S.S.; Cameron, M.E.; Schiffman, J. Current Diagnosis and Treatment of Anxiety Disorders. Pharm. Ther. 2013, 38, 30. [Google Scholar]
- Bandelow, B.; Michaelis, S.; Wedekind, D. Treatment of Anxiety Disorders. Dialogues Clin. Neurosci. 2017, 19, 93–107. [Google Scholar] [CrossRef]
- Sartori, S.B.; Singewald, N. Novel Pharmacological Targets in Drug Development for the Treatment of Anxiety and Anxiety-Related Disorders. Pharmacol. Ther. 2019, 204, 107402. [Google Scholar] [CrossRef]
- Griffin, C.E.; Kaye, A.M.; Rivera Bueno, F.; Kaye, A.D. Benzodiazepine Pharmacology and Central Nervous System–Mediated Effects. Ochsner J. 2013, 13, 214. [Google Scholar]
- Baandrup, L.; Ebdrup, B.H.; Rasmussen, J.O.; Lindschou, J.; Gluud, C.; Glenthøj, B.Y. Pharmacological Interventions for Benzodiazepine Discontinuation in Chronic Benzodiazepine Users. Cochrane Database Syst. Rev. 2018, 2018, CD011481. [Google Scholar] [CrossRef]
- Guaiana, G.; Barbui, C.; Cipriani, A. Hydroxyzine for Generalised Anxiety Disorder. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Dooley, T.P. Treating Anxiety with Either Beta Blockers or Antiemetic Antimuscarinic Drugs: A Review. Ment. Health Fam. Med. 2015, 11, 89–99. [Google Scholar] [CrossRef]
- do Vale, G.T.; Ceron, C.S.; Gonzaga, N.A.; Simplicio, J.A.; Padovan, J.C. Three Generations of β-Blockers: History, Class Differences and Clinical Applicability. Curr. Hypertens. Rev. 2018, 15, 22–31. [Google Scholar] [CrossRef]
- Perna, G.; Alciati, A.; Riva, A.; Micieli, W.; Caldirola, D. Long-Term Pharmacological Treatments of Anxiety Disorders: An Updated Systematic Review. Curr. Psychiatry Rep. 2016, 18, 1–16. [Google Scholar] [CrossRef]
- Murrough, J.W.; Iosifescu, D.V.; Chang, L.C.; Al Jurdi, R.K.; Green, C.E.; Perez, A.M.; Iqbal, S.; Pillemer, S.; Foulkes, A.; Shah, A.; et al. Antidepressant Efficacy of Ketamine in Treatment-Resistant Major Depression: A Two-Site Randomized Controlled Trial. Am. J. Psychiatry 2013, 170, 1134–1142. [Google Scholar] [CrossRef]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int. J. Mol. Sci. 2017, 18, 2483. [Google Scholar] [CrossRef]
- Fišar, Z. Drugs Related to Monoamine Oxidase Activity. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 69, 112–124. [Google Scholar] [CrossRef]
- Gaynes, B.N.; Warden, D.; Trivedi, M.H.; Wisniewski, S.R.; Fava, M.; Rush, A.J. What Did STAR*D Teach Us? Results from a Large-Scale, Practical, Clinical Trial for Patients with Depression. Psychiatr. Serv. 2009, 60, 1439–1445. [Google Scholar] [CrossRef]
- Castrén, E.; Monteggia, L.M. Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. Biol. Psychiatry 2021, 90, 128–136. [Google Scholar] [CrossRef]
- Rossom, R.C.; Shortreed, S.; Coleman, K.J.; Beck, A.; Waitzfelder, B.E.; Stewart, C.; Ahmedani, B.K.; Zeber, J.E.; Simon, G.E. Antidepressant Adherence across Diverse Populations and Healthcare Settings. Depress. Anxiety 2016, 33, 765. [Google Scholar] [CrossRef]
- Marasine, N.R.; Sankhi, S. Factors Associated with Antidepressant Medication Non-Adherence. Turk. J. Pharm. Sci. 2021, 18, 242–249. [Google Scholar] [CrossRef]
- Gartlehner, G.; Wagner, G.; Matyas, N.; Titscher, V.; Greimel, J.; Lux, L.; Gaynes, B.N.; Viswanathan, M.; Patel, S.; Lohr, K.N. Pharmacological and Non-Pharmacological Treatments for Major Depressive Disorder: Review of Systematic Reviews. BMJ Open 2017, 7, e014912. [Google Scholar] [CrossRef]
- Wang, S.-M.; Han, C.; Bahk, W.-M.; Lee, S.-J.; Patkar, A.A.; Masand, P.S.; Pae, C.-U. Addressing the Side Effects of Contemporary Antidepressant Drugs: A Comprehensive Review. Chonnam Med. J. 2018, 54, 101. [Google Scholar] [CrossRef]
- Kavalali, E.T.; Monteggia, L.M. How Does Ketamine Elicit a Rapid Antidepressant Response? Curr. Opin. Pharmacol. 2015, 20, 35–39. [Google Scholar] [CrossRef]
- Naughton, M.; Clarke, G.; Oleary, O.F.; Cryan, J.F.; Dinan, T.G. A Review of Ketamine in Affective Disorders: Current Evidence of Clinical Efficacy, Limitations of Use and Pre-Clinical Evidence on Proposed Mechanisms of Action. J. Affect. Disord. 2014, 156, 24–35. [Google Scholar] [CrossRef]
- James Deardorff, W.; Grossberg, G.T. A Review of the Clinical Efficacy, Safety and Tolerability of the Antidepressants Vilazodone, Levomilnacipran and Vortioxetine. Expert Opin. Pharmacother. 2014, 15, 2525–2542. [Google Scholar] [CrossRef]
- Stahl, S.M.; Pradko, J.; Haight, B.R.; Modell, J.G.; Rockett, C.B.; Learned-Coughlin, S. A Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim. Care Companion CNS Disord. 2004, 6, 159–166. [Google Scholar] [CrossRef]
- Patel, K.; Allen, S.; Haque, M.N.; Angelescu, I.; Baumeister, D.; Tracy, D.K. Bupropion: A Systematic Review and Meta-Analysis of Effectiveness as an Antidepressant. Ther. Adv. Psychopharmacol. 2015, 6, 99–144. [Google Scholar] [CrossRef]
- Ferrari, S.; Mulè, S.; Parini, F.; Galla, R.; Ruga, S.; Rosso, G.; Brovero, A.; Molinari, C.; Uberti, F. The Influence of the Gut-Brain Axis on Anxiety and Depression: A Review of the Literature on the Use of Probiotics. J. Tradit. Complement. Med. 2024, 14, 237–255. [Google Scholar] [CrossRef]
- Johnson, D.; Thurairajasingam, S.; Letchumanan, V.; Chan, K.G.; Lee, L.H. Exploring the Role and Potential of Probiotics in the Field of Mental Health: Major Depressive Disorder. Nutrients 2021, 13, 1728. [Google Scholar] [CrossRef]
- Tian, P.; O’Riordan, K.J.; Lee, Y.K.; Wang, G.; Zhao, J.; Zhang, H.; Cryan, J.F.; Chen, W. Towards a Psychobiotic Therapy for Depression: Bifidobacterium Breve CCFM1025 Reverses Chronic Stress-Induced Depressive Symptoms and Gut Microbial Abnormalities in Mice. Neurobiol. Stress 2020, 12, 100216. [Google Scholar] [CrossRef]
- Morshedi, M.; Valenlia, K.B.; Hosseinifard, E.S.; Shahabi, P.; Abbasi, M.M.; Ghorbani, M.; Barzegari, A.; Sadigh-Eteghad, S.; Saghafi-Asl, M. Beneficial Psychological Effects of Novel Psychobiotics in Diabetic Rats: The Interaction among the Gut, Blood and Amygdala. J. Nutr. Biochem. 2018, 57, 145–152. [Google Scholar] [CrossRef]
- Yunes, R.A.; Poluektova, E.U.; Vasileva, E.V.; Odorskaya, M.V.; Marsova, M.V.; Kovalev, G.I.; Danilenko, V.N. A Multi-Strain Potential Probiotic Formulation of GABA-Producing Lactobacillus Plantarum 90sk and Bifidobacterium Adolescentis 150 with Antidepressant Effects. Probiotics Antimicrob. Proteins 2020, 12, 973–979. [Google Scholar] [CrossRef]
- Messaoudi, M.; Lalonde, R.; Violle, N.; Javelot, H.; Desor, D.; Nejdi, A.; Bisson, J.F.; Rougeot, C.; Pichelin, M.; Cazaubiel, M.; et al. Assessment of Psychotropic-like Properties of a Probiotic Formulation (Lactobacillus Helveticus R0052 and Bifidobacterium Longum R0175) in Rats and Human Subjects. Br. J. Nutr. 2011, 105, 755–764. [Google Scholar] [CrossRef]
- Ramalho, J.B.; Soares, M.B.; Spiazzi, C.C.; Bicca, D.F.; Soares, V.M.; Pereira, J.G.; Da Silva, W.P.; Sehn, C.P.; Cibin, F.W.S. In Vitro Probiotic and Antioxidant Potential of Lactococcus Lactissubsp. Cremoris Ll95 and Its Effect in Mice Behaviour. Nutrients 2019, 11, 901. [Google Scholar] [CrossRef]
- Lalonde, R.; Strazielle, C. Probiotic Effects on Anxiety-like Behavior in Animal Models. Rev. Neurosci. 2022, 33, 691–701. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, W.; Guo, R.; Liu, H. Faecalibacterium Prausnitzii (ATCC 27766) Has Preventive and Therapeutic Effects on Chronic Unpredictable Mild Stress-Induced Depression-like and Anxiety-like Behavior in Rats. Psychoneuroendocrinology 2019, 104, 132–142. [Google Scholar] [CrossRef]
- Reis, D.J.; Ilardi, S.S.; Punt, S.E.W. The Anxiolytic Effect of Probiotics: A Systematic Review and Meta-Analysis of the Clinical and Preclinical Literature. PLoS ONE 2018, 13, e0199041. [Google Scholar] [CrossRef]
- Lurie, I.; Yang, Y.X.; Haynes, K.; Mamtani, R.; Boursi, B. Antibiotic Exposure and the Risk for Depression, Anxiety, or Psychosis: A Nested Case-Control Study. J. Clin. Psychiatry 2015, 76, 1522–1528. [Google Scholar] [CrossRef]
- Johnson, D.; Letchumanan, V.; Thum, C.C.; Thurairajasingam, S.; Lee, L.H. A Microbial-Based Approach to Mental Health: The Potential of Probiotics in the Treatment of Depression. Nutrients 2023, 15, 1382. [Google Scholar] [CrossRef]
- Zhu, H.; Tian, P.; Zhao, J.; Zhang, H.; Wang, G.; Chen, W. A Psychobiotic Approach to the Treatment of Depression: A Systematic Review and Meta-Analysis. J. Funct. Foods 2022, 91, 104999. [Google Scholar] [CrossRef]
- Reininghaus, E.Z.; Platzer, M.; Kohlhammer-Dohr, A.; Hamm, C.; Mörkl, S.; Bengesser, S.A.; Fellendorf, F.T.; Lahousen-Luxenberger, T.; Leitner-Afschar, B.; Schöggl, H.; et al. Provit: Supplementary Probiotic Treatment and Vitamin B7 in Depression—A Randomized Controlled Trial. Nutrients 2020, 12, 3422. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Wiktorczyk-Kapischke, N.; Chomacka, K.; Grudlewska-Buda, K.; Wilk, M.; Wałecka-Zacharska, E.; Andrzejewska, M.; Gospodarek-Komkowska, E. The Role of Psychobiotics in Supporting the Treatment of Disturbances in the Functioning of the Nervous System—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 7820. [Google Scholar] [CrossRef]
- Gao, K.; Farzi, A.; Ke, X.; Yu, Y.; Chen, C.; Chen, S.; Yu, T.; Wang, H.; Li, Y. Oral Administration of: Lactococcus Lactis WHH2078 Alleviates Depressive and Anxiety Symptoms in Mice with Induced Chronic Stress. Food Funct. 2022, 13, 957–969. [Google Scholar] [CrossRef]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the Probiotic Bifidobacterium Infantis in the Maternal Separation Model of Depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Satti, S.; Palepu, M.S.K.; Singh, A.A.; Jaiswal, Y.; Dash, S.P.; Gajula, S.N.R.; Chaganti, S.; Samanthula, G.; Sonti, R.; Dandekar, M.P. Anxiolytic- and Antidepressant-like Effects of Bacillus Coagulans Unique IS-2 Mediate via Reshaping of Microbiome Gut-Brain Axis in Rats. Neurochem. Int. 2023, 163, 105483. [Google Scholar] [CrossRef]
- Savignac, H.M.; Kiely, B.; Dinan, T.G.; Cryan, J.F. Bifidobacteria Exert Strain-Specific Effects on Stress-Related Behavior and Physiology in BALB/c Mice. Neurogastroenterol. Motil. 2014, 26, 1615–1627. [Google Scholar] [CrossRef]
- Bankah, A.Z.; Tagoe, T.A.; Darko, E.; Agoha, R.; Ametefe, E.N.; Kukuia, K.K.E.; Adjei, S. Combined Administration of Lactobacillus or Bifidobacterium Offers Enhanced Antidepressant and Anxiolytic Activity in a Dose Dependent Manner. Brain Behav. 2025, 15, e70564. [Google Scholar] [CrossRef]
- Ma, J.; Chen, Y.; Wang, Z.; Wang, R.; Dong, Y. Lactiplantibacillus Plantarum CR12 Attenuates Chronic Unforeseeable Mild Stress Induced Anxiety and Depression-like Behaviors by Modulating the Gut Microbiota-Brain Axis. J. Funct. Foods 2023, 107, 105710. [Google Scholar] [CrossRef]
- Daugé, V.; Philippe, C.; Mariadassou, M.; Rué, O.; Martin, J.C.; Rossignol, M.N.; Dourmap, N.; Svilar, L.; Tourniaire, F.; Monnoye, M.; et al. A Probiotic Mixture Induces Anxiolytic- and Antidepressive-Like Effects in Fischer and Maternally Deprived Long Evans Rats. Front. Behav. Neurosci. 2020, 14, 581296. [Google Scholar] [CrossRef]
- Liu, Q.F.; Kim, H.M.; Lim, S.; Chung, M.J.; Lim, C.Y.; Koo, B.S.; Kang, S.S. Effect of Probiotic Administration on Gut Microbiota and Depressive Behaviors in Mice. DARU J. Pharm. Sci. 2020, 28, 181–189. [Google Scholar] [CrossRef]
- Barros-Santos, T.; Silva, K.S.O.; Libarino-Santos, M.; Cata-Preta, E.G.; Reis, H.S.; Tamura, E.K.; De Oliveira-Lima, A.J.; Berro, L.F.; Uetanabaro, A.P.T.; Marinho, E.A.V. Effects of Chronic Treatment with New Strains of Lactobacillus Plantarum on Cognitive, Anxiety- And Depressive-like Behaviors in Male Mice. PLoS ONE 2020, 15, e0234037. [Google Scholar] [CrossRef]
- Ng, Q.X.; Lim, Y.L.; Yaow, C.Y.L.; Ng, W.K.; Thumboo, J.; Liew, T.M. Effect of Probiotic Supplementation on Gut Microbiota in Patients with Major Depressive Disorders: A Systematic Review. Nutrients 2023, 15, 1351. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, T.L.; Tsai, Y.L.; Wu, T.R.; Lai, W.F.; Lu, C.C.; Lai, H.C. Next Generation Probiotics in Disease Amelioration. J. Food Drug Anal. 2019, 27, 615–622. [Google Scholar] [CrossRef]
- Vijayaganapathi, A.; Mohanasrinivasan, V. A Review of Next-Generation Probiotics—As a Gateway to Biotherapeutics. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Kajita, C.; Rocca, P.; Pot, B. Microbiota and Probiotics: Chances and Challenges—A Symposium Report. Gut Microbiome 2023, 4, e6. [Google Scholar] [CrossRef]
- Hempel, S.; Newberry, S.; Ruelaz, A.; Wang, Z.; Miles, J.N.V.; Suttorp, M.J.; Johnsen, B.; Shanman, R.; Slusser, W.; Fu, N.; et al. Safety of Probiotics Used to Reduce Risk and Prevent or Treat Disease. Evid. Rep. Technol. Assess. (Full. Rep). 2011, 1–645. [Google Scholar]
- Redman, M.G.; Ward, E.J.; Phillips, R.S. The Efficacy and Safety of Probiotics in People with Cancer: A Systematic Review. Ann. Oncol. 2014, 25, 1919–1929. [Google Scholar] [CrossRef]
- Thu, M.S.; Ondee, T.; Nopsopon, T.; Farzana, I.A.K.; Fothergill, J.L.; Hirankarn, N.; Campbell, B.J.; Pongpirul, K. Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. Biology 2023, 12, 280. [Google Scholar] [CrossRef]
- Kim, Y.J.; Yu, J.; Park, S.P.; Lee, S.H.; Kim, Y.S. Prevention of Radiotherapy Induced Enteropathy by Probiotics (PREP): Protocol for a Double-Blind Randomized Placebo-Controlled Trial. BMC Cancer 2021, 21, 1032. [Google Scholar] [CrossRef]
- Lu, K.; Dong, S.; Wu, X.; Jin, R.; Chen, H. Probiotics in Cancer. Front. Oncol. 2021, 11, 638148. [Google Scholar] [CrossRef]
Experimental Subject | Treatment and Dosage | Time of Treatment and Route of Administration | Animal Model | Effects of Treatment | Mechanism Involved | References |
---|---|---|---|---|---|---|
Male Wistar rats | Lactobacillus helveticus R0052 y Bifidobacterium longum R0175 (1 × 109 CFU). Dosage: 250 mg/rat per day. | 14 days. Orally gavaged. | Defensive flight test under stress conditions. Conditioned defensive burying. | Reduction in stress and anxiety scores in the conditioned defensive burying test, presenting a lower stress response compared to rats that received vehicle (placebo). | Modulation of the HPA axis, which regulates the stress response. Changes in the gut microbiota influence the release of neuroendocrine mediators, which could reduce the exaggerated response of the HPA axis to stressful stimuli. | [127] |
Pregnant Sprague Dawley | Bifidobacterium infantis 35624 (1 × 1010 CFU per capsule). Citalopram 30 mg/kg. | 40 days. Orally gavaged. | Maternal separation test. Forced swim test (FST). LPS. | Bifidobacterium infantis reduced IL-6 levels, immobility in FST, restored NE levels in the brainstem, decreased CRF expression in the amygdala, and had a modulatory effect on HPA. Citalopram restored 5-HT levels, reduced immobility in FST, increased NE levels in locus coeruleus, and reduced CRF levels in amygdala. | Modulation of the immune response by reducing IL-6 levels, restores HPA axis function by reducing CRF levels in the amygdala and normalizing NE levels in the brainstem. | [138] |
Adult male BALB/c mice | Lactobacillus rhamnosus JB-1 (1 × 109 CFU per capsule). | 28 days. Orally gavaged. | Hypothermia-induced stress. Elevated plus maze (EPM). FST. Tail suspension test (TST). Fear conditioning test. | Reduction of depressive behaviors in FST alone. Decreased stress response. Improvement in behaviors suggestive of anxiety. Increased fear memory. Neurochemical alterations in GABA receptors. | Regulation of the GABAergic System and of the HPA axis. Production or regulation of neuroactive molecules such as GABA or modulation of other neurotransmitters and neuropeptides that act at the peripheral level and impact neuroendocrine and neurochemical pathways. This modulation is done, in part, through the activation of the vagus nerve, which transmits signals from the gut to the brain. | [139] |
Pregnant female Sprague-Dawley rats | Bacillus coagulans Unique IS-2 (2 × 109 CFU per capsule). | 6 weeks. Orally gavaged. | Sucrose preference test (SPT). FST. EPM. Open field test (OFT). | Bacillus coagulans Unique IS-2 reduces behaviors associated with anxiety and depression. Normalizes 5-HT and BDNF levels. Reduces CRP, TNF-α, and IL-1β levels. Increases levels of SCFAs such as acetate, propionate, and butyrate. | The production of SCFAs modulates mitochondrial function, reduces inflammation, and strengthens the integrity of the intestinal barrier, preventing systemic inflammation that affects the brain. It also restores the balance of the intestinal microbiota, increasing beneficial bacteria such as Firmicutes and decreasing Proteobacteria, which favors the regulation of 5-HT and BDNF. | [140] |
Male BALB/cOlaHsd (BALB/c) mice | Bifidobacterium longum 1714 and Bifidobacterium breve 1205 (1 × 109 CFU/mL). Escitalopram 20 mg/kg. | 6 weeks. Orally gavaged. | Hypothermia-induced stress. Marble burying. EPM. OFT. TST. FST. | Bifidobacterium breve 1205 increased time in open arm, decreased weight gain. Reduced stress-associated defecation and decreased marble burying time. Bifidobacterium longum 1714 had no effect on EPM, but it did reduce hypothermia and immobility time in FST and TST. Escitalopram reduced spleen weight, corticosterone levels, immobility in TST, and stress-induced hypothermia. | Modulation of inflammation, modulation of the serotonergic system, impact on neuroendocrine and inflammatory signaling. | [141] |
ICR mice | Fluoxetine 10 mg/kg. Lactobacillus (1 × 104 CFU/mL daily). Lactobacillus (1 × 108 CFU/mL daily). Bifidobacterium (1 × 104 CFU/mL daily). Bifidobacterium (1 × 108 CFU/mL daily). Lactobacillus and Bifidobacterium (1 × 104 CFU/mL daily). Lactobacillus and Bifidobacterium (1 × 108 CFU/mL daily). | 28 days. Orally gavaged. | CUMS. SPT. OFT. FST. TST. Hot plate test. | High doses of probiotics, as well as fluoxetine, restored sucrose preference. High doses of probiotics and fluoxetine decreased FST and TST immobility time. High doses of probiotics increased activity in central areas and the number of cross-sections in OFT. High doses of probiotics also helped reduce pain sensitivity. | Modulation of MGB, increased levels of 5-HT, GABA, and BDNF. Inhibition of the kynurenine pathway and increased expression of tryptophan hydroxylase 1 (TPH1). Additionally, they increased the activity of GABA receptors in brain regions related to mood and anxiety regulation. They reduced oxidative stress and systemic inflammation, helping to maintain the integrity of the intestinal barrier and prevent inflammatory processes associated with depression. | [142] |
Adult female C57BL/6J mice | Fluoxetine 20 mg/kg. Lactobacillus plantarum CR12 and Lactobacillus plantarum ST-1 (1 × 109 CFU). Dosage: 200 µL. | 14 days. Orally gavaged. | SPT. FST. TST. OFT. Morris water maze. | L. plantarum CR12 and fluoxetine reduced depressive and anxious behavior, increased spatial memory, and reduced obsessive-ritual behaviors. Increased production of SCFAs, particularly butyrate, which are involved in regulating brain function and inflammation. | Modulation of MGB, production of S butyrate that act as mediators that cross the intestinal barrier and modulate neuroinflammation, reducing proinflammatory activation of microglia in the hippocampus. Improved intestinal barrier integrity through the restoration of proteins such as ZO-1, which reduces intestinal permeability and, consequently, the entry of proinflammatory molecules. L. plantarum CR12 promotes neuroprotection by reducing neuroinflammation. | [143] |
Fischer male rats Long Evans female rats | Probiotics mixture (Lactobacillus helveticus LA 102, Bifidobacterium longum LA 101, Lactococcus lactis LA 103 and Streptococcus thermophilus LA 104 (1 × 109 CFU). Dosage: 0.5 mL. | Fischer rats: 5 weeks. Long Evans rats: 9 weeks. Orally gavaged. | Maternal deprivation in Long Evans rats. Novel object test. Light-dark box test. EPM. OFT. FST. | Reduction of anxiety- and depression-related behaviors. Modification of the gut microbiota. Modification of the expression of inflammatory markers and binding proteins in the gut. | Modulation of the gut microbiota, which influences gut barrier function and reduces inflammation. Changes in the expression of epithelial junction proteins and inflammatory markers. Modification of the production and regulation of metabolites such as 21-deoxycortisol, which modulates brain monoamine levels. | [144] |
Male ICR mice | Fluoxetine 10 mg/kg. Probiotic mixture (Lactobacillus plantarum LP3, L. rhamnosus LR5, Bifidobacterium lactis BL3, B. breve BR3, and Pediococcus pentosaceus PP1) 2 × 108 CFU. Dosage: 500 µL. | 8 weeks. Orally gavaged. | FST. TST. OFT. EPM. | Reduction of immobility in FST and TST. Increased locomotor activity without significant differences. Reduction in corticosterone levels. Restoration of the intestinal microbiota. | Modulation of the composition of the intestinal microbiota, which reduces inflammation and strengthens the intestinal barrier, preventing excessive activation of the immune system. This, in turn, helps regulate the MGB axis, decreasing the stress response and corticosterone levels, in addition to influencing the production of neurotransmitters related to mood. | [145] |
Swiss male mice | Lactobacillus plantarum 286 Lactobacillus plantarum 81 (1 × 109 CFU). Dosage: 0.1 mL. | 30 days. Orally gavaged. | OFT. FST. Plus maze discriminative avoidance test (PM-DAT). | Lactobacillus plantarum 286 does not alter locomotor activity, memory, or learning in mice. It also showed anxiolytic and antidepressant effects. | Modulation of the MGB axis and GABAergic activity by the effects observed in EPM. | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosas-Sánchez, G.U.; Germán-Ponciano, L.J.; Puga-Olguín, A.; Soto, M.E.F.; Medina, A.Y.N.; Muñoz-Carillo, J.L.; Rodríguez-Landa, J.F.; Soria-Fregozo, C. Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions. Biomedicines 2025, 13, 1831. https://doi.org/10.3390/biomedicines13081831
Rosas-Sánchez GU, Germán-Ponciano LJ, Puga-Olguín A, Soto MEF, Medina AYN, Muñoz-Carillo JL, Rodríguez-Landa JF, Soria-Fregozo C. Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions. Biomedicines. 2025; 13(8):1831. https://doi.org/10.3390/biomedicines13081831
Chicago/Turabian StyleRosas-Sánchez, Gilberto Uriel, León Jesús Germán-Ponciano, Abraham Puga-Olguín, Mario Eduardo Flores Soto, Angélica Yanet Nápoles Medina, José Luis Muñoz-Carillo, Juan Francisco Rodríguez-Landa, and César Soria-Fregozo. 2025. "Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions" Biomedicines 13, no. 8: 1831. https://doi.org/10.3390/biomedicines13081831
APA StyleRosas-Sánchez, G. U., Germán-Ponciano, L. J., Puga-Olguín, A., Soto, M. E. F., Medina, A. Y. N., Muñoz-Carillo, J. L., Rodríguez-Landa, J. F., & Soria-Fregozo, C. (2025). Gut–Brain Axis in Mood Disorders: A Narrative Review of Neurobiological Insights and Probiotic Interventions. Biomedicines, 13(8), 1831. https://doi.org/10.3390/biomedicines13081831